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Abstract: Waveguide mesh models that simulate airborne acoustics currently need additional ad–hoc
filters to represent absorption. In this paper we show that computational fluid dynamics, thus viscous
absorption, can be included in these models, and describe an empirical investigation into an extended
mesh model’s ability to represent viscous absorption for acoustics. Applications include audio signal
processing and computer generated sound.
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1 Introduction

A digital waveguide mesh (DWM) is a finite–
difference, time domain computational model that
can simulate aspects of airborne acoustic (room)
phenomena [1, 2]. Spatial dimensions are discre-
tised into a regular lattice of signal processing ele-
ments which are joined by unit delays and are up-
dated synchronously in discrete time steps [3, 4].
Absorption phenomena are not native to DWMs;
digital filters can add it both at every node in the
lattice to impact every update [5], or to correct out-
put signals. In both cases an audio engineer selects
a desired frequency profile then uses curve fitting
(a non–physical and non–intuitive mechanism) to
tweak the signal to match this profile.

Making absorption native to DWMs requires the
addition of relaxation phenomena due to viscous,
thermal and molecular losses [6]. For audible acous-
tics in gases, the viscous and thermal (or classical)
losses account for most of the absorption [7]. Fur-
thermore, losses due to fluid viscosity are typically
greater than those due to thermal conductivity. A
class of physical models which natively encapsulates
viscous fluid losses are the Lattice Boltzmann mod-
els (LBM) to which DWMs are remarkably similar
in design. LBMs use a a regular lattice to solve
the Navier–Stokes equations for fluid flow [8] in the
macroscopic limit; thus they could simulate acous-
tics with absorption phenomena [9]. They have

already been used to model acoustic wave genera-
tion in wind instruments [10], and non–linear acous-
tics [11].

In this paper, a LBM for simulation of incom-
pressible fluid flow in 2–dimensions is tested for its
ability to represent the viscous component of acous-
tic absorption in a fluid medium. In section 2 we
outline the design of the model used. We then de-
scribe experiments which investigate the model’s
ability to represent viscous absorption in section 3.
Finally, in section 4 we outline future work and ap-
plications of the model.

2 Method
For empirical tests of the LBM, a 2–dimensional lat-
tice with 9 fluid velocities (denoted D2Q9 in Fig-
ure 1) was used with a single relaxation time or
BGK kinetic approximation [12]. The lattice struc-
ture is almost identical to that used for the inter-
polated rectilinear waveguide mesh [13]. We use a
2–dimensional lattice for two reasons: such approx-
imations are able to represent many audio effects to
acceptable accuracy [14, 1]; and they can be warped
to account for 3–D effects [15].

Lattice Boltzmann models compose a family of
discrete–time discrete–velocity approximations of
the Boltzmann equation for fluid flow:
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∂t
+ v∇f = Ω(f)
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Figure 1: D2Q9 Topology: [a] Nodes are arranged in a 2–
dimensional rectilinear lattice of size m × n, with links to
nearest (solid) and next–nearest (dashed) neighbours, and
periodic boundaries as indicated. [b] Each fluid node has 9
link velocities c0 . . . c8 and three lattice speeds: 0, 1 and

√
2.

Where statistical mass distributions f of particles
move with velocity v and are redistributed accord-
ing to a kinetic collision function Ω [16]. Replacing
v with a set of discrete velocities, and replacing the
collision function Ω with a single relaxation time
(τ) kinetic approximation [12] yields a discrete ve-
locity Boltzmann equation [17]:

Fi (x + ci∆t, t + ∆t)− Fi (x, t) = −
1

τ

“
Fi (x, t)− F

(eq)
i (x, t)

”
(1)

Where the position of a node is denoted by x,
mass functions Fi represent the quantity of mass at
that node moving according to the velocity ci and
equilibrium functions F

(eq)
i express the state nodes

would relax to, and hence the desired dynamics of
the system.

