
Computing Genomic Distance Between Signed

Genomes Without Co-tail Constaint∗

Xiaoli Wang† Tao Li‡ Guojun Li§ Ying Xu¶,

Abstract. Genomes rearrangement is an important problem in evolutionary molecu-
lar biology. From a computational perspective, the study of evolution based on rear-
rangements leads to computing the rearrangement’s distance problem. Two slightly
different O(n3)-time algorithms are given by Hannenhalli and Pevzner [11], Ozery-
Flato and Shamir [12], respectively, for computing the minimum number of rever-
sals, translocations, fissions and fusions that would transform one multi-chromosomal
genome into another when both have the same set of genes without repeats and
the orientation of the genes is known. This minimum number is called the genomic
distance between two multi-chromosomal genomes. We give a linear algorithm for
computing the genomic distance between signed multi-chromosomal genomes.
Keywords. genomic distance; signed multi-chromosomal genome; translocation; re-
versal; linear algorithm

1 Introduction

With the advent of large-scale DNA physical mapping and sequencing, studies of genome
rearrangements are becoming increasingly important in evolutionary molecular biology. A
computational approach to evolutionary studies based on rearrangements was pioneered
by Sankoff [1, 2]. Study of genomes evolving by rearrangements involves a combinatorial
problem of computing the minimum number t of rearrangement events transforming one
genome Π into another genome Γ and finding a shortest sequence of rearrangement events
transforming one genome into another. Such problem is known as genomic sorting problem.
We call t the genomic distance between Π and Γ, and denote it by d(Π,Γ). The problem
of finding t is called the genomic distance problem.

The importance of computing the genomic distance, under most of the rearrange-
ment events, have motivated researchers to develop approximation algorithms for genomic
distance problems for various types of rearrangements. The uni-chromosomal genomic
sorting problem that only allows reversals is called reversals sorting problem (SBR) and
the genomic distance is then called the reversal distance. Kececioglu and Sankoff [3],

∗This work was supported by NSFC of China under Grant No.10271065, No.60373025; GJL and
YX’s work was supported in part by the US Department of Energy’s Genomes to Life program
(http://doegenomestolife.org/) under project, ”Carbon Sequestration in Synechococcus sp.: From Molec-
ular Machines to Hierarchical Modeling” (www.genomes2life.org) and by National Science Foundation
(NSF/DBI-0354771,NSF/ITR-IIS-0407204).

†Department of Mathematics, Nanyang Normal University, Henan 473061, P. R. China, and School of
Mathematics and Systems Science, Shandong University, Jinan 250100, P. R. China

‡Department of Mathematics, Nanyang Normal University, Henan 473061, P. R. China
§Institute of Software, Chinese Academy of Sciences, Beijing 100080, P. R. China; School of Mathematics

and Systems Science, Shandong University, Jinan 250100, P. R. China
¶Dept of Biochemistry and Molecular Biology, University of Georgia, USA

Corresponding author: Xiaoli Wang

1

Bafna and Pevzner [4] gave approximation algorithms, respectively, for computing rear-
rangement distance for uni-chromosomal genomes evolving by reversals. Hannenhalli and
Pevzner [5] showed that SBR problem is in P, and give an polynomial algorithm for SBR.
The algorithm was improved in [6, 7], the best algorithm’s running time is O(n3) [7]
by now. In 2001 Bader, Moret and Yan [8] presented a linear algorithm for computing
the reversal distance. Kececioglu and Ravi [9] gave a 2-approximation algorithm for the
rearrangement distance problem for genomes evolving by translocations and a 1.5 approxi-
mation algorithm for the rearrangement distance problem for multi-chromosomal genomes
evolving by both the translocations and reversals. Hannenhalli [10] has devised a poly-
nomial algorithm for the genomic sorting problem when only internal translocations are
allowed.Hannenhalli and Pevzner studied the genomic sorting problem for reversals and
translocations (SBRT) [11]. They presented a duality theorem for SBRT, gave a polyno-
mial algorithm for computing the genomic distance, using reversals, translocations,fissions
and fusions, between multi-chromosomal genomes. But for the general case their theo-
rem and algorithm fail. Ozery-Flato and Shamir [12] correct the theorem and present an
exactly polynomial algorithm. Both algorithms can be executed in running time O(n3).

