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Abstract:- The accurate and rapid detection of viral and bacterial pathogens in human patients and populations is very impor-
tant. Currently used techniques for detecting pathogens are not satisfactory in terms of speed, accuracy and sensitivity. Recently
oligo microarray (DNA chip) [1–3] technology has been proposed as a potential solution to this problem. However, effective-
ness of the microarray for pathogen detection depends on the probes selected. Previous work used a heuristic based approach
to select probes for this purpose. In this work we demonstrate the use of information theoretic approach to select optimal
probes for detecting pathogens. We also demonstrate that probes can be selected in such a way that partial characterization of
newly evolved pathogens is possible. Simulation results to demonstrate the correctness of the proposed solution is also included.
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1 Introduction

Determining the causative agent of a disease accurately is
a prerequisite for giving proper medical care. It is imper-
ative that this process is completed as early as possible.
Not being able to do so can certainly effect the patient in-
volved as well as the population in case the disease is con-
tagious. The recent SARS epidemic is a case in point. In
this paper we propose an oligo microarray hybridization
based approach for the rapid detection and identification of
both viral and bacterial pathogens. All pathogens contain
unique molecular regions within their genome. Oligomers
derived form this area can be used to detect them. Selecting
probes from highly conserved regions of different family
and genus members will enable the partial characterization
of some novel pathogens as explained later.

1.1 Previous Works

Probe selection algorithms such as those proposed by Li
and Stormo [12], Kaderali and Schliep [13] and Rahmann
[10] find unique probes for each gene, resulting in a mini-
mal set of probes used for measurement of transcript level
of the genes in a given sample. Precise and exact measure-
ment of transcript level of each gene is the key requirement.
Pathogen detection problem that we are considering has a
different requirement which will be clear in the following
discussion.

Recently, microarray based detection of pathogens
was suggested and demonstrated by a group in Univer-
sity of California at San Francisco for a subset of vi-

ral genomes [5]. The same group later extended their
work to include all known sequenced human, animal and
plant viruses [6]. Their approach to select oligos is based
on heuristics and the optimality of their probe selection
method was not demonstrated mathematically.

Others attempted to model this problem as string bar-
coding problem [4, 7]. In 2003, Schliep et. al. [11] rec-
ognized the potential usefulness of cross hybridization and
proposed the idea of group testing to find a small set of
probes and analyze hybridization outcome for robust detec-
tion of presence of target sequences. In these approaches,
the goal is mainly to identify the possible presence of
known sequences. They do not have the capability to char-
acterize newly evolved pathogens.

Unique to our probe design and subsequent post hy-
bridization analysis approaches is the additional considera-
tion for a priori classifications of genomes, which could be
introduced based on the existing taxonomy or formulated
by any other means. Partial characterization of previously
unknown pathogens (with completely unknown genomic
sequences) is made possible because of this.

1.2 Our Result

We have developed a program which will optimally select
a set of probes that can be used to discover pathogens that
are present in a biological sample. We have also developed
a program that will predict the most probable pathogen that
is present based on the microarray data after hybridization.
The downstream analysis also includes the possibility of in-
corporating additional information about the probable class



of genomes present.
We evaluated our probe selection and analysis tech-

nique by simulating the hybridization process. We ran-
domly selected various percentages of know pathogens and
simulated the hybridization process. In every case we were
able to identify the pathogen if we had at least 70% of the
pathogen genome in our sample.

We were also able to demonstrate the potential for
partial characterization of the unknown pathogen as fol-
lows. We designed the chip without including the SARS
genome and later tried to hybridize the SARS genome to
the chip set. We were able to correctly predict that the
SARS genome was a potentially new virus that may belong
to the coronavirus genus and coronaviridae family.

2 Probe Design Problem

This section introduces the motivation behind the construc-
tion of pathogen chip, formalizes the associated probe se-
lection problem, and outlines our solution.

