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Abstract:-For the present paper, we developed an output feedback chattering position regulator forn-degrees-
of-freedom (DOF) robot manipulators with elastic and frictional joints. A stability analysis of the closed-loop
dynamic system in question was developed within the framework of Lyapunov functions. Performance issues
related to the chattering regulator are illustrated in numerical simulations and experimental study applied to a
2-DOF and a 1-DOF robot manipulator respectively.
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1 Introduction

Most industrial robot manipulators have gearboxes or
chains to increase the transmitted torque generated by
an actuator. Although gearboxes increase the trans-
mission ratio, the elasticity in the joints cannot be ne-
glected. It must be pointed out that the introduction
of joint flexibility in the robot modeling increases the
order of the equation of motion with respect to the di-
rect drive manipulators. Moreover, information avail-
able for feedback can be provided by position sensors
placed in the actuator side only. Furthermore, fric-
tion effects are also present in manipulators; there-
fore, they should be considered in the control design
to achieve a better performance in the desired posi-
tioning of the manipulator.

Motivated by these problems, we developed a
chattering position regulator to stabilize, around a de-
sired position, a robot manipulator with elastic joints
affected also by Coulomb and viscous friction. The
chattering control is composed by a PD control law
(reported by Tomei [6] for frictionless systems) aug-
mented with a position-dependent discontinuous part
useful to overcome the friction effects. In the analy-
sis is assumed that joint positions are only available
for feedback. The velocity will be estimated through
a stable first order filter [2]. A stability analysis of
the closed-loop dynamic system in question was de-
veloped within the framework of Lyapunov functions.

The equation of motion along with the proposed con-
troller does not generate sliding motions anywhere
except the origin.

This paper is organized as follows: Section 2 in-
troduces the dynamic model of the manipulator with
frictional and elastic joints. Section 3 defines the ob-
jective control and introduces the chattering position
regulator along with its stability analysis. Section 4
provides a simulation study for a 2-DOF robot ma-
nipulator with friction using the controller described
in Section 3. To complement the study, experimental
results made for a 1-DOF manipulator are presented
in section 5. Finally, Section 6 establishes conclu-
sions.

The following definition will be used throughout
the paper. The norm‖x‖2, with x ∈ IRn, denotes
the Euclidean norm and‖x‖1 = |x1| + . . . + |xn|
stands for the sum norm. The minimum and maxi-
mum eigenvalue of a matrixA ∈ IRn×n is denoted
by λmin{A} andλmax{A} respectively. The vector
sgn(x) is given by sgn(x) = [sgn(x1), . . . , sgn(xn)]T

where the signum function is defined as

sgn(y) =





1 if y > 0,
(−1, 1) if y = 0,
−1 if y < 0,

∀ y ∈ IR. (1)
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2 Dynamic Model

The model that describes the dynamics of then-
degrees-of-freedom manipulator with elastic joints is
given by [6]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + K(q − qa) + F (q̇) = 0
(2)

Jq̈a −K(q − qa) = τ
(3)

whereq is the n × 1 vector of joint displacements
of the manipulator,qa is then × 1 vector of actuator
angular positions,τ is then×1 vector of applied joint
torques,K > 0 represents the joint stiffness,M(q)
is the positive definite inertia matrix,C(q, q̇)q̇ is the
vector of centripetal and Coriolis forces,g(q) is the
vector of gravitational torques,J > 0 is the actuator
inertia matrix andF (q̇) is the vector of Coulomb and
viscous friction forces governed by

F (q̇) = FCsgn(q̇) + Fv q̇ (4)

whereFC andFv aren × n symmetric positive defi-
nite matrices representing the Coulomb and viscous
friction coefficients respectively. Throughout, the
precise meaning of solutions of the differential equa-
tion (2)-(3) with discontinuous functionsF (q̇) andτ
is defined in the Filippov sense [4] as for the solutions
of a certain differential inclusion with a multi-valued
right-hand side.

The dynamic equation (2) has the following prop-
erty that will be used in the closed-loop stability anal-
ysis:

Property 1 ([6]) The gravitational torque vector
g(q) is Lipschitz, that is, there exists a positive con-
stantkg such that,

‖g(x)− g(y)‖ ≤ kg‖x− y‖

holds for allx, y ∈ IRn. Moreover,kg satisfies

kg ≥
∥∥∥∥
∂g(q)
∂q

∥∥∥∥ ≥ λmax

{
∂g(q)
∂q

}
.

Property 2 ([5]) The matrixC(q, q̇) is chosen such
that the relation

q̇T
[
Ṁ(q)− 2C(q, q̇)

]
q̇ = 0,

holds for allq, q̇ ∈ IRn.