In this paper we are interested in multi-chromosomal genomes evolving by reversals,
translocations, fissions and fusions, each gene occurs exactly once in a genome. We
give a linear-time algorithm for computing the genomic distance between signed multi-
chromosomal genomes. That is, we present a linear-time algorithm that computes the
length of a shortest sequence of reversals, translocations, fissions and fusions required to
transform one genome into another.

The rest of this paper is split into three sections. In Section 2, we give some preliminary
results needed to discuss the genomic distance, and the combinatorial formulation of the
problem. In Section 3, we design and analyze an algorithm for computing the genomic
distance between signed permutations. Some concluding remarks appear in Section 4.

2 Preliminaries

2.1 Chromosome, genome and transformation

In the model we consider any gene is unique within a genome and is represented by
an identification number (positive integer), and an associated sign ”+” or ”-” reflecting
the direction of the gene. A chromosome can be represented as a sequence of genes, and
a genome is a set of chromosomes. A chromosome is orientation-less, therefore flipping
a chromosome π = (π1, π2, . . . , πn) into −π = (−πn, . . . ,−π2,−π1) does not affect the
chromosome it represents. Hence a chromosome π is said to be identical to a chromosome
γ iff π = γ or π = −γ. Two genomes are said to be identical if their sets of chromosomes
are the same.

Let π and γ be two chromosomes, π = (π1, π2, . . . , πn) and γ = (γ1, γ2, . . . , γm). A re-
versal ρ(π, i, j), 1 ≤ i ≤ j ≤ n, transforms π into π′ = (π1, . . . , πi−1,−πj , . . . ,−πi, πj+1, . . . , πn).
A reversal ρ(π, i, j) is said to be internal if 1 < i < j < n. A translocation is a
rearrangement that works on two chromosomes switching their ’tails’. A translocation
ρ(π, γ, i, j), 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m + 1, exchanges segments of genes between the chro-
mosomes π and γ and transforms them into the chromosomes (π1, . . . , πi−1, γj , . . . , γm) and

2

(γ1, . . . , γj−1, πi, . . . , πn). A fusion is a special translocation ρ(π, γ, n+1, 1), which concate-
nates the chromosome π and γ resulting in a chromosome (π1, . . . , πn, γ1, . . . , γm) and an
empty chromosome ∅. A fission is a translocation ρ(π, ∅, i, 1), for some 1 < i ≤ n, ’breaks’
a chromosome π into two chromosomes (π1, . . . , πi−1) and (πi, . . . , πn). A translocation
ρ(π, γ, i, j) is called internal if π, γ 6= ∅, 1 < i ≤ n, 1 < j ≤ m. The muti-chromosomal
genomic sorting problem evolving by internal reversals, internal translocations, fissions
and fusions is indeed a genomic sorting problem evolving by reversals and translocations
(SBRT).

For a chromosome π = (π1, π2, . . . , πn), the numbers +π1 and −πn are called the tails
of π. Notice that flipping a chromosome does not change the set of its tails. We use T(Π)
to denote the set of tails of all chromosomes in a genome Π. Genomes Π and Γ are called
co-tailed if T(Π) = T(Γ). Using an internal reversal or translocation on a genome does
not change the set of its tails. Therefore, the problem of sorting a genome Π into a target
genome Γ, using internal translocations and reversals, is limited to genomes Π and Γ that
are co-tailed.

For any positive integer i, we use [i, j] to denote the set {i, i + 1, . . . , j − 1, j}. Given
a graph G = (V, E), for any vertex v ∈ V , we use N [v] to denote the closed neighborhood
of v: N [v] = {u : u = v or uv ∈ E}.

2.2 Reversals on signed permutations (uni-chromosomal genomes)

Let π = (π1, π2, . . . , πn) and γ = (γ1, γ2, . . . , γn) be two unsigned permutation of
elements {1, 2, . . . , n}. We extend them by adding π0 = 0, πn+1 = n + 1 to π and γ0 =
0, γn+1 = n + 1 to γ. The breakpoint graph of π with respect to γ is a graph with n + 2
vertices {π0, π1, π2, . . . , πn, πn+1}. We join vertices πi and πj by a black (resp. gray) edge
iff they are neighbors in π (resp. γ).

