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Abstract:- The present work has been carried out to summarize some of the last
tendencies of the analysis of structural equations models (SEM). The application
of the software LISREL has helped in the solution of this models, however, the
great quantity of goodness-of-fit measures which do not have a statistical test has
caused that the use of the alternative models and the comparison of goodness-of-fit
measures among them, could be the best solution to know the effectiveness of the

proposed model.
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1. Introduction

The structural equation models are sets of
linear equations used to specify phenome-
na in terms of their presumed cause-and-
effect variables. In their most general form,
the models allow for variables that cannot
be measure directly. Also, it provides the
most appropriate and efficient estimate for
series of estimates of simultaneous equa-
tions by means of multiple regressions. It
is characterized by two basic components:
the structural pattern and the measure
pattern. The structural model is the guide
model that connects independent variables
with dependent variables. In this case, the
theory will allow to distinguish which in-
dependent variables would predict each

dependent variable. The measure model,
on the other hand, allows to use several
variables or indicators that cannot be mea-
sured directly (the dependent variable can
be a concept represented by an additive
scale), and it is possible to evaluate the
contribution of each scale item, as well as
to incorporate the reliability of each one, in
the estimate of the dependent and indepen-
dent variables [1]. The software for the se-
lection, fitting and evaluation of structural
equation models was developed by Jreskog
and Srbom and at the moment it is broad-
ly, well-known and diffused as system LIS-
REL (Line Structural Relationships) [2].



These models are particularly helpful in
decisive problems of firm profitability,
management, the organizational behavior,
and in other branches of sciences, as biol-
ogy, health and even genetics. Also they
have been particularly useful in the social
and behavioral sciences to study the rela-
tionship between social status and achieve-
ment, the efficacy of social action programs
and other interesting mechanisms [3], [4]
and [5].

The reasons of their wide use are due to
that they provides a direct method to ana-
lyze simultaneously multiple relationships
with a great statistical effectiveness and to
their capacity to evaluate the relationships
in an exhaustive way, providing a transi-
tion from the exploratory analysis to the
confirmatory analysis; that is to say, it al-
lows to focus a problem with a more sys-
tematic and holistic perspective. However,
the decision of which one is the best mo-
del to describe an specific situation still re-
mains something to solve. Alternative or
rival models is a choice to compare the re-
sults among them and select the best.

2. The LISREL Model

The overall LISREL model might be ex-
pressed in function of eight matrices; two
that defines the structural equations, two
that defines the correspondence of indica-
tors and constructos, one for the correla-
tion of exogenous constructs, one for the
correlation of endogenous constructs and
two that detail the correlated errors in the
endogenous and exogenous variables mea-
surement. Such matrices are used to form
the basic equations of both models.

Using the notation of [6], the LISREL mo-
del is given by the following equations:
Structural model:

N(mx1) B(m><m) N(mx1) + 1)

Laxn) §nx1) + Cmx1)

Measure models:

Y (px1) = Dygpm Mimx1) + €px1) o
2
X(gx1) = Nagrm) E(gx1) T O(gx1)

where Y (,x1) and X(;x1) denotes the endo-
genus and exogenus constructs respectively,
with

E(() =0, Cov(()=1U
E(e) =0, Cov(e) =0, ,, (3)
E(5) =0, Cov(d) =05

¢, € and 0 are mutually uncorrelated;
Cov(§) = ®; ( is uncorrelated with &; € is
uncorrelated with 7; § is uncorrelated with &;
B has zeros in the diagonal; and the matrix
(I — B) is non singular. Besides the previous
suppositions, we consider that: E(§) = 0 and
E(n) = 0.

The quantities and in (1) are the cause-effect
variables, respectively; and generally, they are
not directly observed. They are sometimes
called latent variables. The quantities Y and
X in (2) are such that they are linearly relat-
ed to n and £ through the coefficient matri-
ces Y and X , and Ax these variables can
be measured. Their observed values consti-
tute the data. Equations (2) are sometimes
called the measurement equations. Path dia-
grams are useful aids for formulating struc-
tural models, since they indicate the direction
and nature of the casualty, forcing the inves-
tigator to think about the problem.