2.1 Problem Description

The goal of devising a microarray-based pathogen detec-
tion platform is to provide a rapid and accurate mechanism
for determining the existence of viral or bacterial pathogen
in a given sample. Such pathogen chips should ideally be
able to determine whether pathogens with known genomes
are present, i.e. given a sample containing genomic frag-
ments of a known pathogen, its associated probes are
“lighted up”. However, since only a very minute fraction
of pathogens is known, we will inevitably encounter the
previously uncharacterized ones in the samples. In such
instances, we would like to discover as much information
as possible about the unknown pathogen. One important
piece of information is to figure out where in a given group-
ings (e.g. taxonomy) of the known pathogens that the new
pathogen is most likely to be categorized into. This infor-
mation could be of great value to the scientist trying to find
a defence against the pathogen.

Thus, the challenge is to select oligonucleotide probes
to be put in the pathogen chip, such that hybridization
with a given pathogen would reveal (1) the highly prob-
able genome(s) of the pathogen and/or (2) the likely
group(s)/class(es) that the pathogen might belong to.

2.2 Problem Definition

2.2.1 Probe selection for known pathogens

Given a set of genomes G = {g1, ..., gN}, the task is,
for each genome gi, to select a set of Mi length-t probes
Pi = {p1, ..., pMi

} that (as much as possible) satisfies the
(1) Homogeneity, (2) Sensitivity, and (3) Specificity crite-
ria as described below.

Homogeneity: Temperature is one of the important exper-
iment conditions to ensure a probe can hybridize. We se-
lect probes whose melting temperature is close to the ex-
periment temperature. GC rich sequences are susceptible
to non-specific interactions that may reduce reaction effi-
ciency. Thus, the GC content of good probes should not be
too high or too low [9].
Sensitivity: Sensitivity, the ability to detect low abun-
dance mRNAs, is a key performance feature of microar-
rays. Probes that form significant secondary structures
jeopardize sensitivity. Thus it is important to reject probes
with high self complementariness and select probes with
minimal secondary structure. To do this, the free energy
for each probe is computed based on the nearest neighbor
model [8]. The free energy for each probe should be as
high as possible.
Specificity: The specificity criterion refers to the unique-
ness of the probes in each probe set Pi to each genome
gi. Bear in mind that this criterion may not be able to be
met completely as two distinct genomes gi and gj might
be highly similar, e.g. gj could very well be a strain vari-
ant of gi. Nevertheless, the probe sets Pi and Pj might be
able to effectively distinguish the two genomes. As such,
we define specificity of a probe set Pi to a genome as the
total information carried by the probe set Pi about the ex-
istence of genome gi. A more involved discussion is pre-
sented in Section 2.2.3. Note also that due to space con-
straint of the microarray, only a portion of potential probes
for gi might be included in Pi, making some sort of probe
ranking mechanism necessary.

2.2.2 Probe selection for assessing unknown
pathogens

The input given in this problem is similar to the previous
problem, i.e. the set of genomes G, with an additional set
S of disjoint subsets of G, i.e. S = {S1, ..., SK |Si ⊆

G
∧ ⋃K

i=1 Si = G
∧

∀x, y, x 6= y : Sx

⋂

Sy = ∅}.
Each subset Si represents a grouping of genomes, which
could be based on the present biological taxonomy or se-
quence similarity among the genomes or other classifica-
tions/partitions. For a given grouping S, the pathogen
chip should suggest the highly probable groups that an
unknown pathogen might be classified into. Hence, the
aim is to select, for each Si, a set of length-t probes
PSi

= {p1, ..., pMSi
} that as much as possible satisfies the

(1) Homogeneity, (2) Sensitivity, and (3) Specificity crite-
ria. These criteria are similar to those described earlier in
Section 2.2.1 with the exception of the specificity criteria.
Here specificity refers to the total information capacity of
a probe set PSi

regarding the conserved regions among the
genomes in set Si. Note that the groups here are given a pri-
ori, as part of the user’s input. Clearly, the groupings here
are different from that discussed in [11], which uses ran-
domized groupings to closely estimate the posterior prob-
ability of the presence of each target sequence. Note also



that the problem previously described in Section 2.2.1 is
actually a special case of this problem where each Si con-
tains exactly one genome, e.g. ∀i : Si = {gi}.