Given two signed permutations π = (π1, π2, . . . , πn) and γ = (γ1, γ2, . . . , γn) of el-
ements {1, 2, . . . , n}, where |πi|, |γi| ∈ {1, 2, . . . , n}. We transform them into unsigned
permutations u(π) and u(γ) by substituting the ordered pair (2x− 1, 2x) for the positive
element x, and ordered pair (2x, 2x − 1) for the negative element −x. Then by the defi-
nition of breakpoint graph of u(π) with respect to u(γ), there are always two edges (one
black and the other gray) connecting the two split vertices 2x−1 and 2x in the breakpoint
graph of u(π) with respect to u(γ). Deleting all such 2n edges from the breakpoint graph
results in a new graph, denoted by G(π, γ), which is called the cycle graph of the signed
permutation π with respect to the target signed permutation γ. In G(π, γ), two vertices
connected by a black(gray) edge are neighbor in u(π)(u(γ)). Every reversal ρ(π, i, j) on π
can be mimicked by the reversal ρ(u(π), 2i− 1, 2j) on u(π).

For the unsigned permutation u(π) = (π1, π2, . . . , π2n), associated every gray edge
e = (πi, πj), i < j, in G(π, γ) with the interval [e.B, e.E], where e.B = i, e.E = j. The
two edges are said to be overlap if the intersection of their associated intervals is nonempty
but neither properly contains the other. Cycles C1 and C2 in G(π, γ) are interleaving if
there exist two gray edges g1 ∈ C1, g2 ∈ C2 such that g1 and g2 are overlap.We call a cycle
in G(π, γ) with k gray (black) edges as k-cycle.

Let b(π, γ) and c(π, γ) denote the number of black edges and the number of cycles in
G(π, γ) respectively.

Let Cπ be the set of cycles in G(π, γ). Define the interleaving graph H(π, γ) = (Cπ, Iπ)
of a signed permutation π with respect to γ of vertex set Cπ and edge set Iπ = {(C1, C2) :

3

C1, C2 are interleaving cycles in G(π, γ)}.
The interval of cycle C in G(π, γ) is the interval [C.B,C.E], where C.B = min{i : πi ∈

C} and C.E = max{i : πi ∈ C}. The interval of a connected component U in H(π, γ) is
the interval [U.B,U.E], where U.B = min{C.B : C ∈ U} and U.E = max{C.E : C ∈ U}.

Notice that every reversal acts on two black edges and decreases or increases c(π, γ) by
at most 1. A reversal is said to be proper if it increase the number of cycles by exactly 1,
and said to be acting on a gray edge g if it acts on the two black edges incident to g. We
say that a gray edge is oriented if a reversal acting on it is proper, and a cycle is oriented if
it contains an oriented edge. A connected component of H(π, γ) that contains an oriented
cycle is called an oriented component, otherwise it is called an unoriented component.

The following conclusion is obvious.

Lemma 1 (1)An edge e is oriented iff e.E − e.B is even; (2) The number of oriented
edges in an oriented cycle is even.

Let Ψ be a collection of sets of integers. Define a partial order on Ψ by the rule ≺:
U ≺ W iff [U.B,U.E] ⊂ [W.B, W.E] for U,W ∈ Ψ. We say a set U ∈ Ψ separates two
sets U ′ and U ′′ if there exists u ∈ U such that U ′.E < u < U ′′.B. A hurdle for Ψ is an
element U in Ψ that satisfies either (1) U is the minimal elements in Ψ under relation ≺,
or (2)U is the maximum element in Ψ under relation ≺, and U does not separate any two
sets in Ψ. A hurdle satisfying condition (1) is called minimal hurdle, and that satisfying
condition (2) is called maximum hurdle. A hurdle U is called a superhurdle if there is a
non-hurdle U0 in Ψ such that U0 is a hurdle in Ψ \ {U}. Otherwise, a simple hurdle.

Let U = {i : πi ∈ C, C ∈ U} be the set of positions of π belonging to cycles of a
connected component U in H(π, γ). ∆(π, γ) = {U : U is an unoriented component of
H(π, γ)}. The signed permutation π is a fortress with respect to γ if ∆(π, γ) has odd
number of hurdles, and all of which are superhurdles. Denote by h(π, γ) the number of
hurdles in ∆(π, γ). Let f(π, γ) = 1 if π is a fortress with respect to γ, and f(π, γ) = 0
otherwise.

2.3 Transformations on multi-chromosomal genomes

2.3.1 SBRT-limited to internal reversals and translocations
Given two multi-chromosomal genomes Π = {π(1), π(2), . . . , π(N)}, a concatenation

of Π is defined by π = {π(i1), π(i2), . . . , π(iN)}, where (i1, i2, . . . , iN) is a permutation on
{1, 2, . . . , N} and π(ik) = π(ik) or −π(ik)(1 ≤ k ≤ N).

