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Abstract: - In the last ten years, axial flow left ventricular assist devices (LVAD) of small size were 
developed. This paper proposes a model for a new LVAD that reproduces the characteristics of the 
signals recorded in ex-vivo experiences in calves, through the interaction with a cardiovascular system 
model. Given the validity of the model, an approach to control is presented in order to adapt the speed 
of the pump to the physiological demand, keeping a pulsatility index of aortic pressure and avoiding 
risky situations to the patient. 
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1   Introduction 
The cardiovascular disease is one of the main 
health problems with epidemic characteristics; 
as such, it has an important social and 
economics impact. In severe cases, when 
pharmacological treatments are unsuitable to 
hold an adequate blood circulation, to transplant 
the heart is the method generally accepted. But 
in general, the demand exceeds the number of 
donors, and as consequence, patients that need a 
heart have to wait a long term to receive one. In 
these cases a ventricular assist device is 
considered a bridge to cardiac transplant [1-3]. 
The improvement in design and reliability of 
circulatory assist devices have made possible to 
use them in large periods of time. This fact 
allows to glimpse the use of mechanical 
assistance as an alternative to the heart 
transplant in chronic cases  [4-6]. 
Several types of blood pumps were designed: 
pulsatile or continuous flow, centrifugal or axial 
flow. At the end of the eighties, trying to 
overcome the drawbacks existing in pulsatile 
systems, a generation of axial-flow blood pumps 
were developed [5,6]. Following this approach a 
new pump of axial-flow was designed 
(IMPSA/FF, see [7] for details). The results 
about modelization and control presented in this 
paper correspond to it. 

Despite clinical trials have been done with this 
type of devices, the modelling and control 
problems are far to be solved. 
The structure of this paper is as follows. In 
Section 2 a brief description of the IMPSA/FF 
pump is presented, including ex-vivo tests. 
The mathematical model of the pump is 
developed in Section 3. In Section 4 the 
coincidence between the results obtained with 
the mathematical model and ex-vivo test are 
shown. The analysis of the interaction of the 
pump with a cardiovascular model is described 
in Section 5. An approach to the pump control is 
introduced in Section 6. Finally, conclusions are 
enumerated in Section 7.  
 
 
2  Axial-Flow Blood Pump 
The pump is made up by a housing divided in 
two compartments for both titanium rotors with 
magnets of rare earth. Above them the magnetic 
field of the statoric windings acts to generate the 
movement [7]. 
The output rotor rotate in opposite way to the 
input rotor of the pump, and by design, both 
must keep a constant relation of speed: 
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The pump determines a flow of 5lt/min with a 
pressure difference of 100 mmHg in static 
conditions, for input and output rotors speed of 

84001 =n rpm and 39002 =n rpm respectively 
[7]. 
 
 
2.1  Ex-vivo evaluation 
To evaluate the interaction between the pump an 
a normal heart, during 2002 ex-vivo tests were 
made in the Favaloro Foundation (Buenos 
Aires, Argentina); the electro-mechanical device 
was externally connected to the body of a calf 
[7]. (See Fig. 1) 
 

 

Fig. 1. )(tPao : aortic pressure; )(tPVi : left 
ventricular pressure; )(tfb : pump flow. 

 
The signals recorded in the ex-vivo test are 
shown in Fig. 2; they correspond to two 
different rotor speeds. 
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Fig. 2.   )(tPao , )(tPVi and )(tfb recorded from the ex-
vivo tests, corresponding to 72001 =n rpm (left side) 

and 81001 =n rpm (right side). 
 
 
 3  The mathematical model 
Several models were developed in order to 
describe the behavior of LVAD [8,9]. A new 
model is proposed in this paper for the axial-
flow pump analyzed: 
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where the inputs are )()()( tPtPtH aoVi −= , and 
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The parameters 21 ,kk  and 3k  could be 
considered as constants in the range 

80006000 1 << n rpm. 
The bilinear differential equation (2), 
considering )(1 tω  as a constant, becomes linear 
equation. This linear equation can be expressed 
in discrete-time, and the parameters estimated 
using the recursive least squares algorithm with 
constant forgetting factor [10,11]. 
 
 
4  Validation of the model 
The comparison between the pump flow  
recorded during the ex-vivo tests and the output 
of the mathematical model are shown in Fig. 3. 
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Fig. 3. Pump flows corresponding to 

67001 =n rpm (top) and 79001 =n rpm 
(bottom) 

 

5  Interaction with a cardiovascular 
system 
In order to evaluate the interaction between the 
proposed pump model and the cardiovascular 
model introduced in [12], the system depicted in 
Fig. 4 was simulated. 

 
Fig. 4. LVAD and cardiovascular system models 

The parameters of the electric circuit have been 
adjusted by computer simulations, to match the 
results to those obtained in ex-vivo tests. The 
results are shown in Fig.5 . 
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Fig. 5. )(tPao , )(tPVi and )(tfb  corresponding to 

a linear variation of 1n  between 6000 and 8000 
rpm 

 
 
6  An approach to the control 
problem 
The objective of the controller is to set the speed 
according to the physiological conditions, 
avoiding risky situations for the patient. Several 
control strategies were recently proposed for 
axial flow pumps [8,13,14]. 
A modification of the index defined in [8] is 
presented in this paper (see Fig. 6). 
 
 

Fig. 6.  Scheme for calculation IPao(t). 
 Second-order Butterworth filters, cut-off  

frequency of  0.5Hz. 
 
The variation of the pulsatility index IPao(t) for 
a linear function of )(1 tn  is shown in Fig.7.  
 

C5

C6

L3R6R5RrL2R3L1R2R1RlR8 S4 R4 S2S1 S3

El
C1 C2 C3

Er
C4

UrUl

L7R7

LVAD
model

C5

C6

L3R6R5RrL2R3L1R2R1RlR8 S4 R4 S2S1 S3

El
C1 C2 C3

Er
C4

UrUl

L7R7

LVAD
model

Pao(t)

Abs

IPao(t)

HPF LPF

Pao(t)

Abs

IPao(t)

HPF LPF



These results matched those obtained in ex-vivo 
experiences. 
 

Fig. 7 Pulsatility index IPao(t) 
 
The control strategy is as follows: 
1) To choose the reference pulsatility index 

refIPao , 
2) to calculate )()(. kIPaoIPaoke ref −=  , 
3) to define a proportional-integral controller 

)1()1(.)(.)( 11 −+−+= kkekkekk ip ωω  , 
4) to set the constants ip kk ,  for minimizing 

the cost ∑
=

=
0

.)(
k

kkeJ  , with a second-

order system in Fig. 8, which behavior is 
similar to that of the complete model. 

 

 
Fig. 8  Block diagram for calculation  

pk and ik . 
 
In Fig. 9 the results obtained from a closed-loop 
system simulation with the complete model are 
shown.  
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Fig. 9. IPao(t), )(1 tn  and Pao(t)  when R3 (Fig. 4) 

rises 20% in 20sec. 94,1=refIPao . 
 
 
7  Conclusion 
A new dynamical model of LVAD was 
introduced. Its interaction with a simple model 
of the cardiovascular system could be 
considered as a first step to test control 
algorithms. The next step will be to probe these 
algorithms on physical models.  
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