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Abstract:- Fractional differential operators represent an interesting extension to the usual operators. They
are analogous, but of different characteristics and they allow new applications. They can be implemented
exactly through disctrete filters in the fractional splines functions’ context.
In this paper, the principal properties of these operators are exposed, thogether with the numerical
methods for its implementation. An application to the Radon Transform inversion is exposed.
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1 Introduction
If s ∈ L2(R), its generalized derivative of n ∈ N

order can be defined through the symbolic formula

̂(Dns)(ω) = (ıω)nŝ(ω)

understood in the distribution sense. In the par-
ticular case of the centered B-spline functions or
m order:

Q̂m(ω) =
(

senω/2
ω/2

)m+1

these derivatives can be expressed, directly in the
time domain, by centered differences operators.
More precisely:

DQm(x) = ∆Qm−1(x)
= Qm−1(x + 1/2)−Qm−1(x− 1/2)

This clearly gives a significant advantage to make
the differential calculus in the spline functions
space’ context.

The differential operators Dα
∗ proposed by

Unser and Blu in [1]:

̂(Dα∗ s)(ω) = |ω|αŝ(ω)

take a generalization of the previous scheme of dif-
ferences.

It is important to point out that this operation
in the frequency domain equals to the action of
a filtering operator that generalizes the classical

Ram-Lak filter, used in the image tomographic re-
construction and other applications, [2-4].

We will expose here the definitions, results and
the numerical methods that allow us to make the
fractional differential calculus, in the signals and
images process’ context. Consequently, we will
present an application to the implementation of
the inverse Radon transform.

2 Centered Differences Operator
For sheer motivation, we will consier the cen-

tered differences of n ∈ N0 order defined as:

∆n
0 s(x) =

n∑

k=0

(−1)k

(
n
k

)
s(x− k + n/2)

or equally, in the Fourier domain:

̂(∆n
0 s)(ω) = (1− e−iω)neiωn/2ŝ(ω)

We can denote that ∆0 = ∆1
0, so

∆n+1
0 = ∆0∆n

0 and clearly, ∆0
0 = 1. Thus, for

m ∈ N0 the Qm functions are defined through
their transform:

Q̂m(ω) =
(

1− e−iω

iω

)m+1

eiω m+1
2

=
(

senω/2
ω/2

)m+1

So we have:

Qm(x) = χ[−1/2,1/2] ∗ · · · ∗ χ[−1/2,1/2](x)



on the other hand,

(iω)Q̂m(ω) = (1− e−iω)eiω/2Q̂m−1(ω)

This is:

DQm(x) = ∆0Q
m−1(x)

DpQm(x) = ∆p
0Q

m−p(x), if p ∈ Z

where 0 ≤ p ≤ m. Moreover, it can be deduced
from the previous formulas that:

Qm(x) =
∆m+1

0

m!
(x− k +

m + 1
2

)m
+

where f+(x) = f(x) if x ≥ 0 y f+(x) = 0 in
another case. The Qm functions are polynomial
splines functions of m order with knots in Z if m
is odd and in Z + 1/2 if m is even.

Besides, the ∆0 difference operator makes the
D differential operator in these functions.

Nevertheless, the advantage is attenuated by the
incongruence between the succeeding knot nets as
the application of the operator ∆0 modifies them
in half integer.

On the other hand, as it has been said , the
D∗ differential operator represents the application
in the transform domain, the antisymmetrical and
complex filter |ω|.

These results and considerations lead to the fol-
lowing development.

3 Fractional Difference Operator
For each α ∈ R>0, the centered fractional differ-

ences of α order can be defined from the following
formula:

̂(∆α∗ s)(ω) = |1− e−iω|α ŝ(ω)

Let’s observe previously that if α = 2n:

̂(∆2n∗ s)(ω) = (−1)n ̂(∆2n
0 s)(ω)

On the other hand, if α 6= 2n, considering that:

|1− e−iω|α =
∑

k∈Z

(−1)k

∣∣∣∣
α
k

∣∣∣∣ e−iωk

where:
∣∣∣∣

α
k

∣∣∣∣ =
Γ(α + 1)

Γ(1 + α/2 + k) Γ(1 + α/2− k)

we finally have:

∆α
∗ s(x) =

∑

k∈Z

(−1)k

∣∣∣∣
α
k

∣∣∣∣ s(x− k) si α 6= 2n

∆2n
∗ s(x) =

n∑

k=−n

(−1)k

∣∣∣∣
2n
k

∣∣∣∣ s(x− k)

Starting from the previous definitions, it is easy to
verify that:

∆α
∗ s ∗∆η

∗s (x) = ∆α+η
∗ s(x)

The Qα
∗ fractional spline functions are defined

from:

