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Abstract: - Microarrays experiments provide genome-wide expression pattern across many 
different conditions that provide a landscape of gene expression in a particular cellular state. The 
information derived from this high throughput technology is proving to be highly constructive in 
understanding the functioning of organism on the molecular level. The regulation of gene 
expression is in turn achieved through genetic regulatory systems structured by networks of 
interactions between DNA, RNA, proteins, and small molecules. Using these two data sources in 
conjunction with appropriate mathematical formalism we can model the abstract problem of 
classification of pathways pertaining to an observed phenotype. 
   We present an approach for identifying the class/phenotype of a putative pathway. The basic 
idea is to create a compendium of pathways, which are based on perturbed cellular states and use 
the compendium for classification of uncharacterized pathways. We propose to integrate 
information contained in high throughput gene expression data with the known gene regulatory 
pathways to devise scoring schema and suitable data structures to create the compendium. For 
classification we applied an augmented graph theoretic algorithm. The significance of the 
approach has been ascertained by an appropriate statistical method.  We also illustrate that the 
model developed is nonparametric and generic. The insight derived from current approach 
suggests that our method is only limited by current state of knowledge about gene networks and 
analysis of gene expression data. More robust results can be achieved as the knowledge base 
becomes rich and more accurate. 
 
Key-Words: microarrays; gene networks; graphs; sub-graph isomorphism; graph matching; 
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1 Introduction 
High throughput techniques like microarray 
experiments measures mRNA expression levels of 
thousands of genes in parallel, this seems to be a 
valuable tool for understanding the underlying 
genetic machinery of a living cell [1]. Inferential 
and descriptive statistical methods have been 
applied to microarray data to uncover patterns of 
gene expression and behavior of genetic markers 
in diseases like cancer [2,3]. Reverse engineering 
of gene networks using gene expression data based 
on machine learning algorithms has gained 
momentum in recent years [4]. Concurrent to these 
computational approaches there are ongoing 
efforts which, based on elaborate in-vivo and in- 

 
 
vitro experimentation like ChIP, Y2H screens and 
Protein chips are providing us experimentally 
verified facts about mechanism of genetic and 
protein interactions, genetic regulation and gene 
expression in various prokaryotes and eukaryotes 
[5,6]. Serious attempts have been made to 
understand the underlying topology of the 
biochemical networks and to establish structure-
function kind of relationship in organisms based 
on the topology and other properties of these 
networks [7,8]. Attempts to understand the 
regulatory and transcriptional mechanisms on 
system level are underway and knowledge from 
different domains are being incorporated to 
develop in-silico models of cells and organisms  



 

[9,10]. All these studies have contributed 
significantly to our present knowledge about living 
organisms and their mode   of function. But still 
there are many open-ended questions to be 
answered. The key focus of postgenomic 
biomedical research is to undertake a holistic and 
systemic approach towards understanding the 
complex machinery called “cell”. In this paper we 
explain the approach we have taken to combine 
knowledge from gene expression data along with 
known gene networks, which allows us to build a 
compendium of reference pathways.  The 
compendium is used in conjunction with an 
augmented graph theoretic algorithm to classify 
putative pathways. The approach presented is 
generic though we have verified it using the data 
for yeast, Saccharomyces cerevisiae.  
Our approach is based on the hypothesis that the 
use of available knowledge on biological networks 
coupled with inference derived from large-scale 
gene expression data will aid in development of 
reliable and robust models and methods, which 
can be applied to gain valuable insights for various 
applications. Few efforts have been made to 
combine available knowledge on biological 
networks and gene expression data [11,12]. Most 
of these efforts were centered on analysis of gene 
expression data based on the network structure or 
in characterizing pathways, which are best 
described by the gene expression profile. Still, 
they illustrate that an integrated approach that 
combines knowledge from gene expression data 
and biochemical networks can aid us in decoding 
the phenomenon of life. The recent review on 
network biology consolidates the same [13]. Our 
work builds up on these concepts. Starting from 
the known gene networks, we extract measures 
from microarray data to assign score to the genetic 
relationships in these pathways. This procedure 
yields us model pathways, which are stored as 
compendium and used in classification of a 
putative pathway. The classification strategy is 
based on an “Inexact sub-graph isomorphism 
algorithm” which has been customized to solve the 
problem in hand. The scoring function can be 
modified to reflect any desired property as long as 
it is supported by gene expression data and 
network characteristics. The scoring function 
proposed in this paper has been designed keeping 
in mind that the regulatory relationships among 
genes are linear as well as non-linear.  