3 Chattering Control Design

The objective control is defined as follows: Given the
desired constant positionqd = cte for all t > 0, the
control problem is to design a chattering control law
τ such that the robot joint positionsq(t) approach to
the desired positionqd ∈ IRn asymptotically, that is,

lim
t→∞ ‖q(t)− qd‖ = 0. (5)

The following control law is proposed to achieve
the objective control (5):

τ = g(qd)− kP ea − kDż − kssgn(ea), (6)

ż = −Lz + kDea (7)

whereea = qa − qad
ande = q − qd are then × 1

vector of the actuator and manipulator position errors
respectively;kP , kD, L andks = diag{ksi} aren×n
symmetric positive definite matrices; andqad

is the
actuator’s desired position defined by [6]:

qad
= qd + K−1g(qd). (8)

The equation (7) is a stable first order filter used
to estimate the velocity information. The controller
consists of a gravitational pre-compensation part, a
Proportional-Derivative (PD) part and a switching
part designed to stabilize a manipulator with elastic
and frictional joints asymptotically around a constant
desired position. As can be noted, the proposed chat-
tering regulator (6)-(7) does not need an exact knowl-
edge of friction coefficients (with the only imposed
condition: ks > FC), making it an attractive feature
from the physical point of view.

The state space representation of the closed-loop
system (2)-(4), (6) in terms of the error(e, q̇, ea, q̇a)T

is given by:

d

dt




e
q̇
ea

q̇a

z




=




q̇
M−1(q)[−K(e− ea)− F (q̇)]

q̇a

J−1[K(e− ea)− kP ea − kDż]
−Lz + kDea




+




0
M−1(q)[−C(q, q̇)q̇ + g(qd)− g(q)]

0
−J−1kssgn(ea)

0




(9)

where(x∗, ẋ∗, z∗) = 0 (x = (e, ea)) is the unique
equilibrium point of (9) ifks > FC andλmin{P} ≥



kg, where

P =
[

K −K
−K K + kP

]

andkg is defined in Property 1. The main result is
summarized in theorem 1.

Theorem 1 Let the mechanical manipulator (2)-(3)
be driven by the control law (6)-(7). Then, the equi-
librium point (x∗, ẋ∗, z∗) = 0 of the closed-loop sys-
tem is asymptotically stable.

Proof. In order to conclude asymptotical stability of
the equilibrium point, let us introduce the following
Lyapunov function for the closed-loop system (9):

V =
1
2
xT Px +

1
2
q̇T M(e + qd)q̇ +

1
2
q̇T
a Jq̇a

+ U(e + qd)− U(qd)− g(qd)T e

+ (kDea − Lz)T (kDea − Lz) +
n∑

i=1

ksi |eai |,

whereU(·) denotes the potential energy.
The time derivative ofV along the solution of (9)

yields

V̇ (x, ẋ, z) =

=eT Kq̇ − q̇T Kea − eT Kq̇a + eT
a (K + kP )q̇a

+ q̇T M(q)q̈ +
1
2
q̇T Ṁ(q)q̇ + q̇T

a Jq̈a + U̇(e + qd)

− g(qd)T q̇ + (kDea − Lz)T (kD q̇a − Lż)

+ q̇T
a kssgn(ea)

=eT Kq̇ − q̇T Kea − eT Kq̇a + eT
a (K + kP )q̇a

+ q̇T [−K(e− ea)− FCsgn(q̇)− Fv q̇ − C(q, q̇)q̇]

+ q̇T g(qd)− q̇T g(q) +
1
2
q̇T Ṁ(q)q̇ + U̇(e + qd)

+ q̇T
a [K(e− ea)− kP ea − kDż − kssgn(ea)]

− g(qd)T q̇ + (kDea − Lz)T (kD q̇a − Lż)

+ q̇T
a kssgn(ea).

Taking into account Property 2 and by virtue of

U̇(q) =
∂U(q)

∂q

T

q̇ = g(q)T q̇,

one obtains

V̇ =− q̇T FCsgn(q̇)− q̇T Fv q̇

− (kDea − Lz)T L(kDea − Lz)

≤− λmin{FC}‖q̇‖1 − λmin{Fv}‖q̇‖2
2

− (kDea − Lz)T L(kDea − Lz) ≤ 0,

which is negative semidefinite. Note that the closed-
loop system is autonomous. Therefore it is possible
to conclude asymptotical stability of the equilibrium
point by invoking the extended invariance principle
[1]. Let us introduce the setS defined by,

S = {(x, ẋ, z) ∈ IR5n|V̇ (x, ẋ, z) = 0}
= {(x, 0, z) ∈ IR5n|V̇ (x, ẋ, z) = 0}. (10)

To obtain the largest invariant set that belongs toS,
note that

ẋ(t) ≡ 0 ⇒ ẍ(t) ≡ 0.

