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Abstract 
It is very difficult to establish a mathematical model 

of a complicated higher-order nonlinear system; 

therefore, the neural network with the nonlinear-mapping 

capability (ability) is widely adopted to solve the control 

problem. However, it takes a very long time for the 

learning of conventional neural network, so the 

cerebellar model with the merits of simple algebraic 

operations and local update of weighting number (value) 

can replace the neural network (with the shortcomings of 

long-time learning). In this paper, a judging method by 

the function�s slope is adopted to save the district value 

of average in the same memory when the variation of the 

output is not great, so the memory utilization can be 

saved effectively. Hence, the learning effect can be 

improved and the practical hardware cost can be saved. 
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1. Introduction 
The frame of the cerebellar model controller is 

shown in Fig.1. It imitated the frame of a human cortex�s 

storage by a series of mapping methods to reach the 

function of repeated learning. The operation method of 

learning is shown as follows: 

First, a learning space that provides CMAC for 

obtaining the training sample must be specified. Then, 

the space is quantified in as many discrete pieces 

(S=( 1 2, ,......, ks s s )). By mapping the index memories, 

the physical (real) memories which are mapped can be 

determined. The numbers stored in the physical (real) 

memories are called weights (W=( 1 2, ,......, nw w w )). 

The responding output to the input state can be obtained 

by summing the contents of the mapped memories. 

When CMAC has not yet finished the training, the 

corresponding CMAC output values are somewhat 

different from the expected values of the samples. Hence, 

the error between the expected value of the sample and 

the CMAC real output is averagely distributed to the 

physical (real) memories mapped by the index memories. 

The containing value is then modified according to the 

errors, thus the CMAC output values is expected to be 

closer to the expected value in the next time.  

 

Fig. 1 The basic frame of the cerebellar model controller 
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2. Memory Division 

In the cerebellar model controller, every variable 

was quantified, so the state space is separated (divided) 

into many discrete pieces. Arbitrary quantified input state 

can be mapped to a set of physical (real) memory, and 

the output can be obtained by this set of memory. Hence, 

the output signal in every state is distributed and saved in 

some physical (real) memories. 

 

2.1 1-D CMAC Memory Division 
The divided way of the memory units in the 1-D 

cerebellar model controller is shown in Fig. 2. It is the 

most general and easiest to be understood. The distance 

between the neighboring sample states is called 

resolution. The parameters of the memory-unit number 

and the resolution mapped by every sample state can be 

defined by us. 

 

Fig. 2 The divided way of the memory units in the 1-D 

cerebellar model controller  

 

According to the division method, the indices of all 

the sample states of the mapped physical (real) memory 

are set as �1�, and the sample states that have not been 

mapped to the memories are set as 0 (shown in Table 1) 

 

Table 1 The memory-unit indices table 

 

From the foregoing table, if the input states were 

quantified as k states (k=7), which are represented as 

S(1), S(2),�, S(7). Every state use m weights (m=3), 

then there will be n memory units (n=k+m-1). Equation 

(1) is used to represent the stored data in S(k) 
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2.2 2-D CMAC Memory Division 
A general memory-unit dividing way of the 2-D 

cerebellar model controller is shown in Fig. 2. In the 2-D 

learning space, every input variable axis is quantified as 

nine discontinuous units, which are called elements. The 

width of every element is called resolution. The small 

squares surrounded by the small discontinuous units of 

these two input-variable axes are called input states. Fig. 

3 shows that the learning space can be quantified as 81 

discontinuous input states. 
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  Fig. 3 The dividing way of the 2-D cerebellar model�s 

memory units 

 

    After every quantified layer has been established, 

only the divisions on the same layers can form cubes 

according to the general rule. There are 4 quantified 

layers, 9 different size super-cubes in each layer for a 

total of 36 super-cubes. All of the super-cubes according 

to the definition in Fig. 3 are shown in Table 2. 

  

 

    

 

 

 

 

 

Table 2 The cubes� names generated by the quantification 

layers 

 

3. Saving Memory Size Algorism 
    After the training samples have been inputed to 

CMAC, they will be addressed to several physical 

memory addresses for storing the sample information by 

a series of quantification and mapping. Then, the 

information can be retrieved from these 

physical-memories positions by using equation (1), and 

the CMAC output can be obtained by summing these 

data. This algorithm can make the method of 

conventional memories-utilization settings flexible, 

hence the demands of function accuracy and the needs of 

the memories can be totally evaluated according to our 

needs.  