2 Methods 
 
2.1 Expression data 
For calculation of measures, we used microarray 
data used and reported by Hughes et al. [14]. The 
data set contained 276 single gene deletion 
experiments of Saccharomyces cerevisiae mutant 
strains. For each relationship between two entities 
in the network the score was calculated from the 
gene expression values of the two entities. For 
details of the score metric refer section 2.4. The 
dataset was reformatted in the form of N ×  M 
matrix where, N=number of genes, M=number of 
samples and N > M. For subsequent discussions 
we refer to expression profile of a gene X as 
expression vector X such that X = {x1, x2, x3, …, 
xM}  where, xi is the expression  value of gene X 
in experiment i. 
 
2.2 Data preprocessing 
For each cellular network a matrix (n ×  m) of 
expression data was created from the original 
dataset provided by Hughes et al., 2000. We used 
Gene Ontology(GO) information from SGD to 
create these 7 matrices. First we used SGD Gene 
Ontology Term Mapper to cluster 287 deletion 
experiments (containing genes and 
uncharacterized ORF’s) under different groups 
according to the cellular (biological) processes 
they shared. Second, the obtained clusters of 
microarray experiments were mapped to the seven 
pathways. The cluster that was nearest in terms of 
definition to a particular pathway was chosen as 
the set of experiments that will be included to 
create the data matrix. Thus we choose 7 GO 
clusters (containing deletion experiments) to 
create the matrix for 7 pathways. Finally, the data 
matrix had rows as the genes that were present in 
the pathway and columns as experiments 
contained in the nearest GO cluster. 
 
2.3 Pathway construction 
For illustrating the approach we collected 7 
cellular networks of S. cerevisiae from literature 
sources and pathway database KEGG 
[15,16,17,18]. The criterion for selecting these 
networks was that they had a corresponding entry 
in the gene expression data that we used to score 
the genetic relationships. The entities in these 
networks are genes, transcription factors (TFs), 



 

protein and their complexes. The relation between 
any two entities is directed. The detail of the seven 
pathways taken is presented in table 1. 
 

Model 
Graphs 

Description 

Cell cycle Transcriptional regulatory network in 
yeast cell cycle 

MAPK Pheromone response pathway in 
yeast cell 

PKC Protein kinase C(PKC) pathway 
activated by cell surface stress during 
formation of mating projection in 
yeast cell 

Galactose Galactose utilization pathway in 
yeast cell 

HOG The HOG pathway in response to 
hypertonic stress 

Filament The filamentous growth pathway to 
promote haploid invasive growth in 
rich medium low in nitrogen 

Respiration Aerobic respiration in yeast cell 

Table 1: Description of the pathways stored as  
  compendium 
 
2.4 Score calculation 
For scoring the relationships among entities in a 
pathway we used two measures based on 
correlation and mutual information. For the 
calculation of correlation and mutual information 
we used the data set from Hughes et al. [14]. 
 
2.4.1 Calculating correlation  
Correlation was calculated between two genes X 
and Y from their respective expression vectors X 
and Y (with M data points) using the Pearson 
correlation (�) metric (1).  
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Where µ
i  and σi denote mean and standard 

deviation of data for gene i.  We took the absolute 
values of ( )YX ,ρ  for our analysis. This absolute 
correlation was defined as (2) 

( )YXnorm ,ρρ =                                                 (2) 

 
According to Hughes et al. [14] the absolute value 
of ( )YX ,ρ  is used because conditions that produce 
perfectly anticorrelated response are sometimes 
considered as redundant from information theory 
point of view. 

2.4.2 Calculating mutual information 
The mutual information, I(X,Y) between two genes 
X and Y was calculated using equation (3). 