2.2.3 Total information capacity of a probe
set

One could model the probe design problem as the selec-
tion of the most informative questions regarding the exis-
tence of a pathogen. Each probe is a question asked about
the pathogen and we get a yes/no answer to our question
from the microarray hybridization. We get some informa-
tion from every answer we get. Under the settings of In-
formation Theory, the goodness or the capacity of a mes-
sage is defined as I = − log2(p) where p is the probabil-
ity of that event to occur. To exemplify, suppose that we
have two probes p1, which occurs in genome g1, and p2,
which is found in genomes g1 and g2, and assume that all
N genomes have an equal probability to appear. The infor-
mation content of p1 and p2 are I(p1) = − log2

(

1
N

)

and
I(p2) = − log2

(

2
N

)

respectively, since when p1 “lights
up” it could only means g1 while for p2 it could mean ei-
ther g1 or g2.

Hence, the specificity criterion in pathogen chip probe
design can be stated as trying to maximize the information
content of a probe set Pi regarding its associated genome gi

among the genomes in G or, in a more general framework,
the information capacity of a probe set PSi

regarding the
group of genomes Si among other groups in S.

2.3 Comparison with probe design problem
for genes

Cautious readers might question the necessity of finding
the probe set Pi (as compared to just finding one probe) for
each genome gi and argue that the probe selection problem
for pathogen chip is similar to probe selection problem for
genes in a genome. While this problem can in fact be mod-
eled as a probe design problem for genes in a genome by
simply treating each gi as an unusually large gene, there is
an added dimension to probe design for pathogen chip. In
the design of probes for genes in a genome, the number of
genes is usually huge, to the order of tens of thousands and
that the goal is to measure the relative amount of mRNA
expressed in the sample. As such, ideally we only want
one probe per gene. Whereas in the pathogen chip, we
only wish to measure the presence of pathogens and may
initially ignore the amount of pathogen present. Further,
pathogens are likely to have a much higher mutation rate
than genes. It is thus only natural to rely on a set of probes
to detect the presence of pathogens. The number of known
pathogens is also small, in order of hundreds or at most a
couple of thousands, which then allows for multiple probes
per genome to be fit in one chip. Doing so would also al-
low the possibility of partial characterization of unknown
pathogen.

2.4 Probe design algorithm

This paper proposes a multi step approach to the pathogen
chip design. The first step in designing the pathogen chip
involved downloading from NCBI all of the taxonomic an-
notation and sequence identifiers for the hundreds of thou-
sands of viral sequences available. The taxonomic informa-
tion was then manually curated and all viral genomes which
are known to infect animals (from insects to humans) were
included in the list.

The next step in the algorithm is based on probe elimi-
nation. Initially, we assume that for every genome gi, every
length-m substring of gi is a feasible probe. “Bad” probes
are filtered out using the following steps:

1. Filter out redundant probes in every genome.

2. Filter out probes which fail to satisfy homogeneity
criterion.

3. Filter probes which fail to satisfy sensitivity crite-
rion.

4. Filter probes that can hybridize to human genome.

Once we have the list of good probes for every
genome we can use the information carrying capacity of
the probes to select the best among them so as to iden-
tify the unique pathogen present. We also include probes
that are able to predict the family, genus and species of
the pathogen present. We will demonstrate how these
probes can help us to partially characterize newly evolved
pathogens. Partial characterization involves predicting the
family and genus of the newly evolved pathogen. This in-
formation can be of immense value for the scientist trying
to find a defense against the disease.

We discuss Steps 1 to 4 in Sections 3. In Section 4 we
introduce the notion of information capacity of the probe
and explain how this can be used to select the most optimal
set of probes. We then present the strategy for downstream
analysis of the array data in Section 5. Simulation results
are given in Section 6.

3 Probe Filtering

3.1 Non-redundant probe filtering

The goal of this step is to obtain the complete set of pos-
sible probes Qi for each genome gi. We started with the
set of all possible oligos of the specified length for ev-
ery pathogen of interest. We can save a lot of computa-
tion time in later stage by throwing away redundant probes
from every genome. These probes will not give any addi-
tional information about anything so throw them away as
the first step. Algorithm to remove redundant probes for
each genome is described in Figure ??.



3.2 Homogeneity filtering

Homogeneity criterion requires the melting temperature for
every probe should be within some pre-defined range. This
is important because probes in a good probe set need to
hybridize with their intended target at about the same tem-
perature. Homogeneity criteria also demands that the GC
content of the probe should be within bounds.

