
A New Approach for Visualizing Fuzzy-clustered Microarray Data

LUIS RUEDA YUANQUAN ZHANG
School of Computer Science

University of Windsor
401 Sunset Ave., Windsor, ON N9B 3P4

CANADA

Abstratct: Microarrays are relatively new techniques that allow scientists to measure the expression level
of thousands of genes simultaneously. Many clustering methods are currently applied to analyze microarray
data, including fuzzy k-means, which allows an object to be assigned to multi-clusters with different degree
of membership. However, the memberships which result from fuzzy k-means, are rarely analyzed and
visualized properly, but converted to 0-1 memberships. In this paper, we propose a new approach to
visualize fuzzy-clustered data. The scheme provides a geometric view by grouping the objects with similar
cluster memberships, and shows clear advantages over existing methods, demonstrating its capabilities for
viewing and navigating inter-cluster relationships in a spatial manner. The advantages are analyzed on
microarray data for experiments on the cell cycle of the budding yeast.

Key-Words: yeast expression analysis, clustering visualization, microarray analysis, fuzzy clustering.

1 Introduction
Microarray constitute quite useful tools that allow
scientists to analyze the expression levels of thou-
sands of genes on snapshots made in one or several
experiments. There are two approaches based on
different microarray fabrications: cDNA microar-
ray and In situ synthesis. The relative information
about cDNA microarray data processing and data
analysis is described in [1, 2]. In order to study
the gene hybridization during the biological exper-
iments, the gene expression values are measured
along time series. The result of gene expression val-
ues is stored in an n × p matrix, where n is the
number of genes, and p is the number of measure-
ment at different points in time. An important step
in analyzing such a massive amount of data is to
group the genes that show a certain degree of sim-
ilarity. In this regard, clustering is a well-known
technique that is commonly applied.

Many clustering algorithms have been proposed
so far, including k-means [3], fuzzy k-means [4], ex-
pectation maximization (EM) [5], hierarchical clus-
tering [6], and self-organizing maps [7]. Fuzzy clus-
tering is an approach that consists of grouping ob-
jects which share a certain degree of similarity. This
method assigns a certain probability of cluster mem-
bership to each object corresponding to the distance

between the object and the centroid of each clus-
ter. Applying fuzzy clustering to microarray data
brings the advantage that the clustering result al-
lows a gene to be assigned to more than one cluster
[4, 8]. The problem, however, is how to assign the
genes (objects) to one of the clusters. A common
technique to deal with this is to use a “cutoff” value
and assign an object to a cluster if its membership
value is above the cutoff. On the other hand, vi-
sualizing the “fuzzy” membership of an object be-
longing to different clusters constitutes in itself an
interesting and challenging problem.

In the past, two methods addressed the topic
of visualizing fuzzy-clustered data. Berthold et al.
proposed a method to visualize fuzzy points in par-
allel coordinates [9]. They point out the disadvan-
tage of the existing fuzzy point techniques, which
only show centroids or use shaded areas to represent
the general variance of cluster centers. An extended
version of parallel coordinates visualization is to ap-
ply the color shading for representing the degree of
membership. Gasch et al. proposed a modified hier-
archical visualization to observe the fuzzy-clustered
genes utilizing different membership cutoff values
[10].

The main drawback of these two approaches is
that they cannot provide a visualization scheme,

1

which represents the position of clustered points
corresponding to each other. In this paper, we
present a visualization approach that solves this
problem. Our approach projects the fuzzy mem-
bership data points onto a multi-dimensional tetra-
hedron, which allows to observe the inter-cluster re-
lationships in a spatial manner.

2 Fuzzy clustering
Fuzzy clustering, (also called “soft” clustering) as-
signs each sample to multiple clusters using a mem-
bership value, which is the probability that the sam-
ple belongs to the corresponding cluster. Various
methods use this idea, being the most widely used
ones, fuzzy k -means and expectation maximization
[5].

Consider a dataset D = {x1,x2, . . . ,xn} where
xi = [x1, x2, x3, . . . , xp]t is a p-dimensional feature
vector that represents a sample (gene), where xr is
the rth feature.