( ) ( ) ( ) ( )YXHYHXHYXI ,, −+=                          (3) 

Where, ( )IH = Entropy for single gene I.  
And, ( )YXH , =Joint entropy of gene X and Y. 
For calculating I(X,Y), the expression values were 
discretized, using histogram based technique 
discussed in [19]. As accounted by Michaels et al. 
[20] the mutual information depends on the 
distribution of individual datasets. Therefore, for a 
coherent analysis, we normalized I (X, Y) to the 
maximal entropy of each of the contributing 
expression vectors (numerical range: 0-1), giving a 
high value for highly correlated genes, 
independent of the individual entropies. The 
normalized entropy was defined as: 

( ) ( ) ( ){ }YHXHYXII norm ,max/,=                       (4) 
 
2.4.3 Combining scores 
The reason for calculating two different scores to 
signify a relationship was the known fact that 
genetic (regulatory) relationships are not always 
linear. While correlation based method can detect 
linear relationships among expression patterns, 
information theory approach serves the purpose to 
uncover relational features that are not readily 
discovered by correlation. The two scores ρ norm  

and I norm  were combined to yield a composite 
score which we define as: 
 I normnormtotal ×+×= βραξ                            (5) 
Where, α and β are tuning parameters which 
were both fixed at 1== βα  for our analysis. The 
score ξ total  defines the weight of the relation 

X�Y between two entities X and Y in the 
network. As, 10 ≤≤ ρ norm  and 10 ≤≤ I norm  so, 

as per equation (5), 20 ≤≤ ξ total . For each of the 

seven selected networks (see table1) weights to all 
the relations of type X�Y were assigned using 
equation (5). These networks were subsequently 
stored as weighted directed graphs, each we call 
model graph (GM). The model graphs are stored as 
a compendium against which we match a 
hypothetical Input graph (GI), iteratively using a 
modified sub-graph isomorphism approach (refer 
section 3.2.1). The input graph is assigned the 
class label of the best matching model graph based 
on edit costs operations (refer section 3.2.2). 



 

3 Classification 
The main focus of our approach was to devise a 
classification methodology that can classify a 
hypothetical pathway based on known 
biochemical and gene regulatory networks and 
available gene expression data. We followed 
following steps to accomplish the goal: 
1) Extract relevant biochemical networks from 

literature and database. 
2) Score the relationships among entities in these 

networks by measures derived from gene 
expression data. 

3) Create a compendium of such networks and 
store those using appropriate data structures. 

4) Devise an appropriate algorithm that can 
classify a new pathway based on compendium 
of pathways. 

In the preceding section we explained steps 1 
through 3. In the following we discuss the data 
structures, algorithm and the classification strategy 
in detail. For the sake of simplicity we refer to 
pathways and networks synonymously in all 
contexts.  
 
3.1 Data structures 
The algorithm used for classification works on 
labeled graphs. The data structure we choose for 
representing the model graphs (GM) and the 
hypothetical input graph (GI) was Attribute 
Relational Graphs (ARG). In an ARG the nodes 
and edges are assigned labels. Due to their 
representational power ARG’s are widely used in 
various applications in computer vision and 
pattern recognition. Figure 1 shows an ARG 
representation of a subnetwork of galactose 
utilization pathway. 
 
 
 
 
 

3.2 Inexact graph matching 
In many applications complex structures are  
classified, detected, or compared to each other by 
means of an appropriate matching scheme. We 
propose that classification of a pathway can be 

modeled as a graph matching problem. A graph is 
an ideal data structure to represent a cellular 
network. We used a modified version of “inexact 
graph matching algorithm” which had been earlier 
applied for finding best possible match between 
two graphs[21]. The algorithm was implemented 
assuming that the input graphs are ARG’s.  
 