Computation of melting temperature, hybridization
temperate and GC content can be done very efficiently as
described in [14]. We remove all probes in each Qi that do
not satisfy the homogeneity criteria.

3.3 Sensitivity filtering

Sensitivity filter eliminates probes that form secondary
structures. We use a simplified secondary structure pre-
diction algorithm to determine whether a probe can form
secondary structures. In this filter, we want to eliminate
probes which are able to fold back itself.

Computation of the sensitivity of the probe also can
be done very efficiently as described in [14]. We remove
all the probes in each Qi that do not satisfy the sensitivity
criteria.

3.4 Host genome probe filtering

We need to remove probes that can hybridize against the
host genome. This will reduce the overall noise in the array.
This can be achieved easily by blasting the probes against
the human genome. We remove all probes in each Qi with
E scores greater than a specific threshold, when balsted
against the human genome.

4 Probe Selection Using Information Con-
tent

Based on the previous steps, we have a set of good and
non-redundant probes Qi for every genome gi in the list.
Due to the limited size of the microarray, we cannot in-
clude all those probes into it. We suggest selecting a set of
probes based on their information content. The next two
sections describe the proposed procedures in details, fol-
lowing which we prove the optimality of our algorithms.

4.1 Probes for detecting known pathogens

Recall from Section 2.2.1 that for each known genome gi

we want to find a good set of probes Pi to be put on the
chip. The previous steps have provided us with a list of
potentially good probes, denoted as Qi, for each genome
gi. To select the best sets of probes that can uniquely
identify the individual genomes, we propose to rank the
probes in each Qi by their information content about the
genome gi. Information content of a probe pj is defined as
I(G, pj) = − log2(

m
|G|), where m is the number of distinct

genomes (out of all genomes in G) to which probe pj can
hybridize to. Pi is then formed by selecting Mi probes with
the highest information content.

More formally, let:

• G be the set of genomes and Qi be the set of good
probes for genome gi ∈ G as described earlier, and

• count(G, pj) = |{gk|gk ∈ G
∧

pj ∈ Qk}| be the
number of genomes in G that probe pj can hybridize
to.

Then, for each genome gi:

1. For each probe pj ∈ Qi, calculate its information

capacity I(G, pj) = − log2

(

count(G,pj)
N

)

.

2. Rank the probes of Qi in descending information ca-
pacity score and output the top Mi probes as the set
Pi.

4.2 Assessing unknown pathogens

For unknown pathogens, we wish to discover the proba-
ble groups or classes of genomes that the unknown one
might fall into (see Section 2.2.2). Here, on top of the sets
genomes G and the associated good probes Qi, an addi-
tional set S of disjoint subsets of G, as defined earlier, is
also given. Given these, we can construct the set of good
probes QSi

= {pj |∃gk ∈ Si : pj ∈ Qk} for each Si ∈ S.
The challenge is to select probes that (1) hybridize with
the conserved regions among the genomes in Si and at the
same (2) be able to uniquely distinguish group Si from the
rest.

To ensure that conserved probes are selected, the
probes in QSi

are scored by the information content that
they carry in distinguishing individual genomes in Si, i.e.

∀pj ∈ QSi
: I(Si, pj) = − log2

(

count(Si,pj)
|Si|

)

, and only

H lowest scoring probes are retained in QSi
for further

ranking. The idea of selecting the probes with least infor-
mation content is to select probes that are conserved within
the genomes of Si. By definition, conserved probes are
unable to distinguish the individual genome of Si, hence
their information capacity, with regard to set Si, are low.
In our experiment, H = 500. Note also that this should be
done only if the group contains more than one genome, i.e.
|Si| > 1.