The aim is to partition D into k clusters (classes),
ω1, . . . , ωk, in such a way that samples that belong
to the same cluster are similar to each other. In
fuzzy clustering, the membership is given by the
probability that xi belongs to cluster ωj , P̂ (ωj |xi).

Fuzzy k -means seeks a minimum of a heuristic
global cost function:

Jfuz =
k∑

j=1

n∑

j=1

[P̂ (ωj |xi)]bd(xi, µj) , (1)

where b is a parameter, which is greater than unity,

µj =
∑n

i=1[P̂ (ωj |xi)]bxi∑n
i=1[P̂ (ωj |xi)]b

, (2)

is the cluster center of ωj

P̂ (ωj |xi) =
(1/dji)1/(b−1)

∑k
r=1(1/dri)1/(b−1)

, (3)

and d(xi, µj) (dij for short) is a distance function
that states the “dissimilarity” between xi and µj .

Fuzzy k -means proceeds in an iteratively manner.
It receives k and b as parameters, and initializes
µ1, . . . , µk, and P̂ (ωj |xi), i = 1, . . . , n, j = 1, . . . , k.
It then iteratively recomputes µj and P̂ (ωj |xi) using
(2) and (3) until a small change in µj and P̂ (ωj |xi)
is observed.

Another criteria that can be optimized, instead of
(1), is to maximize the likelihood that a sample be-
longs to ωj with a probability given by a mixture of
densities. In such a case, the aim is to estimate the

parameters, θ , while maximizing the likelihood. A
common approach used in optimizing this criterion
is the EM algorithm.

The result of both fuzzy k -means and EM is then
a k × n membership matrix, and our aim is to pro-
vide an efficient scheme to visualize these data.

3 The Visualization Method
The visualization method that we introduce in this
paper takes the membership matrix, and performs
three different steps. It, first of all, finds the k ver-
tices of a regular hyper-tetrahedron, onto which all
the n data points are projected. It finally trans-
form the regular tetrahedron into an irregular one
that reflects the inter-cluster center distances.

3.1 Obtaining Vertices of the Regular Space
As pointed out earlier, fuzzy clustering results in
a k × n membership matrix, M. The columns
of M are n vectors, m1, . . . ,mn, where mi =
[m1i,m2i, . . . , mki]t is a k-dimensional vector and
mji contains the probability that mi belongs to
ωj . The important feature of the membership ma-
trix is that the sum of each column is unity, i.e.∑k

j=1 mji = 1. The visualization method described
in this paper is based on this observation.

We see the vectors m1, . . . ,mn lying in the k-
dimensional space, where the jth cluster ωj is repre-
sented by a k-dimensional vector yj = [yj1, . . . , yjk]t

with yjr = 0 for r = 1, . . . , k, r 6= j and yjj = 1.
The first step is to project these vectors onto the
(k − 1)-dimensional space, where the k clusters are
represented by k points, y′1, . . . ,y′k, in the (k − 1)
dimensional space. These points compose a metric
Y′

k = [y′1, . . . ,y′k]
t, which is computed as per the

algorithm below.

Algorithm 1 Regular Tetrahedra Vertices.

Step 1. Initialize Y′
2 ←

[
0 0√
2 0

]
.

Step 2. Let

Y′
j =




0 0 0 . . . 0
y′21 0 0 . . . 0
y′31 y′32 0 . . . 0
...

...
...

. . .
...

y′j1 y′j2 . . . y′j(j−1) 0




, (4)

2

D′
j =




0 d′12 d′13 . . . d′1j

0 0 d′23 . . . d′2j
...

...
...

. . .
...

0 0 0 . . . d′(j−1)j

0 0 0 . . . 0




, (5)

where yj = [yj1, yj2, . . . , yjk]t.
Step 3.
Assume that the distance from y′j+1 to

y′1,y′2, . . . ,y′j is given by a j-dimensional vector
d′j+1 = [d′(j+1)1, d

′
(j+1)2, . . . , d

′
(j+1)j]

t.
We set d′j+1 ← [

√
2,
√

2, . . . ,
√

2]t, since those
vertices compose a hyper-tetrahedron whose edge
length is

√
2 in the j-dimensional space. Then, y′j+1

is computed as follows:

[y′(j+1)1, . . . , y
′
(j+1)(j−1)]

t ← 1
2
Y′

c(d̂ + y′s) , (6)

where

y′s =




y
′2
21

y
′2
31 + y

′2
32

...
y
′2
j1 + y

′2
j2 + . . . + y

′2
j(j−1)




, (7)

Y′
c =




y′21 0 . . . 0
y′31 y32 . . . 0
...

