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Abstract: - This paper describes Soft Computing approach to modeling time-dependent (dynamic, real time) 
transportation phenomenon characterized by uncertainty. The proposed “intelligent” control systems that are 
based on a combination of fuzzy logic (or neural networks) and mathematical programming (or heuristic) 
techniques make “on line” control decisions of the highest quality.  In the first step of the proposed model, the 
best control strategies are developed off line for many different traffic patterns. These strategies are developed 
using mathematical programming or heuristic approach. In the second step, learning from the best strategies, 
fuzzy rule base is created from numerical data (or neural network is trained). Applications of the systems are 
considered for the stochastic vehicle routing, and real-time traffic control at the isolated intersection.  
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1   Introduction 
Most complex traffic and transportation engineering 
problems are characterized by uncertain 
transportation supply, demand, and/or cost patterns 
[1]. This means that there are limitless number of 
potential situations in traffic and transportation that 
request adequate control and action. Every potential 
situation that can happen in the transportation 
system requests adequate decision and action. Most 
of these decisions must be made in real time. Some 
of these decisions involve human decision-makers  
whereas others involve automatic control 
mechanisms triggered by computer hardware. The 
initial assumption in this paper is that it is possible 
to develop a new type of control system that makes 
on-line decisions of a high quality. In other words, 
this paper assumes that it is possible to develop the 
control systems that will recognize different 
situations and make the appropriate real- time 
decision without knowing the functional 
relationships between individual variables. 
Intelligent traffic and transportation control systems 

should be able to generalize, adapt, and learn based 
on new knowledge and new information. The 
concept proposed in this paper is general and it can 
be applied to a broad class of real-time engineering 
control problems that are characterized by 
uncertainty. The paper is organized as follows: the 
proposed control system is presented in section 2. 
Successful examples of the proposed control concept 
in solving complex traffic and transportation 
problems are shown in section 3. Section 4 presents 
the concluding remarks and further research 
orientations. 
 
 
2 Soft Computing Real-Time Control  
Various traffic patterns constantly occur in 
transportation systems. Traffic control mechanisms 
constantly respond to new traffic patterns through 
different control decisions and actions. Specific 
traffic conditions must be encountered and 
recognized by traffic control mechanisms. This 
means that the good traffic control mechanisms 
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should have the ability to distinguish one traffic 
scenario from another. The number of different 
traffic scenarios is practically limitless. Traffic 
control mechanism should be capable to “fight” with 
the traffic conditions it has encountered in the past, 
as well as with the unknown traffic conditions that 
appear in the transportation system for the first time. 
Consequently, triggering the specific action in real 
time (green light extension at the intersection, flight 
cancellation in the case of serious airline schedule 
disturbance, assignment of particular cab to specific 
request, etc) depends on the recognized “traffic 
scenario”.  
 

 
2.1 Creating The Traffic Scenarios Database  
We can be familiar with some traffic situations that 
have encountered in the past and be prepared for 
them with adequate response. On the other hand, we 
must be able to find adequate response for the traffic 
situations that we are facing for the first time. We 
can create the traffic scenarios database of the 
considered transportation system by collecting data 
and/or by simulation. Depending on the context of 
the problem, this means that we are able to “predict” 
moments of time in which different events will 
happen. For example, in context of isolated 
intersection on-line control problem, this means that 
we are able to predict exact time of the arrival of 
each vehicle on each approach during certain time 
period. By simulation we can create different traffic 
patterns during considered time period. The greater 
the database, the better the expected performances of 
future traffic control system.  
 
 
2.2. Creating The Best Control Actions for 
Known Traffic Scenarios  
Let us first try to develop the best control actions for 
known traffic scenarios. Known traffic scenario 
(generated by simulation) give us full information 
about future events. In the case of perfect prediction 
we must be able to make optimal decisions. For 
known traffic scenarios, we should have adequate 
control actions. Let us denote by (P1) the problem of 
discovering action1 for given scenario1. For known 
scenario1, depending on the studied transportation 
phenomenon, the problem (P1) could be solved (off-
line) using linear programming, nonlinear 
programming, dynamic programming, multi-
objective programming, or by using some 
metaheuristic algorithms (genetic algorithms, 
simulated annealing technique, taboo search). The 
problem of discovering action2 for given scenario2 is 

denoted by (P2). In this way, for given set of m 
scenarios, Traffic Scenarios Set ={scenario1, 
scenario2, …, scenarion}, the set of actions, Actions 
Set  = {action1, action2,…, actionn} is produced after 
solving the corresponding problems P1,P2,…Pn. We 
can get the optimal solution (or “good” solution) for 
every considered traffic scenario.  
 