Given two multi-chromosomal genomes Π and Γ, the genomic distance between Π and
Γ, denoted by d(Π,Γ) , is the minimum number of reversals, translocations, fissions and
fusions required to transform Π into Γ.

Let Π and Γ be two co-tailed genomes with n genes, each with N chromosomes. Let
π and γ be two arbitrary concatenations of the chromosomes in Π and Γ respectively. Let
G(π, γ) (resp. H(π, γ)) be the cycle (resp. interleaving) graph of π w.r.t. γ. An edge in
G(π, γ) is called intrachromosomal if it connects two vertices from the same chromosome
in Π and interchromosomal otherwise. A cycle in G(π, γ) is called interchromosomal if it
contains an interchromosomal edge, and intrachromosomal otherwise.

There are N − 1 black edges between tails of Π and 2 black edges originating from
vertices 0 and 2n + 1 in G(π, γ) . These N + 1 black edges define the concatenation π.
Equivalently, there are N + 1 gray edges that define the concatenation γ. Let G(Π,Γ) be
the graph obtained from by removing the 2(N + 1)black and gray edges that constitute

4

cycles in G(Π,Γ). Therefore, G(Π,Γ) is also composed of cycles. Define the interleaving
graph of Π w.r.t. Γ, denoted by H(Π,Γ), as the subgraph of H(π, γ) induced by the set
of intrachromosomal cycles in G(Π,Γ) in the same way as previous.

Let b(Π,Γ) and c(Π,Γ) be the number of black edges and cycles in G(Π,Γ) respec-
tively. A component of H(Π,Γ) is interchromosomal if it contains an interchromosomal
edge, and intrachromosomal otherwise. Consider the set of intrachromosomal unoriented
components IU(Π,Γ) in H(Π,Γ). Let ∆(Π,Γ) = {U : U ∈ IU(Π,Γ)}. Then hur-
dles, superhurdles and fortresses for the collection ∆(Π,Γ) are called knots, super-knots,
and fortresses-of-knots respectively. Let k(Π,Γ) be the number of knots in ∆(Π,Γ)(or
IU(Π,Γ)). Define f(Π,Γ) = 1 if ∆(Π,Γ) is a fortress-of-knots and f(Π,Γ) = 0 otherwise.

Theorem 1 [11] For co-tailed genomes Π and Γ, formula (1) gives the genomic dis-
tance between Π and Γ, i.e., the minimum number of internal reversals and translocations
required to transform Π into Γ,

d(Π,Γ) = b(Π,Γ)− c(Π,Γ) + k(Π,Γ) + f(Π,Γ). (1)

2.2.2 SBRT-the general case
In the general case, let Π = {π(1), π(2), . . . , π(M)}, Γ = {σ(1), σ(2), σ(N)} be two

signed genomes, M and N be the number of chromosomes in Π and Γ respectively, the
tail set T (Π) of Π contains 2M elements, and the tail set of Γ contains 2N elements.
d(Π,Γ) = d(Γ,Π) since every rearrangement is reversible. Therefore, we can assume
without loss of generality that M ≤ N . If M < N , we can extend Π with N −M empty
chromosomes, so we may assume that Π and Γ have the same number of chromosomes.

Let {c0, c1, . . . , c2M−1} be a set of 2M distinct positive integers (called caps) that are
different from the genes in Π. A capping of Π, denoted by Π̂ = {π̂(1), π̂(2), . . . , π̂(M)}, is
a genome obtained from Π by adding caps to the ends of each chromosome, i.e. π̂(k) =
{c2(k−1), π(k)1, π(k)2, . . . , π(k)nk

, c2(k−1)+1}, 1 ≤ k ≤ M . A capping of Γ can be defined
analogously.

Let π̂ and γ̂ be two arbitrary concatenations of cappings Π̂ and Γ̂. Let G(π̂, γ̂) be the
cycle graph of π̂ w.r.t. γ̂. Let G(Π̂, Γ̂) be the graph obtained from G(π̂, γ̂) by removing the
2(N + 1) gray and black edges which define the concatenations of Π̂ and Γ̂. Let G(Π,Γ)
be the graph obtained from G(Π̂, Γ̂) by removing the 2N gray edges defined by between
tails of Γ and caps which determine the capping Γ̂ of Γ. G(Π,Γ) has 4N vertices of degree
1 corresponding to the 2N caps of Π(called Π-caps) and 2N tails of Γ (called Γ-tails).
Therefore G(Π,Γ) is composed of cycles and 2N paths, each path starting and ending
with a black edge. A path is called a ΠΠ-path (ΓΓ-path) if it starts and ends with Π-caps
(Γ-tails) and a ΠΓ-path if it starts with a Π-cap and ends with a Γ-tail.