3. Covariance Structure

As ¢ and n are not observed, the LIS-
REL model cannot be verify directly. How-
ever, like in factor analysis, the model
and assumptions imply a certain covari-
ance structure, which can be checked.
Define the data vector: [Y', X']’, then:

Cov =Yg prg = (Y/X) =

Enw me
Zquxp quxq

Cov(Y) Cov(Y, X)

(4)
Cov(X,Y) Cov(X)
where, with B = 0 to simplify the discus-
sion:

Cov(Y) = E(YY')
= A, Cov(n) A/y + O,
= Ay (TSI + W)A, + O,

Cov(X) = E(XX')
Ay Cov(§) Al + O

= APA, +0O;

Cov(Y,X) = E(YX)
= E(Ay(TE+Q) +e)
(Ax§+0)
= ATOA,
= [Cov(X,Y)]

The covariances are non-linear functions

of the model parameters A,, A, I', &, ¥, O,

and Oy .
. . . . /
Given “n”multivariate observations [yj,
’ . .
l‘j]/7j = 1,2,...,n, the sample covariance
matrix
S1lpup S12,uq
Sp+a)p+e) =
SquXp SQZqu

can be constructed and partitioned con-
formable to 3. The information in S'is used
to estimate the model parameters. Specif-
ically, we set:

$=25, (5)

and solve the resultings equations.

4. Estimate

Unfortunately, the equations in (5) often
cannot be solved explicitly. An iterative
search routine that begins with initial pa-
rameter estimates must be used to pro-
duce a matrix which closely approximates
S. The search routines uses a criterion
function that measures the discrepancy be-
tween and S. The LISREL program cur-
rently uses a least squares and a maximum
likelihood criterion to estimate the model
parameters. [6] In general, to estimate the
model parameters we need more equations
than unknowns. Consequently, if “t”is the
total number of unknown parameters, “p”
and “¢”must be such that:

t<(p+q(p+q+1)/2 (6)

Condition (6) however, does not guaran-
tee that all parameters can be estimated
uniquely. The final model fit must be as-
sessed carefully. Individual parameters esti



mates along with the entries in the residu-
al matrix S — 3 should be examined. Pa-
rameter estimates should have appropriate
signs and magnitudes. For example, itera-
tive parameter estimation routines operate
over the entire parameter space and may
not yield variance estimates that are posi-
tive. Entries in the residual matrix should
be uniformly small.

5. Model-Fitting Strategy

In linear structural equation models, inter-
est is often centered on the values ofhe pa-
rameters and the associated “effects”. Pre-
dicted values for the variables are not eas-
ily obtained unless the model reduces to
a variant of the multivariate linear regres-
sion model. A useful model-fitting strategy
consists of the following [7]:

1. If possible, generate parameter esti-
mates using several criteria (for ex-
ample, least square, maximum likeli-
hood) and compare them keeping in
mind if the signs and magnitudes are
consistent, if the variances estimates
are positive and if the residual ma-
trices S — 3 are similar.

2. To carry out the analyses as much
with S as with R, the sample corre-
lation matrix to know the effect of
standardization the observable vari-
ables on the outcome.

3. Split large data sets in half and per-
form Steps 1 and 2 on each half to
compare the solutions with each oth-
er and with the result for the com-
plete data set to check solution sta-
bility.

6. Goodness-of-fit

The evaluation of the overall goodness-of-
fit for the structural equation models is
not as direct as in other multivariate tech-
niques. SEM does not have a statistical test
that describes the best strength of the pre-
dictions of the model. In their place, many
goodness-of-fit measures have been devel-
oped to evaluate the results since three per-
spectives: overall fitting, comparative fit-
ting regarding a base model and the par-
simony of the model. Nevertheless, except
the statistical Chi-square, the rest do not
have an associated statistical contrast [8].
However, the prevalent thought maintains
that the strongest test in any proposed mo-
del is gotten by means of the comparison of
the model with others. This makes that the
formalized comparison process among the
alternative or rival models would be con-
sidered as the strictest test in the theory.