If 1/τ is replaced with ω and ∆t is set to 1, the
state and evolution of nodes on the lattice with lo-
cal mass density ρ, local momentum j, and local
velocity u are described by:

ρ (x, t) =
X

i

Fi (x, t) (2)

j (x, t) = ρ (x, t) u (x, t) =
X

i

ciFi (x, t) (3)

Fi (x + ci, t + 1) = Fi + ω
“
F

(0)
i − Fi

”
(4)

The left hand side of (4) represents streaming
of mass distributions to adjacent nodes along lat-
tice velocities (see Figure 1), while the right hand
side represents relaxation toward an equilibrium
state that conserves local mass and momentum.
The equilibrium functions F

(0)
i chosen for the LBM

tested in this paper are formed from a truncated
power series of local momentum and mass density
for the simulation of a linear and incompressible
fluid flow:

F
(0)
i (ρ, j) =

Wi

ρ0
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(ci · j)2 − j2

–ff
(5)

Weights Wi and the free parameter A are chosen
to maximise stability of the underlying hydrody-
namic system for all lattice sizes [18], and to obtain
a solution at the macroscopic limit of the Navier–
Stokes equations. The values used (as given in [8])
along with the discrete lattice velocities are:

ci = (0, 0) i = 0
ci = (±1, 0) i = 1, 3
ci = (0,±1) i = 2, 4
ci = (±1,±1) i = 5, 6, 7, 8

Wi/ρ0 = 4
9

i = 0

Wi/ρ0 = 1
9

i = 1, 2, 3, 4

Wi/ρ0 = 1
36

i = 5, 6, 7, 8

A = 1
3

(6)

Substituting these values into (5) gives the spe-
cific functions:
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Combining (2), (3), (4) and (7) produces a
macroscopic Navier–Stokes approximation with a
lattice sound speed of cs = 1/

√
3. The acous-

tic pressure (pa) and kinematic shear viscosity (ν)
terms are [8]:

pa (x, t) ' (ρ (x, t)− ρ0) /3 (8)

ν =
2− ω

6ω
(9)

Acoustic pressure is approximate since the appli-
cation of input pressures by a small change in local
mass density modifies average mass density, and
the pressure is assumed to be proportional to den-
sity. ρ0 is used as an approximation of the average
which is correct only at initialisation. So long as
input signals contain no DC offset, this approxima-
tion provides a valid estimate of acoustic pressure,
as the average density on the lattice will remain
close to ρ0.

For our empirical experiments (see Figure 2), an
input signal was fed into a chosen lattice geome-
try and pressure measurements were taken at spe-
cific locations on the lattice for a chosen number
of update steps. The values for pa, mass distri-
butions F0...8 and a temporary update array F ′

1...8

were stored in a multi–dimensional array. Fi’s were
initialised from a specified ρ0 then the steps [a-d]
in Figure 3 were repeated. Output waveforms were
analysed using the numerical computation package
Octave [19] and visualisations were obtained from



RMS pressure plot bitmaps, which were either nor-
malised in amplitude or converted to a visual repre-
sentation of relative sound pressure level in decibels
(dB).

Free Parameters

Output Positions

Input Positions

p

t

Grid geometry

Input Waveform

Audio Files

Analysis

D2Q9a
Program

RMS pressure plots

Output Waveforms

p

t

Visualisation

Figure 2: Test environment.
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Figure 3: Node update process at each iteration: [a] Input
pressure is converted to mass and distributed to the mass
functions Fi. [b] Local mass density, velocity and pressure

are calculated from the Fi. [c] Equilibrium functions F
(0)
i

and intermediate mass functions F ′
i are computed. [d] F ′

i are
propagated to Fi at adjacent nodes along direction i (except
rest mass F0).

3 Results
An ideal acoustic model should be stable inde-
pendent of input signal types, geometry, or con-
trol parameters (a la [20]). Digital waveguide
meshes are normally stable, irrespective of the fre-
quency and amplitude of the input signal. How-
ever, lattice Boltzmann models represent mass dis-
tributions, and their stability is dependent on all
mass distributions maintaining a positive magni-
tude. Therefore, the use of a mass–based model for
simulations which include viscous absorption adds
a stability requirement.

Maintaining stability requires each lattice node
to maintain a positive mass density for each fluid
velocity, and to relax toward its equilibrium state.

Negative values of ω and values over 2.0 are un-
conditionally unstable [8, 21, 22], but between 0
and 2, stability depends on local fluid velocities,
with a maximum stable node velocity of about
1/3 [17]. Since input pressures are translated to
a small change in mass, the induced velocity and
mass distributions are dependent on the relation-
ship between the relaxation parameter ω, and on
the relative magnitudes of ρ0 and input pressures
pin.