The H probes retained in the set QSi
are further

ranked by their ability to distinguish group Si from the rest.
The information capacity of probe pj ∈ QSi

is defined as

I(S, pj) = − log2

(

m
|S|

)

, where m is the number of dis-

tinct groups that probe pj belongs to. For each group Si,
the MSi

top scoring probes are selected and outputted as
PSi

.
In other words, let:



• G be the set of genome, Qi be the set of good
probes of genome gi, count(X, pj) be the number
of genomes in X that pj can hybridize into, and S be
the set of disjoint subsets of G as defined earlier,

• QSi
= {pj |∃gk ∈ Si : pj ∈ Qk} be the set of good

probes for Si, and

• countset(S, pj) = | {Si|Si ∈ S
∧

pj ∈ QSi
} | be

the number of groups of genomes that pj belongs to.

Then:

1. For each group Si with |Si| > 1, compute

I(Si, pj) = − log2

(

count(Si,pj)
|Si|

)

for all pj ∈

QSi
, rank the probes of QSi

based on decreas-
ing I(Si, pj), and retain only the H lowest scoring
probes.

2. For all Si ∈ S, calculate I(S, pj) =

− log2

(

countset(S,pj)
|S|

)

for each pj ∈ QSi
and out-

put MSi
probes with the highest information capac-

ity as PSi
.

Note that the previous algorithm is in fact a special
case of this algorithm where ∀Si ∈ S : |Si| = 1.

4.3 The optimality of the selected probes

All probes in the set after redundancy removal, homogene-
ity, sensitivity, and host-genome filtering are independent.
Note that the specificity criterion requires us to maximize
the information content of each probe set Pi (or in a more
general framework, PSi

). Since the probes are indepen-
dent, the total information capacity of a probe set Pi is
∑

pj∈Pi
I(G, pj). Our selection method, by taking probes

with the largest information capacities, thus ensures that
the optimal sets of probes are selected and maximizes the
total information about the pathogen present.

5 Analysis of Pathogen Chip’s Outcome

Having designed the microarray, we need to make infer-
ences from the array data so as to identify the pathogen that
was present in the sample. The analysis can be made by
computing the total information present about all the set Si

of interest. We report the presence of group Si if we obtain
a certain fraction of information that we were expecting.
Note that we can in fact decouple the analysis stage from
the probe design. Although a given pathogen chip might
not have been constructed using our proposed algorithm,
this analysis would still be applicable nonetheless.

5.1 General framework

For the purpose of our analysis, let:

• G = {g1, ..., gN} be the set of genomes,

• P = {p1, ..., pM} be the set of probes that are
present in the pathogen chip,

• Pi ⊆ P be the set of probes which are present in
genome gi,

• PL ⊆ P be the set of lighted-up probes after the hy-
bridization with a pathogen,

• S = {S1, ..., SK} be the set of disjoint subsets
of genomes, such that Si ⊆ G, G =

⋃

i Si, and
∀i, j : i 6= j, Si

⋂

Sj = ∅,

• PSi
=

⋃

gj∈Si
Pj be the set of probes associated

with Si, and

• countset(S, pj) = | {Si|Si ∈ S
∧

pj ∈ PSi
} | be

the number of groups of genomes that pj belongs to.

Since the probes are independent, we can sum the to-
tal information about each group Si from all probes that
are lighted up. The set of probes PL which are lighted up,
carry the information about the presence of each Si. The
more probes that belong to PSi

are lighted up, the more
likely that Si is truly present. This can be roughly mea-
sured by calculating the total information contributed by
the probes to each Si, which is done by taking the sum of
the information capacity of all the lighted up probes that
belong to Si. Ranking Si based on the bare total informa-
tion provided by the lighted up probes might be a little bit
unfair towards short genomes as they have lesser number
of potential probes and potentially have lesser total infor-
mation. To solve this, we propose to normalize the total
information score of each Si by dividing it with the maxi-
mum score possible for the group Si. Only groups having a
normalized score greater than certain threshold T , which in
our case T = 0.7, are considered as potential groups. They
are further ranked by their raw total information score. The
analysis can summarized as follows:

1. Calculate ∀i, j : I(S, pj) = − log2

(

countset(S,pj)
|S|

)

2. For each Si, compute TotInf(Si) =
∑

pj∈PL

T

Si
I(S, pj) and NormTotInf(Si) =

P

pj∈PL
T

Si
I(S,pj)

P

pj∈PSi
I(S,pj)

3. Exclude all Si with NormTotInf(Si) ≤
T , output the remaining ones sorted first by
NormTotInf(Si) in decreasing order, and break-
ing any ties by TotInf(Si).



