

An Algorithm for Saving the Memory Utilization in the

1-D Cerebellar Model Controller

Wang Chiang and Cheng-Chih Chien
Department of Electrical Engineering ,Tamkang University,Taipei,Taiwan

Abstract
It is very difficult to establish a mathematical model

of a complicated higher-order nonlinear system;

therefore, the neural network with the nonlinear-mapping

capability (ability) is widely adopted to solve the control

problem. However, it takes a very long time for the

learning of conventional neural network, so the

cerebellar model with the merits of simple algebraic

operations and local update of weighting number (value)

can replace the neural network (with the shortcomings of

long-time learning). In this paper, a judging method by

the function�s slope is adopted to save the district value

of average in the same memory when the variation of the

output is not great, so the memory utilization can be

saved effectively. Hence, the learning effect can be

improved and the practical hardware cost can be saved.

Keywords : Cerebellar Model Articulation Controller;

CMAC

1. Introduction
The frame of the cerebellar model controller is

shown in Fig.1. It imitated the frame of a human cortex�s

storage by a series of mapping methods to reach the

function of repeated learning. The operation method of

learning is shown as follows:

First, a learning space that provides CMAC for

obtaining the training sample must be specified. Then,

the space is quantified in as many discrete pieces

(S=(1 2, ,......, ks s s)). By mapping the index memories,

the physical (real) memories which are mapped can be

determined. The numbers stored in the physical (real)

memories are called weights (W=(1 2, ,......, nw w w)).

The responding output to the input state can be obtained

by summing the contents of the mapped memories.

When CMAC has not yet finished the training, the

corresponding CMAC output values are somewhat

different from the expected values of the samples. Hence,

the error between the expected value of the sample and

the CMAC real output is averagely distributed to the

physical (real) memories mapped by the index memories.

The containing value is then modified according to the

errors, thus the CMAC output values is expected to be

closer to the expected value in the next time.

Fig. 1 The basic frame of the cerebellar model controller

Training
sample

Learning
space

1x

2x

Index
memories

Mapping

Physically
memories

W

Σ

Output value y

-

Expected
output
value

^
y

Σ

Error value

2. Memory Division

In the cerebellar model controller, every variable

was quantified, so the state space is separated (divided)

into many discrete pieces. Arbitrary quantified input state

can be mapped to a set of physical (real) memory, and

the output can be obtained by this set of memory. Hence,

the output signal in every state is distributed and saved in

some physical (real) memories.

2.1 1-D CMAC Memory Division
The divided way of the memory units in the 1-D

cerebellar model controller is shown in Fig. 2. It is the

most general and easiest to be understood. The distance

between the neighboring sample states is called

resolution. The parameters of the memory-unit number

and the resolution mapped by every sample state can be

defined by us.

Fig. 2 The divided way of the memory units in the 1-D

cerebellar model controller

According to the division method, the indices of all

the sample states of the mapped physical (real) memory

are set as �1�, and the sample states that have not been

mapped to the memories are set as 0 (shown in Table 1)

Table 1 The memory-unit indices table

From the foregoing table, if the input states were

quantified as k states (k=7), which are represented as

S(1), S(2),�, S(7). Every state use m weights (m=3),

then there will be n memory units (n=k+m-1). Equation

(1) is used to represent the stored data in S(k)

() () (,)(1)
n

S k S k S k j j
j

y C W C W= =∑

2.2 2-D CMAC Memory Division
A general memory-unit dividing way of the 2-D

cerebellar model controller is shown in Fig. 2. In the 2-D

learning space, every input variable axis is quantified as

nine discontinuous units, which are called elements. The

width of every element is called resolution. The small

squares surrounded by the small discontinuous units of

these two input-variable axes are called input states. Fig.

3 shows that the learning space can be quantified as 81

discontinuous input states.

The Mapped
Memories

S(1)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1

S(1) S(2) S(3) S(4) S(5) S(7)S(6) Sample
State

A

B

C
D
E
F

G
H
I

f(n)
Output

State
A B C D E F G H

 Fig. 3 The dividing way of the 2-D cerebellar model�s

memory units

 After every quantified layer has been established,

only the divisions on the same layers can form cubes

according to the general rule. There are 4 quantified

layers, 9 different size super-cubes in each layer for a

total of 36 super-cubes. All of the super-cubes according

to the definition in Fig. 3 are shown in Table 2.

Table 2 The cubes� names generated by the quantification

layers

3. Saving Memory Size Algorism
 After the training samples have been inputed to

CMAC, they will be addressed to several physical

memory addresses for storing the sample information by

a series of quantification and mapping. Then, the

information can be retrieved from these

physical-memories positions by using equation (1), and

the CMAC output can be obtained by summing these

data. This algorithm can make the method of

conventional memories-utilization settings flexible,

hence the demands of function accuracy and the needs of

the memories can be totally evaluated according to our

needs.

3.1 1-D Saving Memory Size Algorithm
When the learning target is a 1-D function, the first

thing is to obtain the parameters of variation degree

between the neighboring target samples (shown in

equation (2)) in order to have a basis for saving the

memories positions.