To determine usable relative magnitudes of ρ0

and pin, tests were run on three lattices of size
10x10, 20x20 and 50x50 for values of ω between
0 and 2, and for ratios of pin/ρ0 ranging from 10 to
0.01. The lattice was stimulated at a single node
using a white noise signal, randomly distributed be-
tween -1 and 1 and run until instability occurred or
to a maximum number of iterations. A white noise
signal was used as a worst–case acoustic input, as
it has a fairly uniform power distribution across the
frequency spectrum.

[a] [b] [c] [d]

Figure 4: Example wave propagation from stability tests,
RMS pressure plots in dB, averaged over 2 iterations 10 steps
into the computation. [a] ω = 0.0, [b] ω = 0.5, [c] ω = 1.5,
[d] ω = 1.99.
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Figure 5: Stable regions of pin/ρ0 against ω for three mesh
sizes: [a] 10x10, [b] 20x20, and [c] 50x50 units. Unstable
regions are indicated by dotted lines.

Stable responses were obtained for all tests where
ω was 0, however this is a degenerate case where
masses travel with a lattice speed of 1 along the pri-
mary and diagonal axes away from the input node.
No dispersion takes place, as shown in the pressure
plot of Figure 4a. At ω = 2, unstable responses
were measured for all grid sizes. Results for each



 0

 5

 10

 15

 20

 25

 30

 35

 0.05  0.1  0.15  0.2  0.25

α 
/ f

2

f

[a]

ω = 2.0
ω = 1.95
ω = 1.9
ω = 1.8
ω = 1.5
ω = 1.0

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.05  0.1  0.15  0.2

α 
/ f

2

ν

[b]

f = 0.005
f = 0.05
f = 0.10
f = 0.15
f = 0.20
f = 0.25

Figure 6: Plots of relative absorption coefficient α/f2 against [a] frequency f and [b] viscosity ν, measured from attenuation
of a single–frequency periodic plane wave propagating freely along a lattice of size 800× 40

lattice size are plotted in Figure 5 and show a stable
response across the full range of 0 < ω < 2 when
pin/ρ0 is of the order 0.1 or less, which is consis-
tent with recommendations in [22]. For low values
of ω, less than about 0.8, stable acoustic responses
appeared to be over–damped, and contained sig-
nificant direction–dependent error at short ranges
(Figure 4b). Close to ω = 2, wave propagation
appeared to become slightly noisy and more direc-
tion dependent (Figure 4d). From the measure-
ments taken, D2Q9 is stable for acoustic simula-
tions where the ratio between pin and ρ0 is approx-
imately 0.1, thus absorption was measured within
these bounds.

It is customary to represent absorption by a di-
mensionless quantity α which represents the spa-
tial rate of decrease in intensity level. This quan-
tity is dependent on both the transmission medium
properties and wave frequency. For low (audible)
frequencies, it is well approximated by a sum of
the three components due to viscous, thermal and
molecular losses, with the viscous component (αS)
approximately proportional to the product of shear
viscosity and frequency squared [7]:

αS ' Cf2ν (10)

Where C is a constant based on ρ0 and the speed
of sound.

To measure the relationship between α, ω and
f in D2Q9, a single–frequency periodic plane wave
was induced on a lattice of size 800x40. For val-
ues of ω from 0 to 2, and frequencies from 0.005
to 0.25 of the lattice update rate, the model was

iterated until it reached a steady state, then RMS
pressures were obtained at distances from 1 to 40
nodes away from the source in the direction of wave
propagation. Output pressure plots averaged over
at least 2 periods of the input signal were analysed
and an absorption coefficient was then determined
as follows.

For a single frequency, periodic plane wave of am-
plitude a0 at x = 0, propagating parallel to, and in
the positive x direction, its attenuated amplitude a
is given by:

a (x) = a0e−αx (11)

By rearranging (11) and substituting measured
RMS pressures, an estimate α was obtained for each
combination of ω and f . These results are plotted
as α/f2 against frequency f and viscosity ν in Fig-
ure 6. The ideal case is a flat horizontal line in [a]
and a straight diagonal line in [b].