Let b(Π,Γ) be the number of black edges in G(Π,Γ), and c(Π,Γ) be the overall number
of cycles, ΠΠ-paths and ΠΓ-paths in G(Π,Γ). Clearly, b(Π,Γ) = n + N . Closing a ΠΓ-
path(ΠΠ-path or ΓΓ-path) results a cycle, the path is oriented if the corresponding cycle
is oriented, and unoriented otherwise. We can easily get the the following lemma from
Lemma 1:

Lemma 2 Let C be a cycle (ΠΠ-path, ΓΓ-path or ΠΓ-path) in G(Π,Γ). Then it is oriented
if and only if there exist an oriented edge in C.

Interleaving cycles/paths in the graph are defined as in the section 2.2 by making no
distinction between cycles and paths in G(Π,Γ). Define the interleaving graph H(Π,Γ)

5

of Π w.r.t. Γ from G(Π,Γ) in the same way as that of defined in subsection 2.2. The
intervals of paths/cycles/connected components are defined in an analogous way.

Let ω(x) = 1 if x is an oriented edge(cycle, or path or component), and let ω(x) = 0
if x is an unoriented edge(cycle, or path or component). From definition of ω, Lemma 1
and Lemma 2, we have the following conclusion:

Lemma 3 Let C be a cycle (ΠΠ-path, ΓΓ-path or ΠΓ-path), D is a connected component
in G(Π,Γ). Then the following formulas hold:

ω(C) = max{ω(e) : e is a gray edge in C}, ω(D) = max{ω(C) : C is a cycle/path on D}

An intrachromosomal component in H(Π,Γ) is called real if there are no Π-caps or Γ-
tails in its interval. Define RU(Π,Γ) as the set of real unoriented components in H(Π,Γ),
which contains no 1-cycle. Hurdles, super-hurdles and fortresses for the set are called
real-knots, super-real-knots and fortresses-of-real-knots. Let RK be the set of real-knots
and denote by r(Π,Γ) the number of real-knots in RU(Π,Γ).

Notice that an intrachromosomal component involving only cycles in G(Π,Γ) is not
necessarily real. The intrachromosomal components involving only cycles are therefore
called pseud-real. That involving a ΠΓ-path but no other kinds of paths is called a ΠΓ
-component, involving a ΓΓ-path but no ΠΠ- paths a ΓΓ-component, and involving a
ΠΠ-path a ΠΠ-component.

Note that an intrachromosomal component whose interval contains a Π-cap must con-
tain the Π-cap. Hence a ΠΓ-path cannot be located in the interval of an intrachromosomal
pseud-real component, whereas ΓΓ-path can. A ΠΓ-component may contain a ΓΓ-path in
its interval.

Given a cycle(path) C in G(Π,Γ), and a component D in H(Π,Γ). Let g(C) = 0 if
C is a cycle, g(C) = 1 if C is a ΠΓ-path, g(C) = 2 if C is a ΓΓ-path, and 3 a ΠΠ-path.
Let g(D) = 0 if D is pseud-real, g(D) = 1 if D is a ΠΓ-component, g(D) = 2 if D is a
ΓΓ-component, and 3 a ΠΠ-component. The following lemma is obvious.

Lemma 4 g(D) = max{g(C) : C is a cycle or path on D}.

As in section 2.3.1, define IU(Π,Γ) as the set of intrachromosomal unoriented com-
ponents in H(Π,Γ). A component in IU(Π,Γ) \ RU(Π,Γ) is a semi-real-knot if (i) it
contains no a ΓΓ-paths in its interval, and (ii) closing all the ΠΓ-paths in it creates a
minimal real-knot or a simple (not super-real-knot) maximum real-knot. A semi-real note
is called minimal if it turns into a minimal real-knot when all the ΠΓ-paths in it are
closed, maximum otherwise. Obviously, there is at most one maximum-semi-real-knot in
H(Π,Γ). From the definition of knot, a minimal-semi-real-knot is just a knot in IU(Π,Γ),
but a maximum-semi-real-knot is not always a knot (see fig.1, E is a maximum-semi-real-
knot, but not a knot). Let s be the number of semi-real-knots in IU(Π,Γ) including the
maximum-semi-real-knot.