5.2 Integrating prior probabilities

In some situations, we might be able to obtain the prior
probability distribution Pr(Si). Prior probality changes the
information content of probes. of the event that probe pj

is lighted up due to the presence of Si. We can refine the
information content of probe pj for group Si as:

I(S, Si, pj) = − log2

(

countset(S, pj) × Prob(Si)

|S|

)

and the total information score and the normalized to-
tal information can be calculated accordingly:

TotInf(Si) =
∑

pj∈PL

T

Si

I(S, Si, pj)

NormTotInf(Si) =

∑

pj∈PL

T

Si
I(S, Si, pj)

∑

pj∈PSi
I(S, Si, pj)

The rest of the analyses can be performed as before.

6 Simulation Results

We ran some simulation to check the efficacy of the chip.
In the first step we included all the 478 fully sequenced
viruses that can infect animals and gave as input to the
probe design system. We took 30 probes from each genome
that has maximal information carrying capacity as ex-
plained above. We also selected 30 probes for every genus,
species and family known.

The next step was to test the ability of the chip to iden-
tify genomes already present in the set. We took genome
sequences and randomly selected various percentage of the
sequences and hybridized to the array. Information about
the pathogen was obtained from the probes lighted up. As
shown in Table 1, we were able to identify the pathogen
present in all the experiments done if we had at least 70%
of the genome of the pathogen in the sample. Even when
the percentage of genome present was only 60%, we were
able to identify the genus and family correctly.

We also tested the performance of pathogen chip for
mutations in the pathogen genome. As shown in Table 2,
the detection procedure is still quite robust for some rea-
sonable big mutation rate.

We then tested the ability of the chip to identify novel
pathogens. We designed the chip after removing the SARS
genome from the list. To test this chip, we hybridized the
SARS genome. We were not able to make a unique call
for any genome. However as shown in Table 3, we were
able to make a decision that the new virus belonged to the
corona virus genus and to the coronaviridae family.

7 Discussion

Microarray technology promises to revolutionize the way
pathogens are detected and characterized. The most crucial
factor determining the effectiveness of this procedure is the
probes selected. This determines the information we obtain
about the pathogens present. More informative the probes
are, more information we obtain from the microarray hy-
bridization experiment.

We presented a new algorithm to select probes for
pathogen detection. Our algorithm makes use of several
smart filtering techniques to reduce the search space for
probes. Then by using information capacity as a measure
we are able to select the most optimal set of probes for the
purpose of detection.

Further research includes making use of the prior
knowledge about the kind of pathogen we expect. Our cur-
rent approach can take this information as the prior prob-
ability of a pathogen being present in the sample. We are
currently working on a validation strategy to include this
scenario as well.

On a linux cluster consisting of 16 nodes each running
at 2.6GHz the probe design algorithm took about a week
to run. Simulating a microarray hybridization took about 2
days to run. It is quite important to further reduce the time
complexity of the program while maintaining its accuracy.
We are currently working on this.

Amount of genome hybridized to the chip
Input genome 90% 80% 70% 60%

NC 000856
NC 000856

Papillomavirus
Papillomaviridae

NC 000856
Papillomavirus

Papillomaviridae

NC 000856
Papillomavirus

Papillomaviridae

Papillomavirus
Papillomaviridae

NC 004004
NC 004004
Apthovirus

Picornaviridae

NC 004004
Apthovirus

Picornaviridae

NC 004004
Apthovirus

Picornaviridae

Apthovirus
Picornaviridae

Table 1. Pathogen identified by the algorithm from the microarray data.



Probability of mutation rate per base pair
Input genome 0.001 0.01 0.05 0.1

NC 000856 NC 000856 NC 000856 NC 000856 none

Table 2. Suggested pathogen from the array data when hybridized with mutated genome sequence

Amount of SARS genome hybridized to the chip
Input genome 90% 80% 70% 60%

Predicted groups
Coronavirus

Coronaviridae
Coronavirus

Coronaviridae
Coronavirus

Coronaviridae
Coronavirus

Coronaviridae

Table 3. SARS genome hybridized to a chip, without including SARS genome while designing the chip.
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