A Fault-Tolerant Scheme for Multicast Communication
Protocols

Bhed Bahadur Bista
Faculty of Software and Information Science,
Iwate Prefectural University,
Iwate-ken, JAPAN 020-0193

email: bbb@soft.iwate-pu.ac.jp

Abstract:- Since the multicast communication is the best technology to provide one to many commu-
nication, more and more service providers are using this technology to deliver the same service to
multiple customers. As such, providing fault tolerance to multicast connections is gaining attention
both in business and research communities because a single link or a node failure in the multicast
communication delivery tree will affect a large number of customers. There are some existing schemes
proposed for fault recovery in the multicast communication. They either calculate a new tree without
using any node from the existing tree or calculate a path from affected node/tree to the unaffected
tree when a fault occurs. In either case, they need the global view of the multicast communication
tree. In this paper, we propose a fault tolerant scheme in which we do not need the global view of
the multicast tree. We compute the shortest path from a node to the source of the multicast tree
assuming that the node’s link to its parent node in the multicast tree is broken. The shortest path
information is sent hop-by-hop toward the source and is stored in the routers. When the assumed
broken link really breaks the recovery message is sent toward the source and the previously stored
fault recovery message at each node is used to make a multicast recovery tree.

Key-Words:- fault-tolerance, multicast, preplanned, on-demand, tree generation.

1 Introduction plications such as video-conference, white-board,
web radio, stock online and so on are being de-
veloped and are in use also. However researchers
and business communities are worried about the
fault-tolerance of network running multicast ap-
plications because unlike a unicast communica-
tion, a link failure in a multicast communication

affects numerous receivers at the same time.

Multicast communication is the only efficient and
scalable technology available for one-to-many
and many-to-may communication. Several pro-
tocols and algorithms such as DVMRP [1], PIM-
DM [2], PIM-SM [3], CBT [4] and MOSPF [5]
have been developed and implemented for multi-

cast communications. These protocols and algo-
rithms create so called multicast trees which are
rooted at the source of the multicast data (or
node which is selected as the root of the tree).
The data packets are then forwarded from the
source along the trees to the multiple receivers.
Due to the improvement of computational power
of computers and network devices multicast ap-

There are a few works done in fault-tolerance
of multicast communication. They can be di-
vided into two categories; preplanned [6, 7, 8]
and on-demand [9]. In preplanned, an alterna-
tive tree is computed corresponding to each node
or link that is assumed to be failed. When a node
or a link fails the corresponding pre-calculated
tree is then activated for the multicast data flow

and the data flows along the new tree to the
receivers. In on-demand scheme, no alterna-
tive trees are calculated before hand. When a
node or a link fails, the child/s and the grand-
father node of the failed node reactivate their
agents. The agent at the grandfather node en-
capsulates packets and sends to the agent in the
child node/s which decapsulates the packets and
forwards along the multicast tree. The agents
bypass the failed nodes.

In the above preplanned schemes, a node
monitors the whole network for faults. If it finds
any fault, it activates the new tree for the mul-
ticast data packets. Monitoring whole network
incurs delays and also consumes large network
bandwidth as the monitoring packets should flow
in whole networks periodically. Besides, how the
activation of the new tree would match with the
multicast protocol being used is not clearly men-
tioned. In the on-demand scheme, the encap-
sulation and decapsulation of a large number of
packets at the beginning incurs large processing
time.

In this paper, we propose a scheme in which
each child router calculates the shortest path
from itself to the source of the multicast data
excluding the link to its parent node. It is as-
sumed that a failure has occurred to the link to
its parent node. Then it sends the tree genera-
tion message to the routers on the shortest path.
The message travels hop-by-hop to the source in
the worst case (i.e. when no routers on the short-
est path are members of the active tree) and in
the best case travels to the router which is al-
ready on the active tree (i.e. there are routers
on the shortest path which are members of the
active tree). Each router on the shortest path to
the source of the multicast data keeps tree gen-
eration information in the cache entry. When a
failure occurs, the child node of the failed node
or link checks its cache entry and sends tree ac-
tivate message toward the source. The message
travels hop-by-hop and the routers on the way
to the source generate tree from the information
stored in the cache entry and multicast data will
start flowing along the recovered tree.