...
. . .

...
yn1 yn2 . . . yn(n−1)




, and (8)

d̂ = [d2
v1 − d2

v2, d
2
v1 − d2

v3, . . . , d2
v1 − d2

vn]t. (9)

Step 4. The last component of y′j+1 is computed
as:

y′(j+1)j =
√

d
′2
(j+1)1 − y

′2
(j+1)1 . . .− y

′2
(j+1)(j−1) .

(10)
As a result, we obtain a j-dimensional vector, y′j+1.

Step 5. Transform y′1, . . . ,y′j+1 into (j + 1)-
dimensional vectors as follows: y′r ← [(y′r)t, 0]t,
where r = 1, . . . , j + 1, and update Y′ by Y′ ←
[y′1, . . . ,y′r]t, where r = 1, . . . , j + 1.

Step 6. If j + 1 = k, stop. Otherwise, go to
Step 2.

3.2 Transferring Objects to a Regular Tetrahe-
dron

The vectors in M can be seen as points lying in
the k-dimensional space, and the aim now is to
transform the points mi into new points, m′

i, which
are enclosed in a regular hyper-tetrahedron in the

(k− 1)-dimensional space, where the vertices of the
hyper-tetrahedron are given by Y′. In particular,
for k = 3, the points will lie on an equilateral trian-

gle and Y′ =




0 0 0√
2 0 0√
2

2

√
6

2 0


.

The procedure for transferring m′
i to a regular

hyper-tetrahedron is similar to Algorithm 1 except
the following two steps. First, di is a distance vector
that contains the k distances from mi to each yj ,
where j = 1, . . . , k. Second, since m′

i represents
a point in the (k − 1)-dimensional space, it is not
necessary to perform Steps 4, 5 and 6.

As a result, we obtain all points m′
1, . . . ,m

′
n,

which are (k − 1)-dimensional points enclosed in a
hyper-tetrahedron given by vertices y′1, . . . ,y′k.

3.3 Creating an Irregular Tetrahedron
It is important to note that, at this point, each clus-
ter is represented by a center (vertex) and a “fixed
radius”, which is unity for every cluster. However,
this model does not reflect the actual clusters pro-
duced by the fuzzy clustering algorithm, which also
depend on the distance function being used. Then,
to enhance the visualization we show the points in
an irregular hyper-tetrahedron that uses the corre-
sponding edges to reflect the inter-cluster distances.
Let D′′ be a k × k matrix that contains the dis-
tances between each pair of vertices, where dij ,
i, j = 1, . . . , k and i < j, represents the distance
from the centroid of the ith cluster to the centroid
of the jth cluster. The value of dij depends on the
specific distance function used in fuzzy k -means.
To avoid the extremely large distance value that
may result from certain real-life problems, we let
d′′12 =

√
2 which coincides with the distance in the

regular hyper-tetrahedron. Therefore, d′′ij =
√

2 dij

d′′12
,

for 1 ≤ i ≤ k, 1 ≤ j ≤ k, results in a relative dis-
tance based on d′′12. Thus, Y′′

j and D′′
j have the

same format as Y′
j and D′

j .
We now apply a procedure similar to Algorithm 1,

except the vectors y′1, . . . ,y′n are transformed into
vectors y′′1 , . . . ,y′′n lying in an irregular tetrahedron.
In addition, the distance vector, d′′j+1 is computed
as above, i.e. d′′j+1 = [d′′(j+1)1, d

′′
(j+1)2, . . . , d

′′
(j+1)j]

t,

where d′′ij =
√

2 dij

d′′12
, for 1 ≤ i ≤ k, 1 ≤ j ≤ k.

To reflect the distances between vertices in the
visualization, the points in the regular hyper-
tetrahedron are stretched along a series of steps,
which depend on the distance values. For each pair
of vertices, the distance between these vertices in

3

the tetrahedron is equivalent to the distance be-
tween the corresponding clusters in the clustering
algorithm. All points inside the tetrahedron that
includes all vertices are shifted together.