Q̂α
∗ (ω) =

∣∣∣∣
1− e−iω

ω

∣∣∣∣
α+1

=
∣∣∣∣
senω/2

ω/2

∣∣∣∣
α+1

Now, if 0 ≤ η ≤ α we have:

|ω|η Q̂α
∗ (ω) =

∣∣1− e−iω
∣∣η

∣∣∣∣
senω/2

ω/2

∣∣∣∣
α−η

= ̂(∆η
∗ Qα−η

∗ )(ω)

and naturally, the fractional differential operator
of η order is characterized from:

Dη
∗ Qα

∗ (x) = ∆η
∗ Qα−η

∗ (x) if 0 ≤ η ≤ α

This definition extends over the subespace of
L2(R) generated by Qα

∗ .
In order to simplify, we denote dα

k to the coef-
ficients of ∆α

∗ operator. It can be demostrated
that the sequence dα = (dα

k )k∈Z is absolutely
summable.

Let’s define V α to subspaces of L2(R) generated
by integer traslations of Qα

∗ (x) fractional spline
functions of α order and square summable.

Then, if s(x) ∈ V α:

s(x) =
∑

n∈Z

snQα
∗ (x− n)

with the sequence of the coefficients s = (sn)n∈N ,
of de square summable. Thus,

(D̂η
∗s)(ω) = |ω|η ŝ(ω)

= |ω|η (
∑

n

sne−iωn) Q̂α
∗ (ω)

= (
∑

n

sne−iωn) D̂η
∗Qα∗ (ω)

= (
∑

n

sne−iωn) ̂∆η
∗ Qα−η

∗ (ω)



That is to say:

Dη
∗s(x) =

∑
n

sn

∑

k

dη
kQα−η

∗ (x− k − n)

=
∑

p

(
∑

n

sndη
p−n)Qα−η

∗ (x− p)

=
∑

p

(s ∗ dη)(p) Qα−η
∗ (x− p)

This is, summing up:

s̃ = (s ∗ dη)

where s̃ represents the coefficients of the fractional
derivatives in the Qα−η

∗ (x− p) functions.
The fractional derivatives are completely char-

acterized in V α.
Let’s define now:

xα
∗ =

|x|α
−2sen(π/2α)

α 6= 2n

x2n
∗ =

x2n log |x|
(−1)1+nπ

α = 2n

It can be demostrated (see [1]), that:

Qα
∗ (x) =

∆α+1
∗ xα

∗
Γ(α + 1)

=
1

2sen(π/2α) Γ(α + 1)
·

·
∑

k

(−1)k+1

∣∣∣∣
α + 1

k

∣∣∣∣ |x− k|α,

if α 6= 2n

and:

Q2n
∗ (x) =

∆2n+1
∗ x2n

∗
2n!

=
(−1)n

2n!π

∑

k

(−1)k+1

∣∣∣∣
2n + 1

k

∣∣∣∣ ·

·|x− k|2n log |x− k|

4 Computation of the Coefficients of the
∆α
∗ Differences

Let’s denote dα
k = (−1)k| α

k
| to the coefficients

that make the difference operation. If α 6= 2n

from the previous formula, we get the following
recursive relation:

∣∣∣∣
α
0

∣∣∣∣ =
4Γ(α)

α (Γ(α/2))2∣∣∣∣
α

k + 1

∣∣∣∣ =
∣∣∣∣

α
k

∣∣∣∣
k − α/2

k + 1 + α/2
k ≥ 0

∣∣∣∣
α
−k

∣∣∣∣ =
∣∣∣∣

α
k

∣∣∣∣ ∀ k ∈ Z

Analogously, if α = 2n we obtain the binomial
coefficients:

∣∣∣∣
2n
k

∣∣∣∣ =
(

2n
n− k

)
0 ≤ k ≤ n

∣∣∣∣
2n
−k

∣∣∣∣ =
∣∣∣∣

2n
k

∣∣∣∣ 0 ≤ |k| ≤ n

∣∣∣∣
2n
k

∣∣∣∣ = 0 |k| > n.

These relations allow the efficient calculus of the
coefficients, if α 6= 2n we have:

dα
0 =

4Γ(α)
α Γ2(α/2)

dα
k+1 = dα

k

k − α/2
k + 1 + α/2

k ≥ 1

dα
−k = dα

k

and we observe that dα
0 < 0 and dα

k > 0 if k >
b1+α/2c. Particularly if k < 1 all the coefficients,
but dα

0 , are positive. This conservation of the sign
is particularly useful in the convolutions’ calculus.

On the other hand, it can be deduced that if k
is big enough:

|dα
k+p| ∼= |dα

k |[
k

k + p
]

that is to say, dα
k decay as ( 1

k )1+α. It can be
concluded that the coefficients dα

k are absolutely
summable.

From the previous results, we know that:

dα ∗ dη = dα+η

In particular if α + η is even, dα+η can be repre-
sented through a finite vector.