3.2.1 Classification strategy 
We created a compendium of pathways pertaining 
to perturbed cellular states based on the gene 
expression data of the key genes involved in the 
pathways. In order, to classify a putative pathway, 
we match the input pathway against this 
compendium. The algorithm applied was the 
modified “inexact graph matching algorithm” 
which falls under the category of subgraph 
isomorphism problem.  This algorithm is in turn 
inspired by Ullman’s algorithm and error-tolerant 
subgraph isomorphism procedure[22,23]. Details 
of the algorithm are available in original paper. In 
order to compare the input graph to the 
compendium of model graphs and decide which of 
the models is most similar to the input, it is 
necessary to define a distance measure for graphs. 
Given two ARG’s/graphs GM and GI, the goal is 
to find the best matching between their nodes that 
leads to the smallest matching error. This smallest 
error between the two graphs can be viewed as the 
distinguishing distance between them. To compute 
the matching error, we compute the dissimilarity 
between each pair of matched nodes, plus the 
dissimilarity between (corresponding) edges. The 
matching error is calculated on the basis of edit 
operations which have been defined keeping in 
mind their biological relevance. Similar to the 
error-tolerant subgraph isomorphism problem 
where edit operations are used to define graph edit 
distance, we define edit operations on the input 
graph such that they are transformed to match a 
model graph [23]. To each edit operations, a 
certain cost is assigned. We consider the following 
edit operations for an input graph: {vertex label 
distortion, edge label distortion, missing edges, 
reversed edges}. The details of edit costs are 
provided in section 3.2.2. The input graph 
(pathway) is simply assigned class label of the best 
matching model graph (pathway) based on 
minimum matching error. The steps in 
compendium creation and pathway classification 
are illustrated in figure 2. 
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Fig.1: An ARG representation for a subnetwork 
            of galactose utilization pathway 



 

3.2.2 Edit costs/penalty 
As mentioned earlier, an important factor in the 
application of the graph-matching algorithm is the 
definitions of costs of edit operations. For the 
subsequent discussions we define input graph GI 
and model graph GM as two ARG’s such that, 

( )λω IIE IV IG I ,,,=  and ( )λω MMEMV MGM ,,,= .For 
vertices XI, YI of input graph GI ( V IY IX I ⊆, ) and 
vertices XM, YM of model graph GM 
( V MY MX M ⊆, ). In case the algorithm returns a 
mapping between nodes as XI �XM and YI � YM. 
(Where � denotes a mapping from input graph GI 
to model graph GM ). We need to score the 
mapping based on (i) node matching, and (ii) corr- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
-esponding edge matching. The edit cost for node 
matching is :    

{ } { }[ ])()()()( Y MMY IIX MMX II ωωωω −+− . 
 We consider three cases of edit costs for edge 
matching (Note: node matching is common to all 
the three cases):  
Case 1: When there exists an edge XI � YI in GI 
and a corresponding edge XM � YM in GM. Then 
the edit cost is ( ) ( )Y MX MMY IX II ,, λλ − . 
Case 2: When there exists an edge XI � YI in GI 
and no corresponding edge between XM, YM  in GM 
i.e. E MY MX M ⊄),( . Then edit cost is a constant  
penalty of 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 STEP 1:  Create a compendium of model graphs based on known cellular pathways(networks) and score  
the pathways using measures derived from gene expression data 

+ 

Microarray Data Cellular Pathway Model Graph 

Score pathways 
using  gene 

expression data 

Apply graph matching 
algorithm on input graph 

and each model graph 

Model Graph2 (GM2) 
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STEP 2:  Given an input pathway GI  match it against the compendium of model graphsGM , using  

“inexact graph matching algorithm”. Assign the class label of the best matching graph based on  
cumulative edit costs 

Fig.2:  Illustration of the compendium creation process and classification strategy  



 

Case 3: When for edge XI � YI in GI there 
exists an edge YM � XM in GM (i.e. reversed 
edge). Then edit cost is a constant penalty of 
2. 
 
3.2.3  Classification rule 
Let },...,3,2,1{ G M nG MG MG MM = be the set of 

model graphs in the compendium and C ={c1,c2, 
c3…cn}, be the set of class labels of model graphs. 
For the compendium we had created, all the model 
graphs were assigned unique labels, which is the 
ideal case but this definition may change 
depending upon the nature of analysis. Given an 
input graph GI compare the graph iteratively to all 
the model graphs G M j  and calculate a 
corresponding graph matching error score 
eM j , nj ,...,3,2,1=∀ . The eM j is in turn a 
combination of two errors: 
 a) η error = node matching error 

 b) ε error = edge matching error (corresponding to  
       the matched nodes).  