The paper is organized as follows. In the sec-
tion two, we give the assumption and the detail

of how cache entry at each node are generated
and how the cache entry is used to recover the
fault. In the section three, we discuss the advan-
tages and disadvantages of our proposed scheme
and finally in section four, we conclude the pa-
per.

2 Fault-Tolerant Planning and
Fault Restoration

2.1 Assumptions

We assume that links in the network are bidirec-
tional. We also assume that the multicast de-
livery tree can be either source based or shared
based tree. Like in the most of the previous
works, we assume that there is only one link fail-
ure in active multicast trees.

2.2 Fault Tolerant Planning

When a node becomes a member of a multicast
tree it calculates the shortest path from itself to
the root of the multicast delivery tree by exclud-
ing the link to its parent node because it is as-
sumed that the link to its parent node is sup-
posed to be failed. For shared tree multicast de-
livery tree the root will be the Rendezvous Point
(RP) (For example for PIM-SM and CBT), and
for source based tree it will be the source net-
work of the multicast data. If the shortest path
doesn’t exist, then the network will be parti-
tioned for which we can do nothing about it.
The node then sends fault-tolerant message
in the form of (group list, node list, source)
to the next node in the node list. The group
list contains the multicast groups to which the
source is sending data and the node is forward-
ing them. The node list contains the nodes in
the shortest path. The node stores the message
in the form of (group list, incoming inter-
face, outgoing interface list, source list) in
its fault-tolerant cache in order to generate re-
active message for fault restoration and also to
restore the fault. The group list is the list of
multicast groups for which it is forwarding mul-
ticast packets down the tree. The incoming in-
terface is the incoming interface of the multicast

data for the groups in the group list when the
fault is restored. The outgoing interface list
is the outgoing interfaces of the multicast data.
The source list is the list of multicast sources.
Only the information that is not in the active
tree is stored in the fault-tolerant cache

When the next node in the node list receives
the fault-tolerant message, it checks from which
interface it has received the message and puts
the interface in its outgoing interface list of
the fault-tolerant cache. It checks the next node
(after removing itself) in the node list and the
interface to the node and puts the interface in its
incoming interface of the fault-tolerant cache.
It puts the group list and source in its (group
list and source list) respectively of the fault-
tolerant cache. It removes itself from the node
list and sends the message to the node which is
on the top of the node list.

The fault-tolerant message will not be for-
warded toward the source in either of the follow-
ing cases:

case 1 The multicast groups, source of the multi-
cast groups and incoming interface are al-
ready in the fault-tolerant cache entry.

case 2 The node list becomes Null after remov-
ing oneself from the node list.

The case 1 states that if nodes X, Y, Z are
nodes in the active tree and X finds the short-
est path to the source as X—Y—Z— ... — S,
Y does not need to send (calculate shortest path
also) for the same group list and source list for
which it has received the fault-tolerant message
from X because it will not make any changes in
fault-tolerant cache in node Y upward to S. The
case 2 states that when the node removes itself
from the node list and the node list comes
NULL it knows there is no other node to send
the message.

The message travels hop-by-hop toward the
source and the fault-tolerant cache is built along
the path to restore the fault.

2.3 Example of Fault-tolerant Cache
Generation

Let us assume that the primary (i.e. active) tree
for a multicast group G1 is as shown by thick ar-
rows in Figure 1 where Sx and Sy are the sources
for the group G1. The s0, sl, s2 and s3 in the
figure are names of the interfaces of routers.
The router G calculates the shortest path
to Sx without the link G-Sx and finds that the
shortest path is G—+D—Sx. G sends fault —
tolerant message ([G1],[D,Sx], Sx) to D and puts
in its fault-tolerant cache ([G1], s1, [Null], [Sx]).
The router D receives the fault-tolerant message
from G at its interface s2. It removes itself from
the node list and sends (G1, [Sx], Sx) to Sx
and puts ([G1], s0, [s2], [Sx]) in its fault-tolerant
cache. Sx receives the message from D at its in-
terface sO. It removes itself from the node list.

Since the node list becomes NULL, Sx doesn’t
need to send the message any further. Sx puts
([G1], Null, [s0], [Sx]) in its cache.

Figure 1: Fault-Tolerant Cache Generation

H calculates the shortest path to Sx without
the link H-G and finds that the shortest path is
I-C—B—A—Sx. H sends ([G1], [I,C,B,A,Sx],
Sx) to I and puts ([G1], s1, [Null], [Sx]) in its
fault-tolerant cache.