7. Alternative or rivals

models

The best approach for the models evalu-
ation is to compare the proposed model
with several rival models that act as al-
ternative explanations of the proposed mo-
del. The comparison of the goodness-of-fit
measures of these models will allow us to
determine if the proposed model is accept-
able or not. This comparison is still more
important when the statistical Chi-square
indicates that significant differences do not
exist in the overall fitting of the model. [4]



As a matter to analyze the comparison, we
will use an example offered for [1], where
they work with two alternative models that
appear expressed jointly as diagrams of
relationships with the proposed model as

shown in Fig. 1.

A

7 N/

N

C

A = Firm / product factors
B = Factors based on prices

C = Factors based on purchase relation-

ships
D = Level of use of the product
E = Satisfaction with the firm

Fig. 1. Diagrams of sequence of the esti-
mated model and two rival models [1].

Table 1 compares the three models with
the three types of goodness-of-fit measures

Table 1: Comparison of goodness-of-fit measures
for the estimated model and te two rival model.

Goodness of Estimated  Rival 1 Rival 2
fit measures Model Model Model

Absolute fitness measures
x? Likelihood ratio

178.714 174.450  175.397
Degrees of freedom

85 82 84

Non centrality parameter

93.714 92.450 91.397
Standard non centrality parameter

0.689 0.680 0.672
Goodness-of-fit index

0.865 0.867 0.866
Residual Mean square

0.076 0.074 0.075
Residual Mean Error Approximation

0.090 0.091 0.090
Expected Cross Validation Index

1.842 1.855 1.833

Fitness Augmented Measures
Augmented Goodnesss-of-fit Indez

0.810 0.805 0.809
Tucker-Lewis Index

0.876 0.873 0.878
Normed Fitness Index

0.828 0.832 0.831

Parsimony Fitness Measures
Parsimony Normed Fitness Index

0.670 0.650 0.665
Parsimony Goodness-of-fit Index

0.613 0.592 0.606
Normed y? 2.103 2.127 2.088

Akaike Information Criteria
248.714 250.450  247.397

Fitness Measures we see that the rival 1 model
has the lowest values or different to the other two
models; however it is necessary to remember that
this model has the biggest number of estimated
parameters, and therefore, the smallest number of



degrees of freedom. The estimated mo-
del does not differ much of both mod-
els, although it is not the best taking in-
to account these measures. For the Fitness
Augmented Measures, both rival models
have a better behavior, however the differ-
ences with the estimated model are not im-
portant. The Parsimony Fitness Measures
have a better behavior for the estimated
model than for the rival model except for
the Normed 2 and the Akaike Information
Criteria. This example illustrates the great
value of the comparison with rival models
for all structural equation models with the
purpose of making sure that the proposed
model is really the best available model.

8. Conclusions

1. The structural equations modelization
combines elements, so much of the regresin
multiple as of the factorial analysis. Be-
sides, it allows not only the evaluation of
the complex interrelations of dependence,
but also to incorporate the effects of the
measure error on the structural coefficients
at same time.

2. Although SEM is useful in many cas-
es, should be used as a confirmatory mat-
ter, leaving the exploratory matter to other
multivariate techniques.

3. Before evaluating the measure or struc-
tural models, the overall adjustment of the
model should be analyzed to verify that is
an adequate representation of all the causal
relations using the three quality measures:
the absolute, augmented and parsimony
fitness measures.

4. The techniques developed to evaluate
the structural equation models have a con-
firmatory bias that tends to confirm that

the model is adjusted to the data, al-
though, this only has been confirmed that
is one of the various acceptable possible
models.

5. The most rigorous test is the comparison
with alternative models, since they repre-
sent the true and different structural hy-
pothetical relations.

6. It would be interesting to compare
the confirmatory strategies of modelization
and alternative models with the strategy
of the development of the model trying to
improve by different changes, the measure
and structural models.

7. Another important subject to study is
related with the estimation process, being
the most usual: the direct estimation, jack-
knife or bootstrap, besides other simula-
tion techniques.
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