The transformed coordinates of the n vertices of
the hyper-tetrahedron are contained in Y′′

k , which
has the same format as Y′

k.
Note that y′′1 = [0, . . . , 0]t, which implies that the

vector is located in the origin of the coordinate sys-
tem. The coordinates for point m′′

i are computed
as follows:

m′′
i = m′

i + [ρi
r]

tF , (11)

where

ρi
r =

m′
ir

y(r+1)r
, 1 ≤ r ≤ j, (12)

fij = y′′i(j+1)−y′i(j+1) , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 ,
(13)

represents the difference between the point on the
irregular tetrahedron and that of the regular one.

x1x2
x3

(a) (b) (c)
m0 x''1y1y2 y'1 y'2 y''1 y''2

m'0 m''0x'1
x''2y''3x'2 y'3y3

Figure 1: A two-dimensional visualization for the 3-cluster
problem.

(b)(a)
x''1y'1 y'2 y''1 y''2m'0 m''0x'1 x''2 y''3x'2 y'3

x'3 y'4 y''4x''3

Figure 2: Visualization of fuzzy-clustered data in the three-
dimensional case, where k = 4.

We now discuss two examples which help under-
stand the transformations involved in the proposed
visualization method.

Figure 1 (a) represents the visualization of three
clusters in the three-dimensional original space,
which can be transformed into a regular hyper-
tetrahedron (an equilateral triangle) in the two-
dimensional space, as shown in Figure 1 (b). The
corresponding irregular triangle and the trans-
formed point, m′′

0, are shown in Figure 1 (c).

The visualization of four clusters in the four-
dimensional original space can not be plotted, and
hence the corresponding figure is omitted. How-
ever, the fuzzy-clustered data can be transformed
into a tetrahedron in the three-dimensional space,
as shown in Figure 2 (a). The irregular tetrahedron
and the transformed point, m′′

0, which is contained
in it, are displayed in Figure 2 (b).

4 Simulations on Real-life Data
The visualization scheme presented in this paper
was applied to the result of performing fuzzy k -
means on the yeast dataset [11]. The visualization is
presented in the three-dimensional space and shows
the distribution of the fuzzy-clustered data which
were clustered into four classes. In our simulations,
we use fuzzy k-means and two distance functions:
the Euclidean distance, which is computed as fol-
lows:

d(xi, µj) = ||xi − µj ||2 , (14)

and the Pearson correlation, obtained as:

d(xi, µj) = 1−
∑p

r=1(xik − x̄i)(µjr − µ̄j)√∑k−1
k=1(xir − x̄i)2

√∑p
r=1(µjr − µ̄j)2

(15)
where x̄i is the mean of xi1, . . . , xip and µ̄i is the
mean of µi1, . . . , µip.

The Yeast dataset contains the expression pro-
files of 6,200 yeast genes whose expression was mea-
sured along a time series. We applied two different
distance functions, the Euclidean distance and the
Pearson correlation distance, to “fuzzy cluster” the
dataset into three and four classes. In addition, we
applied each fuzzy clustering algorithm to the origi-
nal yeast data set and the normalized yeast dataset
[11]. In our case, a point in the visualization scheme
represents a gene in the yeast dataset.

The two-dimensional visualization shown in Fig-
ure 3 (a), and the three-dimensional visualization
shown in Figure 4 (a) come from the membership ta-
ble obtained from fuzzy 3-means and fuzzy 4-means
clustering, which were applied to the yeast dataset
using the Euclidean distance. Figures 3 (b) and
4 (b) depict the visualization of fuzzy 3-means and
fuzzy 4-means clustering using the correlation dis-
tance. In these figures, only the points lying in the
irregular tetrahedron are plotted. This means that
the figures are “stretched” depending on the corre-
sponding distance between each pair of cluster cen-

4

(a) Euclidean distance

(b) Correlation distance

Figure 3: Visualization of fuzzy 3-means clustering results
using the original yeast data set.

troids. Different point patterns were used to assign
the clusters to which the point most likely belongs.