I receives the message from H at its interface
s0. It removes itself from the node list and sends
([G1], [C,B,A,Sx], Sx) to C and puts ([G1],s1,[s0],
[Sx]) in its fault-tolerant cache.

C receives the message from I at its sO in-
terface. It removes itself from the node list and
sends ([G1], [B,A,Sx], Sx) to B and puts ([G1],
s1, [s0], [Sx]) in its fault-tolerant cache.

B receives the message from C at its interface
sl. It removes itself from the node list and sends
([G1], [A,Sx], Sx) to A and puts ([G1], sO, [s1],
[Sx]) in its fault-tolerant cache.

A receives the message from B at its inter-
face s3. It removes itself from the node list and
sends ([G1], [Sx], Sx) to Sx and puts ([G1], s1,
[s3], [Sx]) in its fault-tolerant cache.

Sx receives the message from A at its inter-
face s2. It removes itself from the node list. Now
the node list is NULL. Thus Sx doesn’t need
to forward the message. Sx updates its fault-
tolerant cache to ([G1], Null, [s0,s2], [Sx]).

H calculates the shortest path to Sy also be-
cause it is forwarding the packets for the group
G1 from the source Sy. The shortest path that
is calculated is I-C—B—A—Sy. The fault-
tolerant message travels hop-by-hop toward Sy.
The fault-tolerant cache entry at nodes I, C, B
and A is updated to:

Cache entry of I: ~ ([G1], s1, [s0], [Sx,Sy])
Cache entry of C: ([G1], s0, [s1], [Sx,Sy])
Cache entry of B: ([G1], s0, [sl], [Sx,Sy])
Cache entry of A: ([G1], s1, [s3], [Sx]),

([G1], 52, [s3], [Sy])

Note that there are two incoming interfaces
thus two entry at A. Furthermore, A does not
need to send any information to Sy because the
link from Sy to A is already in the primary tree.

When the router I calculates the shortest
path to Sx and Sy, it does not send fault-tolerant
message up toward the sources because it has al-
ready got the Sx and Sy for the multicast group
G1 in its fault-tolerant cache. Similarly, J will
compute the shortest path to Sx and Sy and the
fault-tolerant message will be sent and stored in
each router on the shortest path. K does not
need to compute the shortest path to Sx and
Sy because K is already on the shortest path of
J and no new information will be added to the
cache entry.

2.4 Link Failure Detection and Acti-
vation of Recovery Tree

The first router to detect the link failure is the
one which is attached to it. Whereas in central-
ize link detection, it will take sometimes to for-
ward the link failure information to the central
controller as in previous works.

When a child node detects the failure of the
link to its parent node, it checks its fault-tolerant
cache and sends tree activate message toward the
source. The activate message is sent from the
incoming interface stored in the fault-tolerant
cache and contains the source and group lists.
It transfers the message from the fault-tolerant
cache to active tree’s (group, source) states, in-
coming interface (ii) and outgoing interface list
(oil).

When a router receives an activate message
at one of its interface in the oil of the fault-
tolerant cache, it puts that interface to its oil
of the active tree. It sends the message up to-
ward the source from its incoming interface in
the fault-tolerant cache entry.

The process continues until it reaches the
Source or the node which is already in the ac-
tive tree. In worst case the activate message will
travel all the way to the source and in the best
case it will travel only to the next router.

When a node receives an activate message
and it is already in the active tree, it does not
send the activate message up toward the source.
It puts the interface at which it received the mes-
sage to the oil of its active tree.

2.5 Example of Recovery Tree Activa-
tion

Suppose in Figure 1, the router G detects the link
failure between itself to the source Sx. G checks
its fault-tolerant cache entry and finds for the
source Sx and group G1, the incoming interface
is s1 and sends activate message (i.e. (Sx,G1))
toward Sx via sl. It puts the sl as the incoming
interface for the (Sx, G1) in its active multicast
tree (recovery tree). When D receives the acti-
vate message from G at its interface s2, it checks
its fault-tolerant cache entry and finds that s2 in
its oil for the group G1 and source Sx. It puts

s2 in its oil, sO as incoming interface list for the
source Sx and the group G1, i.e. (Sx, G1). It
sends the activate message to Sx from the inter-
face s0. When Sx receives the message it checks
its fault-tolerant cache entry and finds that its sO
is in oil for the group G1 and it is the source for
it. It puts the s0 in its oil list for the group G1 in
its active multicast tree. The new tree generated
will be as shown in Figure 2 and the multicast
data from Sx to G will flow via the router D after
the fault recovery is completed.