 
2.3. Creating The Intelligent Transportation 
Control Systems    
When creating the intelligent transportation control 
systems we use artificial neural networks, or fuzzy 
logic techniques. We create fuzzy rule base from 
numerical examples (“Traffic Scenario- Best Control 
Action” Database). There are few different methods 
for generating fuzzy rule base from numerical data 
[2], [3]. Theoretical results reached during the past 
several years have indicated that fuzzy logic systems 
are universal approximators and this explains why 
fuzzy logic systems are so successful in engineering 
applications [3]. Feedforward neural networks also 
approximate unknown functions, that is, they can be 
considered as universal approximators. The theorem 
proved by Hornik et al. and Cybenko states that a 
multilayered feedforward neural network with one 
hidden layer can approximate any continuous 
function up to a desired degree of accuracy provided 
it contains a sufficient number of nodes in the 
hidden layer [4],[5]. The proposed system that 
makes on-line decisions of a high quality is capable 
to recognize different situations, to generalize, to 
adapt, to learn and to make the appropriate decision 
without knowing the functional relationships 
between individual variables. The proposed 
approach for creating the Intelligent Transportation 
Control Systems could be formulated through the 
following steps: 
 
Step 1:Using simulation, generate many different 

traffic scenarios.  
Step 2: Formulate considered problem and find the 

optimal solution or sub-optimal solution for 
each generated traffic scenario using 
optimization techniques or heuristic 
algorithms. Create the “Traffic Scenario- 
Best Control Action” Database.  

Step 3: Based on the “Traffic Scenario-Best Control 
Action” Database resulted from Steps 1 and 
2, create the Intelligent Transportation 
Control System. 

The following question is very important: Is the 
proposed system capable to find “good” solution for 
the unknown traffic “scenario? To properly answer 



this question we must ask ourselves the following: 
What is the ideal control strategy for unknown 
traffic scenario? How can we create the ideal control 
strategy for unknown traffic scenario? The answer is 
very simple. We use the same techniques 
(optimization techniques, and/or heuristic 
algorithms) that we used to create “Traffic Scenario- 
Best Control Action” Database. We consider our 
system as “good enough” if it is capable to produce 
control strategies “similar” to ideal control strategies 
in the case of unknown traffic scenarios.  (In some 
cases it can happen that our system produces the 
ideal control strategy).  
 
 
3. Successful Examples Of The 
Proposed Approach In Solving 
Complex Traffic Problems 
 
3.1 Intelligent isolated intersection  
Consider an isolated “T” intersection consisting 
of two one-way streets as shown in Fig. 1. In 
this paper we will not take into consideration the 
whole set of engineering details like detector 
placement, calculation of the minimum and 
maximum green times, yellow and all-red times, 
and pedestrian requirements. The detectors 
provide real time information on the numbers of 
incoming vehicles, stopped vehicles, and the 
total vehicle waiting time (delay) on each 
approach. 

APPROACH 1

APPROACH 2

Detector

Traffic Light

 
 
Fig.1 - “T” intersection consisting of two one-way 

streets 
 
This information is updated in short time intervals. 
Based on this information, a set of rules is applied to 
control the signal phase for the next time interval. 
The decision is either to continue or to terminate the 
current signal phase [6],[7]. The question is how to 
build the rules so that they satisfy the following 
objectives of signal control: (1) to minimize the total 

number of stopped vehicles S, and (2) to minimize 
the total delay D over a given time period (0, T). In 
other words, our performance index ("cost" or 
"penalty function") should represent some weighted 
combination of stops and delays. For example, the 
performance function could read as follows: 

DSF ww 21
+=      (1) 

where: 
w1 - the weight (the importance) given to the total 
number of stopped vehicles; w2 - the weight (the 
importance) given to the total delay;  w1 + w2 = 1. 
The terms S and D are added with weights of w1 and 
w2. This enables multi-criteria sensitivity analysis 
and generation of a great number of different control 
strategies depending on chosen criteria weights 
(importance). Consider just one of the approaches of 
Fig. 1. Let 1 denote the situation when the signal 
phase on the approach in question is green, and, 0 
the situation when the approach in question is red. 
Then over the period (T), each small time interval 
may be designated either 0 or 1, and the chain of the 
numbers such as the following indicates the pattern 
of signal phase change over T:  
 
010111100001111………110000111100000111. 
This sequence represents how the signal phase 
changed during time T. We use genetic algorithms to 
develop the optimum sequence of signal phases 
assuming that the future traffic conditions at the 
intersection are known [8]. Many different 
hypothetical traffic scenarios are generated, and for 
each scenario, the corresponding best solution 
consisting of a string of 1’s and 0’s is developed 
using Genetic Algorithm. This set of solutions 
constitutes the “Traffic Scenario – Best Control 
Strategy” Database for the intersection. This 
database is the starting point for creating the 
intelligent control system. We generated fuzzy rule 
base using Wang-Mendel’s method [2]. Typical 
fuzzy rule in the fuzzy rule base is, for the example, 
the following one: 
  