 
These errors were further normalized to the scale 
(0-1) as described: 

)(normerrorη =η error / V I                          (6)  

Where, V I =number of nodes in GI 

)(normerrorε = ε error / E I                                    (7) 

Where, E I =number of edges in GI 
 
Finally, graph-matching error eMj was calculated 
as:  

)()(10 normerrornormerroreM j εη +×=                      (8) 

Thus, according to equation (8), 110 ≤≤ eM j .The 

class label of graph GI is assigned based on 
equation (9). 
 
class (GI) = class{arg min(eM1,…,eMj,…eMn)}   (9) 
 
 
4 Results and Discussions 
We studied our approach from two broad 
perspectives. Following is a description of the 
results, which demonstrate:  
(i) suitability of our approach to model the 
problem of classification. 

(ii)  assessment of the reliability of the error metric 
from statistical methods.  
 
4.1 Influence of network size on 
classification 
We wanted to ascertain whether the size of input 
network influences the performance of the 
algorithm. In order to obtain hints about the 
efficacy of our procedure, we created a set of 
networks (called test networks) with varying 
number of nodes (n = 6,10,12). The networks were 
specifically created keeping in mind that they 
should be largely similar to one of the model 
graphs and partially similar to few other model 
graphs. This was done to ascertain the coherence 
of results. We created 3 test graphs with high 
degree of matching to “Galactose” model graph 
and partial matching to “Respiration” model 
graph. These test networks were iteratively 
compared to the model graphs, the result of the 
comparison is presented in table 2. 

 
Model 

Graphs 
Test  

graph 1 
Test  

graph 2 
Test 

graph 3 
Cell cycle 10.8167 10.8065 No match 

MAPK 10.8096 10.7879 No match 
PKC 10.7514 10.8636 No Match 

Galactose 2.5310 2.8814 2.7487 
HOG 10.8388 10.8942 10.7874 

Filament 10.8493 10.8636 10.9140 
Respiration 5.9363 8.9352 6.7902 
Table 2: Error table of the comparison of model 

graphs with input graphs of varying size  
(error is on scale of 0 -11) 

 
From the data in table 2 it’s evident that matching 
error is least for Galactose graph in each category, 
and the result for Respiration graph is the second 
best, which was expected according to the design 
of analysis. Also, the error rates in the case of 
Galactose graph are comparable in the three cases. 
Hence, we could ascertain that the result of the 
algorithm is independent of the size of the input 
graph. If there is a match from GI to GM then our 
approach is able to extract the same. The No-
match entry in column 4 signifies that no valid 
mappings were extracted for the matching of test 
graph3 with the corresponding model graphs, 
which is consistent according to our observation. 
As the Test graph3 was largely different from Cell 
Cycle, MAPK and PKC model graphs. 



 

4.2 Statistical significance of results based 
on error metric 
As described earlier the pivot of our classification 
strategy is to find the minimum matching error, 
which in turn serves as a criterion for class 
assignment. We tried to ascertain that the 
matching errors generated by the algorithm were 
truly a reflection of the degree of match between 
two graphs and not the artifact of the overall 
procedure. Here we present the approach to 
measure statistical significance of the error metric. 
Figure 3 illustrates the strategy we deployed to 
access the statistical significance of the results 
based on error metric (function). We created an 
ensemble of random networks. The strategy used 
was, for each model graph ( G M j ) we first create  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a reference network ( G jℜ ), which is a slightly 

distorted sub network of G M j . This distortion 
was introduced by either adding few extraneous 
nodes and edges that were not originally present 
in G M j . This was done to ensure that we get an 
error measure > 0. Subsequently we create 15 
random networks ( G rand i ) for i =1, 2, 3,…, 15 

which have identical nodes as in G jℜ  but differ 
in topology and degree distributions. Thus we 

have a total of 7 reference networks ( G jℜ ) 

corresponding to 7 model graphs ( G M j ) and a 

total of 105 random networks ( G rand i ). Let we 

define matching error between G jℜ and G M j as  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Legends 