Thus, from the closed loop systems (9), we get

0 =−K(e− ea)− FCsgn(0) + g(qd)− g(e + qd)

0 = Ke− (K + kP )ea − kssgn(ea) (11)

where(e, ea) = (0, 0) is a solution of the set of equa-
tions (11). To guarantee thate = 0 is a unique solu-
tion of (11), it is necessary to satisfyλmin{P} > kg.
Furthermore, adding the two equations in (11) with
e = 0 we have

ea = −k−1
P [kssgn(ea) + FCsgn(0)] (12)

whereea = 0 is a unique solution of (12) if and only
if ks > FC ([1]). Consequentlyz = 0. In conclusion,
the origin(x, ẋ, z) = 0 ∈ IR5n is the largest invariant
set inS. Thus we can conclude asymptotical stability
of the origin. ¥

4 Simulation Results

The performance of the controllers was studied by
simulations. In the simulations, a two-links manip-
ulator was required to move from the originq1(0) =
q2(0) = 0 to the desired positionqd1 = qd2 = π rad.
The motion of the 2-DOF manipulator is governed by
(2) where

M(q) =
[

8.77 + 1.02 cos q2 0.76 + 0.51 cos q2

0.76 + 0.51 cos q2 0.62

]
,

C(·) =
[ −0.51 sin(q2)q̇2 −0.51 sin(q2)(q̇1 + q̇2)

0.51 sin(q2)q̇1 0

]
,



g(q) = 9.8
[

7.6 sin q1 + 0.63 sin(q1 + q2)
0.63 sin(q1 + q2)

]
,

and

F (q̇) =
[

5sgn(q̇1) + 1q̇1

5sgn(q̇2) + 1q̇2

]

were taken from [2, 3]. The regulator and compen-
sator gains were selected as follows:

kP =
[

100 0
0 60

]
, kD =

[
20 0
0 20

]
,

ks =
[

20 0
0 15

]
, L =

[
25 0
0 20

]
.

The initial velocitiesq̇(0), q̇a(0) were set to zero in
all the simulations.

The resulting joint positions of the closed-loop
system (9) are depicted in Figure 1. These figures
demonstrate that the chattering controller asymptot-
ically stabilizes the manipulator around the desired
position, thus satisfying the objective control (5). Fig-
ure 2 shows that the actuator angular position errors
converge to zero. Figure 3 presents the input torque,
which illustrates the chattering phenomena.

For the sake of comparison, we simulated the reg-
ulator with no switching part, as was proposed in [6],
to drive the manipulator to the desired position. Fig-
ure 4 shows that the regulator drives the manipulator
to a wrong position.
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Fig. 1: Joint positions of the manipulator.
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Fig. 2: Actuator position errors.
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Fig. 3: Input torque.
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Fig. 4: Joint position errors for regulator with no
switching part (ks = 0).



5 Experimental study

5.1 Experimental test bench

Experimental setup, installed in the Robotics & Con-
trol Laboratory of CITEDI-IPN, involves a DC motor
linked to a 1-DOF arm through a gear train. Figure 5
shows a schematic diagram of the test bench. The
gear reduction ratio is of 65.5:1 and it is the main
source of friction. The maximum allowable torque
is 1.24 N-m. The ISA Bus servo I/O card from the
companyServo To Goallows one to control the ser-
vomotor in real time. Resolution of the encoder is
2000 ppr. A high resolution potentiometer has been
placed in the load side to support the results. A lin-
ear power amplifier is installed in the servomotor ac-
cepting control signals from the D/A converter in the
range of±10 volts.

Fig. 5: Experimental test bench.

5.2 Experimental results

The experiment was carried out for the closed loop
system (9) with a position sensor located at the motor
side thus considering the angular motor position as
the only information available for feedback. In the
experiment, the load was required to move from the
initial static positionq(0) = 0 to the desired position
qd = π rad.

The chattering controller (6) is specified with

g(qd) = 9.8ml sin(qd)

wherel = 0.15 m, m = 0.25 Kg; K = 250 N-m/rad
and

kP = 100, kD = 10, ks = 10, L = 40.

The velocity and compensator were set to zero in the
experiment (̇q(0) = q̇a(0) = ż(0) = 0).

Figure 6 illustrates the joint position of the link
and position error of the actuator. Trajectories con-
verge to the equilibrium point as it was shown in the

theory. The input torque in Figure 7 shows the chat-
tering effects. It can be seen that the chattering ap-
pears when the trajectory converges to the equilib-
rium point.
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Fig. 6: Joint position of the manipulator and actuator
angular position error.
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Fig. 7: Input torque.

6 Conclusions

In this paper, we applied an output feedback chatter-
ing controller to stabilize a manipulator around a de-
sired position, assuming the presence of friction and
elasticity in the joints. The proposed controller does
not need an exact knowledge of the Coulomb friction
level, making it attractive in engineering applications.
Although the controller appears to have an infinite
number of switches on a finite time interval, it does
not rely on the generation of sliding motion. The in-
variance principle-based approach for discontinuous
systems [1] was used to conclude asymptotical sta-
bility. Performance issues of the chattering controller



are illustrated in a simulation and experimental study
made in a 2-DOF and a 1-DOF manipulator respec-
tively.
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