If the total number of approaching vehicles is 

SMALL, and if the total number of vehicles 
waiting in the other approach is LARGE, 
and if time elapsed since the last phase 
change is VERY LONG 

Then the time length until the next phase change 
is VERY SHORT  

Because the Genetic Algorithm result was the 
retrospectively derived best solution for a given 
traffic pattern, the performance associated with it is 
considered as the target or reference for evaluation. 
The criterion used to compare the two cases 



(“intelligent” transportation control result vs. ideal 
control result (Genetic Algorithm result) is the 
performance index defined in relation (1). The 
vehicle arrivals are assumed to follow the Poisson 
process. Thirty-two patterns are generated with each 
pattern lasting for 10 minutes (600 seconds). The 
headway between two successive vehicles is not less 
than 1.5 seconds. The size of the small time interval 
at which control decisions are made is 6 seconds. 
The best decision at each small time interval is 
developed using the genetic algorithm. The specific 
values of weights between the minimum total delay 
(w1) and minimum total number of stopped vehicles 
(w2) are as follows:  w1 = 0, 0.2,...,1 ; w2 = 1, 
0.8,...,0. Thus, for a given traffic pattern, six best 
solutions, corresponding to each weight 
combination, are developed. Fig. 2 shows the 
number of stopped vehicles for the traffic arrival 
patterns that are not previously used. The 
comparison was made between the results obtained 
using the “intelligent” system and those obtained 
using genetic algorithm (The Genetic Algorithm 
results represent  number of stopped vehicles values 
attainable when the future is known (ideally 
predicted). Bearing this fact in mind, as well as the 
fact that the “intelligent” system operates in an 
on-line regime in conditions of uncertainty, it can be 
concluded that good results would be achieved using 
the intelligent system. In this figure (as in the case of 
the total delay), most points line up along the 45-
degree line.  
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Fig. 2 – Total number of stopped vehicles: 
Comparison between the ideal control strategies and 
the control strategies produced by the developed 
intelligent system 
 
This indicates that intelligent transportation control 
results and Genetic Algorithm results (ideal control 
decisions) are very similar and that the rules from 
the proposed method can yield solutions close to the 
best solution. 

3.2 Intelligent Vehicle Routing System 
Let us assume that there are n nodes in the network 
to be served (Fig. 3). We also assume that vehicles 
of the same size provide service. We denote vehicle 
capacity by C. Vehicles set out from depot, serve a 
number of nodes, and on completion of their service, 
return to the depot. The classical vehicle routing 
problem consists of finding the set of routes that 
minimizes transport costs. We assume that the 
demand at each node is only approximately known. 
Such demand can be represented by a probability 
density function or in the case of subjective estimate 
by the appropriate fuzzy number. Without loss of 
generality, in this paper we assume that demand Di 
at any node i (i = 1,2,…,n) is represented by the 
Normal distribution with mean µi and standard 
deviation σi.  The problem of routing vehicles in the 
case of stochastic demand at nodes is known as the 
stochastic vehicle routing problem [9]. The basic 
characteristic of the stochastic vehicle routing 
problem is that the real value of demand at a node is 
only known when the vehicle reaches the node. Due 
to the uncertainty of demand at the nodes, a vehicle 
might not be able to service a node once it arrives 
there due to an insufficient capacity. Such situation 
is known as a “route failure”. In the case of “route 
failure” different actions need to be applied. We 
assume that in such situations the vehicle returns to 
the depot, empties what it has picked up thus far, 
returns to the node where it had a “failure,” and 
continues service along the rest of the planned route 
(Fig. 3). Obviously, when evaluating the planned 
route, the additional distance that the vehicle makes 
due to “failure” arising in some nodes along the 
route must be taken into consideration. The problem 
(P) logically arises of designing such a set of routes, 
which will result in the least total sum of planned 
route lengths and additional distance covered by 
vehicles due to failure. The problem (P) is solved in 
this paper many times for different scenarios (known 
the random demand values at all nodes). In order to 
solve problem (P), we first solved corresponding 
Traveling Salesman Problem using various heuristic 
algorithms. In this way, we created “Giant vehicle 
route”. In the next step, we “walked” along the 
created giant route and we have decided when to 
finish with one vehicle route and when to start with 
the next vehicle route. These decisions were easily 
made since we knew demand at every node and 
vehicle capacity.  
After serving the first k nodes, the available capacity 
of vehicle Bk will equal: 

i

k

1=i
k DC=B ∑−                 (2) 



Route Failure

 
 