 

3.1 1-D Saving Memory Size Algorithm 
When the learning target is a 1-D function, the first 

thing is to obtain the parameters of variation degree 

between the neighboring target samples (shown in 

equation (2)) in order to have a basis for saving the 

memories positions. 
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              (n=1,2,��,k) 
The parameters for comparison is first found out, and 

compared with the variation-degree parameters. Then, 

determine which target samples can be left out. The 

formula is shown in equation (2), where α is selected 

by ourselves. If we want to decrease the memory 

utilization, we must choose a smallerα. 
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Compare the magnitude relation of m  and ρ . If 

nm ρ≥ , then map to a set memory and continue to 

compare 1nm +  and ρ. When nm  is less than ρ, 

then take the average value of the (n-1)th and nth target 

sample. The averaged value will be the new common 

target value of the (n-1)th and nth sample states. During 

the mapping process, only a memory position is mapped, 
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and the comparison process of 1nm + and ρwas left out, 

and perform directly the comparison of 2nm + and ρ. 

 

 

Fig. 4 The divided way of leaving out the memory units  

for a 1-D cerebellar model controller. 

 

Compare Fig. 2 and Fig. 4, it is found that the 

precursor action can increase apparently the 

quantification state and memory utilization. 

 

4. 1-D CMAC Simulation Example 
The foregoing algorithm is verified by an actual 

example 

1. Learning Function: y=tanh(0.5*x) 

2. Learning Space: -10~10 

3. The states� number of the quantified learning space: 

101 

4. The memory-unit number mapped by the input state 

5. Learning rate: 0.5 

6. Learning performance index: 0.5 

7. The number of the training samples: 101 

8. Performance evaluation: adopt the sum of square of 

error.  

9. The value of α:4 and 8 

 

The simulated results are shown as follows 

       
    

 
Fig. 5 The first learning period 

 

 Fig. 6 The twentieth learning period 
 

Fig. 7 The comparison of the learning errors 
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From this example (see Fig. 5), the learning effect 

to the target function of S-CMAC (saving memory�s 

CMAC) is less than the conventional CMAC during the 

initial stage of the learning period. However, when the 

learning period increases, (see Fig. 6 and Fig. 7, 

S-CNAC, α=8), the output value is very close to the 

output of the target function. Hence, it takes a longer 

learning period for S-CMAC to reach the ideal output 

effect. 

Although it takes a shorter learning period for a 

conventional CMAC frame to reach the convergent 

effect, it needs a longer learning period to converge. 

However, it doesn�t mean that the learning effect of 

S-CMAC is worse. Since in the precursor, the number of 

the samples to be learned has been decreased, the 

calculation quantity in every period decreases, the 

needed time for every period decreases. Although the 

period for convergence is longer, the total time has not 

great difference with the initial CMAC frame. 

    Furthermore, the choice of αvalue is related to the 

output error and the saving quantity of the memories. 

The smaller the α value is, the smaller the memory 

utilization quantity, hence the error becomes greater, it 

even can�t be converged to the acceptable expected 

output value. We should choose the suitable α value to 

meet our needs, and obtain an equilibrium point between 

the hardware cost and output quality 

Conclusions 
The main essence of the learning algorithm during 

the CMAC training process is the average distribution. 

That is to say, after the training samples have been 

inputed to CMAC, they will be addressed to several 

physical memory addresses for storing the sample 

information by a series of quantification and mapping. 

Then, the information can be retrieved from these 

physical-memories positions by using equation (1), and 

the CMAC output can be obtained by summing these 

data. 

Every state of the conventional 1-D CMAC needs 

so multifarious calculation quantities. If the states� 

number to be divided is too large, then the calculation 

quantities will be very large. The improved algorithm in 

this paper will help us to efficiently decrease the 

calculation quantities and memory utilization under the 

presupposition that the error value is not too great and 

choose carefully the value of α . Compared with the 

conventional CMAC output, it needs more learning 

period to reach the convergent effect. If the CMAC 

output of the controlled body is not requested to be very 

accurate, but is requested to converge quickly, using the 

algorithm will save the hardware cost and learning time. 
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