- - > tree activate message flow

Figure 2: Fault Recovery Example

3 Discussion

In our proposed scheme, we do not pre-compute
the recovery tree but keep information in fault-
tolerant cache at the routers in the shortest path
for creating recovery tree. As discussed in section
2.3, all the nodes in the active tree do not need
to compute the shortest path to the sources. In
fact, once a router calculates the shortest path
to a source, all the nodes below it do not need to
calculate the shortest path to the source if they
are already included in its shortest path because
no new information will be added in the fault-
tolerant cache entry. Our scheme does not need
the global view of the multicast tree as each node
calculates the shortest path to the sources. The
fault-tolerant message travels hop-by-hop to the
first node in the active tree if there is such node

in the shortest path to the source otherwise it
will travel all the way to the source. Therefore,
depending upon the network topology and the
active tree, our scheme uses both existing tree or
makes a new tree. The shortest path can be cal-
culated using the underlying unicast routing pro-
tocols such as OSPF (Open Shortest Path First).
Thus we don’t need extra information about the
topology of the network for this calculation.

Our scheme has some drawbacks too. Each
router on the shortest path to the source have
to put the following information per multicast
packet incoming interface; (group list, in-
coming interface, outgoing interface list,
source list). If there are a large number of
groups in the group list then the memory re-
quired will be proportional to the number of
groups in the group list. As our scheme does
not require the global view of the active multi-
cast tree, the shortest path to the source might
not be via a node in the active tree. A new path
may be created all the way from the source in-
stead of from the nearest node which is already
in the active tree.

4 Conclusions

In this paper, we proposed a novel fault tolerant
scheme for multicast communication. Unlike the
previous works, the proposed scheme does not
require the global view of the multicast tree to
compute the fault recovery tree. A node com-
putes the shortest path from itself to the source
of the multicast data without the link to its par-
ent node in the active multicast tree. Each node
on the shortest path keeps the information for re-
covering from the fault, if the link to the parent
node fails. If the link fails the node will send the
fault recovery message (activate message) toward
the source and the multicast data will continue to
flow along the new path. The shortest path can
be calculated using the existing unicast routing
protocols such as OSPF.

References

[1]

D. Waitzman, S. Deering, and C. Partridge,
“Distance vector multicast routing protocol,”
in RFC 1075, Nov 1988.

S. D. et al., “Protocol independent multicast-
dense mode (pim-dm): Protocol specifica-
tion,” in Internet draft, June 1999.

D. Estrin and D. F. et al., “Protocol indepen-
dent multicast-sparse mode (pim-sm): Proto-
col specification,” in RFC 2362, June 1998.

T. Ballardie, “Core based trees (cbt version
2) multicast routing,” in RFC 2189, Sept.
1997.

J. May, “Multicast routing extensions for
ospf,” Commun. ACM, vol. 37, pp. 61-66,
Aug. 1994.

J.-H. Cui, M. Faloutsos, and M. Gerla, “An
architecture for scalable, efficient, and fast

[7]

fault-tolerant multicast provisioning,” IFEFE
Network, vol. 18, pp. 26-34, March/April
2004.

M. Medard, S. G. Finn, R. A. Barry,
and R. G. Gallager, “Redundant trees for
preplanned recovery in arbitrary vertex-
redundant or edge-redundant graphs,”
IEEE/ACM Transactions on Networking,
vol. 7, pp. 641-652, October 1999.

A. Fei, J. Cui, M. Gerla, and D. Cavendish,
“A “dual-tree” scheme for fault-tolerant mul-
ticast,” in Proceeding of IEEE ICC 2001,
Helsinki, Finland, June 2001.

W. Jia, W. Zhao, D. Xuan, and G. Xu, “An
efficient fault-tolerant multicast routing pro-
tocol with core-based tree techniques,” IEEE

Transactions on Parallel and Distributed Sys-
tems, vol. 10, pp. 984-1000, October 1999.