Fig. 3 -  “Failure” at a node of the planned route 
 
In the case of stochastic vehicle routing problem, the 
“strength” of our preference for the vehicle to serve 
the next node after it has served k nodes depends on 
the available capacity Bk, as well as on expected 
demand in the next node. We can expect that at a 
certain time point the route will have “small,” 
“medium,” or “big” number of nodes. We will 
denote by nk the expected number of new nodes in 
the route after vehicle already has served k nodes. 
The linguistic expressions “small number of new 
nodes,” “medium number of new nodes,” and “big 
number of new nodes” can be represented by 
corresponding fuzzy sets. Available capacity can 
also be subjectively estimated, for example, as 
“small,” “medium, and “large.” Let us denote 
respectively by X1, X2 and X3 the following 
variables: 
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The first variable represents relative available 
capacity after serving the first k nodes. The second 
variable represents relative expected demand in the 
next node, while the third one describes relative 
variability of the demand in the next node. The 
typical rule in the approximate reasoning algorithm 
to determine the expected number of the new nodes 
in the route can be the following one: 
 
If  Relative available capacity is LARGE and 

Relative expected demand in the next node is 
SMALL and Relative variability of the 
demand in the next node is SMALL 

Then  Expected number of the new nodes in the 
route is BIG 

We can see that the antecedent of the rules contains 
remaining vehicle capacity and the expected demand 
in the next node. The consequence contains the 
expected number of new nodes in the route. In this 
paper the fuzzy rule base is generated from 
numerical examples using the procedure proposed 
by Wang and Mendel [2]. For known available 
capacity Bk that remains after serving k nodes, and for 
known characteristics of the demand in the next node 

it is possible to use the approximate reasoning rules to 
determine the expected number of new nodes in the 
route.  We are now able to answer the following 
question: should we send the vehicle to the next node 
or return it to the depot after completing service to k 
nodes?  Let the expected number of the new nodes in 
the route equal nk

*. Based on this value, a decision 
must be made whether to send the vehicle to the next 
node or return it to the depot.  The vehicle should be 
sent to the next node if the case when nk

*   ≥  1.  In the 
opposite case, when   nk

*   <  1, the vehicle should be 
returned to the depot. The generated fuzzy rule base 
enables “on line” developing of the vehicle routes. 
The vehicle routes are created in the following way: 
 
Step 1:Using some heuristic algorithm solve the 

Traveling Salesman Problem. 
Step 2:First include the depot in a route. Then 

include nodes in the route in the same 
order as they appear in the Traveling 
Salesman Route. Before deciding to 
include a node into the route, first use 
generated fuzzy rule base to calculate the 
expected number of new nodes in the 
route. If the calculated expected number 
of the new nodes is greater than or equal 
to one, include the node in the route. 
Otherwise, this node becomes a first point 
of the new vehicle route. Finish with the 
algorithm when all nodes are included in 
the routes.  

The developed model was tested on well-known 
TSP benchmark problems [10]. We have 
compared the results obtained by the proposed 
process above with the a priori known solution. 
Maximum and average relative error values are 
given in Table1. 
Table 1- Maximum and average relative error 

values  
 

Problem Maximum 
relative 

error [%] 

Average 
relative 

error [%] 
Eil51 5.83 0.607 

Berlin52 5.98 1.44 
St70 4.05 1.63 
Pr76 5.83 1.75 

Kroa100 5.75 2.42 
Eil101 5.44 2.18 
Tsp225 4.70 1.49 
A280 3.48 1.26 

Pcb442 4.32 1.15 
Pr1002 2.38 0.93 

 



Each performed numerical experiment is 
represented by the following two solutions: (a) the 
solution obtained when future demand is known in 
advance; (b) the solution obtained by the proposed 
“Intelligent” system that makes real-time 
decisions. The obtained solution pair is shown in 
Fig. 4 (Example: Eil101). 
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Fig. 4 - Example Eil101; (a) the solution obtained 
when future demand is known in advance; (b) the 
solution obtained by the proposed “Intelligent” 
system 
 
 
4. CONCLUSIONS 
In this paper, an “intelligent” traffic and 
transportation control systems are proposed. The 
proposed process learns from the best solutions 
obtained assuming that the future situations are 
known. Combining many solutions, a set of rules 
is developed. All pairs (“traffic scenario- 
appropriate set of decisions”) were used to 
produce a fuzzy rule base. Evaluating the 
performance of the fuzzy rules developed by this 
process is also noble. Because the best solution is 
known for a particular pattern, the performance of 
the proposed rules can easily be checked against 
the result of the best solution. Many tests show 

that the outcome of the proposed rules is nearly 
equal to the best solution. The proposed system 
has the possibility to learn from examples, which 
means that it is adaptable. There are numerous 
transportation and logistic problems where this 
research could apply. The proposed concept is 
especially important for research activities whose 
unified themes are uncertainty (randomness, 
stochasticity,  fuziness, ...) and time-dependence 
(dynamic, real-time).  
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