In the normalized yeast dataset, each original
value of the time series is divided by the mean.
We show four figures for the visualization of fuzzy-
clustered data, which are similar to Figures 3 and
4. Figure 5 represents the visualization of 3-means
fuzzy-clustered memberships, while Figure 6 shows
the visualization of fuzzy 4-means memberships.
There are four different patterns representing four
areas of the tetrahedra. A point inside one area has
a higher membership to the corresponding cluster
than its membership to other clusters.

5 Discussion and Conclusion
Compared to the visualization of the original yeast
data set, the genes in the visualization of the nor-
malized data set are more concentrated near the
vertices than the genes of original data set. From
this point of view, we conclude that the clustering
result of the normalized data set has more reliable

(a) Euclidean distance

(b) Correlation distance

Figure 4: Visualization of fuzzy 4-means clustering results
using the original yeast data set.

clustering than the result of the original dataset.
Regarding the comparison between the Euclidean

distance and the correlation distance visualization,
the latter provides a more reliable clustering result.
The distribution of the points in the visualization
of the clustering result applying the Euclidean dis-
tance has the form of a triangle which “squeezes” to
nearly a line. Note that we have reduced the viewing
range in order to avoid this situation. The distri-
bution of the points in the visualization of the clus-
tering result using the correlation distance sparsely
appear inside the tetrahedra, thus, enhancing their
visualization.

The proposed scheme not only provides a pre-
cise visualization of the probability of a point be-
longing to each cluster, but also represents the ge-
ometric distribution of the points in the two or
three-dimensional spaces. The future work focuses
on how to deal with the restriction of visualizing
fuzzy membership data which contains more than
four classes. We plan to extract a subspace of the
clustered data, which allows the user to visualize

5

(a) Euclidean distance

(b) Correlation distance

Figure 5: Visualization of fuzzy 3-means clustering results
using the normalized yeast dataset.

sub-sets of classes and project them onto the three-
dimensional space.

Acknowledgments: This research works has been par-
tially supported by NSERC, the Natural Sciences and
Engineering Research Council of Canada, CFI, the Cana-
dian Foundation for Innovation, and OIT, the Ontario
Innovation Trust.

References

[1] Draghici S. Data Analysis Tools for DNA Microar-
rays. Prentice-Hall, Inc., 2003.

[2] Schena M. Microarray Analysis. Wiley-Liss, 2002.

[3] Hartigan J. Clustering Algorithms. John Wiley and
Sons, Inc., New York, 1975.

[4] Dembele D. and Kastner P. Fuzzy C-means Method
for Clustering Microarray Data. Bioinformatics,
vol. 19(8), May 2003, pp. 973–80.

[5] Duda R., Hart P., and Stork D. Pattern Classifica-
tion, 2nd Edition. John Wiley and Sons, Inc., New
York, NY, 2000.

(a) Euclidean distance

(b) Correlation distance

Figure 6: Visualization of fuzzy 4-means clustering results
using the normalized yeast dataset.

[6] Eisen M., Spellman P., Brown P., and Botstein
D. Cluster Analysis and Display of Genome-
Wide Expression Patterns. Proceedings of the Na-
tional Academy of Sciences, USA, vol. 95, 1998,
pp. 14,863–14,868.

[7] Kohonen T. The Self-Organizing Map, 3rd Edition.
Springer, 2001.

[8] Futschik M.E. and Kasabov N.K. Fuzzy Cluster-
ing of Gene Expression Data. World Congress of
Computational Intelligence WCCI, 2002.

[9] Berthold M.R. and Hall L.O. Visualizing Fuzzy
Points in Parallel Coordinates. Fuzzy Systems,
vol. 11, June 2003, pp. 369–374.

[10] Gasch A.P. and Eisen M.B. Exploring the Con-
ditional Coregulation of Yeast Gene Expression
through Fuzzy k-means Clustering. Genome Biol-
ogy, vol. 3(11), 2002, pp. 1–22.

[11] Cho R.J., J.Campbell M., Winzeler E.A., Stein-
metz L., Conway A., Wodicka L., Wolfsberg T.G.,
Gabrielian A.E., Landsman D., Lockhart D.J., and
Davis R.W. A Genome-Wide Transcriptional Anal-
ysis of the Mitotic Cell Cycle. Molecular Cell, vol. 2,
July 1998, pp. 65–73.

6