For values of ω between 1.5 and 2.0, measured
values of α were close to the desired profile for fre-
quencies up to almost 0.2 of the lattice update rate.
For ω below 1.5, no meaningful results were ob-
tained except at the lowest input frequencies, since
high frequency attenuation reduced signals to in-
significant values within the area measured. Plots
of α/f2 against viscosity show good agreement to
the desired profile for frequencies below about 0.15
and for ν between 0 and 0.1 (2.0 > ω > 1.25).



4 Conclusion
A computational model for fluid flow was applied to
the simulation of airborne acoustics, extending the
digital waveguide mesh. Results show the model
can represent acoustics with a physical identity bet-
ter than existing waveguide mesh models, over a
particular operational frequency range. Absorption
due to viscosity is tunable to a limited range, but
has a slightly non–physical character which could
be avoided by scaling of signals and space.

The model is currently being evaluated in sev-
eral other ways. We are investigating the response
of the model in terms of sound speed, frequency
response, and response to various boundary con-
ditions. We are also investigating the scalability
of lattice sizes with respect to attempting real–
time simulation, and the possibility of replacing
fluid flow equilibrium functions with ones tailored
to modeling the lossy wave equation.

There are a number of applications of this model.
Physically correct acoustic simulation is desired in
digital signal processing, audio engineering, sound
synthesis and music. It can add realism and im-
mersion to anechoic sounds, and has potential for
direct sound synthesis. Small lattice sizes that can
be computed in real–time may be used for the syn-
thesis of sounds from non–physical imaginary mu-
sical instruments, whose output is still based on
physical behaviour. These instruments could be
controlled using a graphical interface or optimised
from a desired output profile. Such a graphical in-
terface could also allow the model to be used for
educational purposes.
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[13] Savioja L. and Välimäki V. Improved discrete–
time modeling of multi–dimensional wave
propagation using the interpolated digital
waveguide mesh. In Proceedings of IEEE In-
ternational Conference on Acoustics, Speech,
and Signal Processing ICASSP-97, vol. 1, Apr.
1997.

[14] Murphy D.T. and Howard D.M. Digital waveg-
uide modelling of room acoustics: comparing
mesh topologies. In Proceedings of the 25th
EUROMICRO Conference, vol. 2, Sep. 1999.

[15] Chopard B., Luthi P.O., and Wagen J.F. Lat-
tice Boltzmann method for wave propagation
in urban microcells. IEE Proceedings–
Microwaves, Antennas and Propagation,
vol. 144(4), Aug. 1997, pp. 251–255.

[16] Buick J.M. Lattice Boltzmann Methods in In-
terfacial Wave Modelling. Ph.D. thesis, Uni-
versity of Edinburgh, 1997. http://www.ph.
ed.ac.uk/~jmb/thesis/tot.html.

[17] Sterling J.D. and Chen S. Stability Analysis of
lattice Boltzmann Methods. Journal of Com-
putational Physics, vol. 123, 1996, pp. 196–
206.

[18] Worthing R.A., Mozer J., and Seeley G. Sta-
bility of lattice Boltzmann methods in hy-
drodynamic regimes. Physical Review E,
vol. 56(2), 1997, pp. 2243–2253.

[19] Eaton J.W. GNU Octave, a high-level lan-
guage, primarily intended for numerical com-
putations. http://www.octave.org/.

[20] Castagne N. and Cadoz C. 10 Criteria for
evaluating physical modelling schemes for mu-
sic creation. In Proceedings of the 6th Inter-
national Conference on Digital Audio Effects.
London, UK, Sep. 2003.

[21] Lallemand P. and Luo L.S. Theory of the lat-
tice Boltzmann method: Dispersion, dissipa-
tion, isotropy, Galilean invariance, and stabil-

ity. Physical Review E, vol. 61(6), Jun. 2000,
pp. 6546–6562.

[22] Buick J.M., Greated C.A., and Campbell D.M.
Lattice BGK Simulations of sound waves.
Europhysics Letters, vol. 43(3), Aug. 1998,
pp. 235–240.

http://www.ph.ed.ac.uk/~jmb/thesis/tot.html
http://www.ph.ed.ac.uk/~jmb/thesis/tot.html
http://www.octave.org/

	Introduction
	Method
	Results
	Conclusion