5 Fractional Derivative of Functions in
L2([0, T ])

The differential fractional calculus is trivial in
the case of the T -periodic funtions. In effect, if:

s(x) =
∑

k∈Z

ck eikω0x

with ω0 = 2π/T , the impulse train results:

ŝ(ω) =
∑

k∈Z

ck δ(ω − kω0)

So, from |ω|α ŝ(ω) the fractional derivatives are
obtained:

Dα
∗ s(x) =

∑

k∈Z

(|k|ω0)α ck eikω0x

This operation illustrates the fractional deriva-
tives’ sense, in this class of periodic functions. It
equals, thus, to a ramp filter. This one increases
the effect of high frequencies, keeping the phase of
each elementary function. This is the main differ-
ence as regards the usual derivatives in the integer
order case.

On the other hand, the convergence properties
of the series are analogous to the ordinary deriva-
tion case. Moreover,if the coefficients ck decay as

1
|k|r the derivative Dα

∗ s is a function of L2([0, T ])
, with r − α > 1/2.

Conversely, possible singularities cause signif-
icant artifact. For this reason, the fractional
derivative cannot fulfill itself in general, using the
FFT.

6 Applications
The fractional derivative, as it has been pointed

out, is equal to the application of a filter of the |ω|α
type. This action attenuates low frequencies and
tends to enhance the detail components of a signal.
This makes it feasible to be used in the synthesis or
border detections procedures. For this reason, it
is proposed in [3-4] to be put into practice in the
inverse of the Radon transform in the 2D image
procedure, especially in the biomedical field.

This transform is defined in L2(R2) as:

R[s](θ, t) =
∫

R2
s(x, y).

δ(t− (x cos(θ) + ysen(θ))dxdy

where δ is Dirac’ delta. The inverse transform is
obtained from the identity:

s(x, y) = R∗[q ∗ R[s]](x, y)

where, q truly represents the ramp filter whose
transform is q̂(ω) = |ω|

2π and R∗ is the adjoint op-
erator of R:

R∗[p](x, y) =
∫ π

0

p(θ, x cos(θ) + ysen(θ)) dθ

For the reconstruction of medical images from
the (θh, tl) data recollected physically, which is as-
sumed to correspond to a Radon transform of 2D
objet. Discrete techniques are used, derived from
the previous identity.

In this frame, the use of the fractional derivative
is proposed in [3-4], to make filtering operations.
For details, the cited bibliography has been pro-
posed.

An implementation is presented here, develop-
ing for that purpose, a briefly explained and ap-
propriate computational technique.

What is intented is to reconstruct the image rep-
resented by a (xi, yj) matrix, from the transform
(θh, tl) data. Let’ s denote:

ρh(t) = R[s](θh, t)

to the functions with continuous argument t or
synograms, for each argument θh. And, analo-
gously, we denote:

ρ̃h(t) = (q ∗ R[s])(θh, t)

to the following filter synograms. The discrete re-
construction formula consist in an approximation
to the integral expression:

s(xi, yj) ∼=
∑

h

whρ̃h(xi cos(θh) + yjsen(θh))

where wh are appropriate integration weights.
Let’s observe that the synograms must be filtered
from the discrete ρh(tl) versions, and later, inter-
polate the values in the filtered synograms

t = xi cos(θh) + yjsen(θh)

It can be asumed that the synograms are cen-
tered spline functions of order α > 1, with knots



tl. From this information the corresponding coef-
ficients rk can be computerized in the (Qα

∗ (t− p))
basis.

So as it was said, the application of the ramp
filter equals to convolving these coefficients with
the coefficients of the differences (d1

n):

r̃ = C1(r ∗ d1)

with an appropriate C1 constant, the coefficients
of the filtered synogram are obtained in this way,
in the basis of spline functions (Qα−1

∗ (t− p)).
From these coefficients, the values can be inter-

polated:

ρ̃(t) =
∑

p

r̃(p)Qα−1
∗ (t− p)

= C1

∑
p

(r ∗ d1)(p)Qα−1
∗ (t− p)

and implement the reconstruction sum.
It is interesting to observe that if α = 2n + 1,

integer odd, we obtain from the previous results
the second formula:

ρ̃(t) = C2

∑
p

(r ∗ (d1 ∗ d2n+1))(p)(t− p)2n
∗

= C2

∑
p

(r ∗ d2n+2)(p)(t− p)2n
∗

for another C2 constant. In this formula d2n+2 is a
finite vector, which represents a strong computing
advantage. On the other hand, this one makes the
operation of interpolation immediately.

7 Conclusion
The fractional derivative operators are notewor-

thy analytical tools. Beyond its theoretical inter-
est, their properties can be implemented in differ-
ent applications, particularly in the signal and im-
age processing, in the representation of the spline
function’ context. The associated calculus, in gen-
eral, can be solved through discrete convolutions.

For this reasons previously exposed, in our opin-
ion, this subjects deserves to be exploited in order
to sharpen and broaden the exposed applications.
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