 1

1

() ()n n
n

n n

f x f xm
x x

−

−

−=
−

 .�����(2)

 (n=1,2,��,k)
The parameters for comparison is first found out, and

compared with the variation-degree parameters. Then,

determine which target samples can be left out. The

formula is shown in equation (2), where α is selected

by ourselves. If we want to decrease the memory

utilization, we must choose a smallerα.

max min() ()a b

a b

f x f x
x x

ρ α
 −= ÷ − 

��(3)

Compare the magnitude relation of m and ρ . If

nm ρ≥ , then map to a set memory and continue to

compare 1nm + and ρ. When nm is less than ρ,

then take the average value of the (n-1)th and nth target

sample. The averaged value will be the new common

target value of the (n-1)th and nth sample states. During

the mapping process, only a memory position is mapped,

Layer
Name

Names of the Super-Cubes

LayerQ1 Aa Ab Ac Ba Bb Bc Ca Cb Cc

LayerQ2 Dd De Df Ed Ee Ef Fd Fe Ff

LayerQ3 Gg Gh Gi Hg Hh Hi Ig Ih Ii

LayerQ4 Jj Jk Jl Kj Kk Kl Lj Lk

8

7

6

5

4

3

2

1

0

a

b

c

d

e

f

g

h

i

j

k

l

0 1 2 3 4 5 6 7 8

A B C

D E F

G H I

J K L

Ee

Hh

Kk
Bb

State (4,4)

and the comparison process of 1nm + and ρwas left out,

and perform directly the comparison of 2nm + and ρ.

Fig. 4 The divided way of leaving out the memory units

for a 1-D cerebellar model controller.

Compare Fig. 2 and Fig. 4, it is found that the

precursor action can increase apparently the

quantification state and memory utilization.

4. 1-D CMAC Simulation Example
The foregoing algorithm is verified by an actual

example

1. Learning Function: y=tanh(0.5*x)

2. Learning Space: -10~10

3. The states� number of the quantified learning space:

101

4. The memory-unit number mapped by the input state

5. Learning rate: 0.5

6. Learning performance index: 0.5

7. The number of the training samples: 101

8. Performance evaluation: adopt the sum of square of

error.

9. The value of α:4 and 8

The simulated results are shown as follows

Fig. 5 The first learning period

 Fig. 6 The twentieth learning period

Fig. 7 The comparison of the learning errors

S(1)

S(2)
S(3)

S(4)

S(5)

Sample state

A

B

D

E

H

4m ρ<

1x 2x 3x 4x 5x 6x 7x

F(n)

c

G

Output

From this example (see Fig. 5), the learning effect

to the target function of S-CMAC (saving memory�s

CMAC) is less than the conventional CMAC during the

initial stage of the learning period. However, when the

learning period increases, (see Fig. 6 and Fig. 7,

S-CNAC, α=8), the output value is very close to the

output of the target function. Hence, it takes a longer

learning period for S-CMAC to reach the ideal output

effect.

Although it takes a shorter learning period for a

conventional CMAC frame to reach the convergent

effect, it needs a longer learning period to converge.

However, it doesn�t mean that the learning effect of

S-CMAC is worse. Since in the precursor, the number of

the samples to be learned has been decreased, the

calculation quantity in every period decreases, the

needed time for every period decreases. Although the

period for convergence is longer, the total time has not

great difference with the initial CMAC frame.

 Furthermore, the choice of αvalue is related to the

output error and the saving quantity of the memories.

The smaller the α value is, the smaller the memory

utilization quantity, hence the error becomes greater, it

even can�t be converged to the acceptable expected

output value. We should choose the suitable α value to

meet our needs, and obtain an equilibrium point between

the hardware cost and output quality

Conclusions
The main essence of the learning algorithm during

the CMAC training process is the average distribution.

That is to say, after the training samples have been

inputed to CMAC, they will be addressed to several

physical memory addresses for storing the sample

information by a series of quantification and mapping.

Then, the information can be retrieved from these

physical-memories positions by using equation (1), and

the CMAC output can be obtained by summing these

data.

Every state of the conventional 1-D CMAC needs

so multifarious calculation quantities. If the states�

number to be divided is too large, then the calculation

quantities will be very large. The improved algorithm in

this paper will help us to efficiently decrease the

calculation quantities and memory utilization under the

presupposition that the error value is not too great and

choose carefully the value of α . Compared with the

conventional CMAC output, it needs more learning

period to reach the convergent effect. If the CMAC

output of the controlled body is not requested to be very

accurate, but is requested to converge quickly, using the

algorithm will save the hardware cost and learning time.

References
[1] J. G. Ziegler and N. B. Nichols, �Optimum settings

for automatic controllers,�ASME Journal of Dynamic

System,Meaurement,and

Control,vol.64,pp.759-768,November 1942.
[2] J.S.Albus,�A new approach to manipulator control :

The cerebellar model articulation

controller(CMAC),�ASME Journal of Dynamic

System,Meaurement, and

Control,vol.97,pp.220-227,September 1975.
[3] C. S. Lin and H. Kim,�Selection of learning

parameters for CMAC-Based adaptive critic

learning,�IEEE Transactions on Neural

Networks,vol.6,no.3,pp.642-647,May 1995.
[4] J. S. Albert, �Data storage in the cerebellar model

articulation controller (CMAC) ASME Journal of

Dynamic Systems, Meaurement, and Control,

vol.97,pp.228-233,September 1975.
[5] A. Thammano and C. H. Dagli, �A comparison of

FAM and CMAC for nonlinear control, �in IEEE World

Congress on Computational Intelligence, Proceedings of

the third IEEE Conference, 1994, vol.3, pp.1549-1553.
[6] W.T.Miller, R. P. Hewes, F. H. Glanz, and L. G. Kraft,

�Real-time dynamic control of an industrial

manipulator using a neural-network-based learning

control,� IEEE Transactions on Robots and

Automation, vol. 6,no.1, pp. 1-9,February 1990.