G rand 3

STEP 1: Calculate 
matching error e jℜ  

STEP 2: Calculate matching 
errors erand1

 to erand15  

G jℜ

 

G M j

 

..… ..… 

G rand1
G rand 2 G rand i

G rand 15

STEP 3: Define q j  (false classification rate) for each model graph G M j  to quantify the rate of misclassification based   

on the error metric: q j = 100
15

×
n j

 where, n j represents number of times e jℜ >erand i , ∀ i=1,2,3,…,15 

 
STEP 4: Calculate qtotal (total false classification rate) for the ensemble of networks by qtotal = mean(q j ), 

 ∀  j=1,2,3,…,7 
 

 

 

Graph matching 
 
Extraneous nodes, not  
originally present in G M j

 

Nodes originally 
present in G M j

 

Extraneous/random edges  
 

Fig.3: Illustration of approach taken to ascertain the statistical significance of the    
          results based on the defined error metric 
 



 

e jℜ and the matching error between G rand i and 
G M j as erand i  15,...,3,2,1=∀i .  So, we define a 

measure q j  (false classification rate) for each 

model graph G M j  to quantify the 
misclassification based on the error metric: 

q j = 100
15

×
n j               (10) 

Where, n j represents number of times e jℜ > 
erand i ,  15,...,3,2,1=∀i  
The total false classification rate for the ensemble 
of networks is calculated by: 
qtotal = mean ( q j ), 7,...,3,2,1=∀j                    (11)  
 
Table 3 shows the false classification rate for each 
of the seven model graphs. The qtotal calculated 
by this method was 0.95%. This result illustrates 
that the error metric we have defined is able to 
distinguish between significant and non-significant 
graph matching in more than 99% of the cases. 

 
Model Graphs False classification rate ( q j ) 

Cell cycle 6.667  
MAPK 0.00  
PKC 0.00  

Galactose 0.00  
HOG 0.00  

Filament 0.00  
Respiration 0.00 

Table 3: The false classification rate (%) for the 
 compendium of pathways 

 
 
5 Conclusion  
We have demonstrated a new method for pathway 
classification, which integrates knowledge about 
known biological networks and gene expression 
data. While the basic principle of scoring 
pathways is similar to other approaches [11,12], 
we use the scored pathways to create a 
compendium. This compendium is used in 
conjunction with an augmented graph-theoretic 
matching algorithm to classify a putative pathway. 
A metric based on graph edit operations was 
defined to calculate the degree of similarity 
between two graphs (pathways). Though our 
choice of edit cost and the corresponding metric 

was heuristic, the preliminary/empirical results 
demonstrate that the algorithm is able to extract 
significant matching and accurately assigns the 
class/phenotype label for an uncharacterized 
pathway. We state that the results presented in this 
paper are not exhaustive, but they suggest that 
such integrated approaches are inevitable for 
gaining better insights into living systems. In this 
approach we defined the error metric as a linear 
function of two errors (distance measures) but 
other functional combination of these distance 
measures should be explored or if sufficiently 
many pathways are known in advance, this 
knowledge may be utilized to learn an appropriate 
error metric (function) by employing machine 
learning methods. The scoring schema was 
devised for immediate relationships between two 
entities but in the context of gene regulatory 
networks cascade effect on downstream genes can 
also be integrated. Currently this area of research 
is still in its infancy, we excluded the cascade 
effect from the current analysis. We also propose 
that this approach is generic and can be suitably 
modified to suit other applications. More 
information from other domains of biomedical 
research can be integrated in the scoring schema 
and application specific edit operations/costs can 
be defined. Specifically, knowledge about cis-
regulatory elements and macromolecular (binding) 
interactions (protein-protein and protein-DNA) 
can be utilized to explore the model on a wider 
scale. We believe that our approach will benefit 
from advances in the field of functional genomics, 
network biology and continued breakthroughs in 
experimental and computational biology.  
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