The interleaving graph H(Π,Γ) is a weak-fortress-of-real-knots if (1) the number of
real knots in RU(Π,Γ) is odd, (2) one of the real-knots is the maximum-real-knot, (3)
every real-knots but the maximum one is a super-real-knot and (4) the number of semi-
real-knots in H(Π,Γ) is at least one. A simple component is a component containing a
ΠΓ-path that is not a semi-real-knot.

Let G(Π,Γ) be a graph obtained from G(Π,Γ) by closing all the ΠΓ-paths in all the
simple components in H(Π,Γ), H(Π,Γ) a interleaving graph of G(Π,Γ), and RU(Π,Γ)

6

a set of real unoriented components of H(Π,Γ). We define gr = 1 if there exists the
maximum-real-knot in RU(Π,Γ) and s > 0; gr = 0 otherwise. We define fr = 1 if either
(i)RU(Π,Γ) is a fortress-of-real-knots and there is no maximum-semi-real-knot in H(Π,Γ)
or (ii)RU(Π,Γ) is a weak-fortress-of-real-knots; and fr = 0 otherwise.

Lemma 5 There exists the maximum real-knot in RU(Π,Γ) iff there exists the maximum
real-knot in RU(Π,Γ); H(Π,Γ) is a weak-fortress of real-knot iff H(Π,Γ) is a weak-fortress
of real-knot.

Proof: Suppose there exists the maximum real-knot U in RU(Π,Γ), then there exists
no maximum semi-real-knot in H(Π,Γ). If there is a ΠΓ-component W whose interval
involving the interval of U , then W is the maximum real-knot in RU(Π,Γ). If there is no
such a component, then U is the maximum real-knot in RU(Π,Γ).

Suppose there exists the maximum real-knot U in RU(Π,Γ). If U is not a real-knot
in RU(Π,Γ), then it is not a semi-real-knot in H(Π,Γ). Hence U is a super real-knot
in RU(Π,Γ), the maximum real-knot in RU(Π,Γ) \ {U} is the maximum real-knot in
RU(Π,Γ).

From the definition of H(Π,Γ), H(Π,Γ) and H(Π,Γ) have the same set of semi-real-
knots, and the same set of minimal real-knots. Hence Lemma 5 holds. ¤

We know from Lemma 5, gr = 1 iff there exists the maximum-real-knot in RU(Π,Γ)
and s > 0; fr = 1 iff either (i)RU(Π,Γ) is a fortress-of-real-knots and there is no
maximum-semi-real-knot in H(Π,Γ) or (ii) RU(Π,Γ) is a weak-fortress-of-real-knots.

Theorem 2 [12] Given two genomes Π and Γ, formula (2) gives the the genomic dis-
tance between Π and Γ, i.e., the minimum number of reversals, translocations, fusions and
fissions required to transform Π into Γ,

d(Π,Γ) = b(Π,Γ)− c(Π,Γ) + r(Π,Γ) + ds(Π,Γ)− gr(Π,Γ) + fr(Π,Γ)
2

e (2)

3 Linear algorithm to compute parameters in formula

3.1 Determining whether a maximum element U in Λ separates the set
Λ \ {U}

In this subsection, we are going to design an algorithm that will be used to decide
whether the maximum element U in a given partial set Λ will separate Λ \ {U}.

Let ≺ be a partial order on a set P . We say x is covered by y in P , if x ≺ y and there
is no element z in P , such that, x ≺ z ≺ y. The cover graph of P is a directed graph with
vertex set P and arc set {(x, y) : x, y ∈ P and x is covered by y}.

Given a set Λ of connected components of interleaving graph for signed permutations
π and γ, the partial relation is defined as that in section 2.2. Let U be the maximum
elements under partial order ≺. We want to determine whether U separates the set Λ\{U}.
To do so, we will use D[i] to denote the connected component involving position i, and
introduce a parameter α to capture the information we need.

Algorithm 1:

7

Input: a set Λ of connected components in permutation π, the maximum element U
in Λ

Output: parameter α
Step 0. Scan permutation π, each position i, such that D[i] ∈ Λ is labelled by D[i].
Step 1. Scan permutation π, to find the minimum number i0 such that i0 is labelled

and D[i0] ∈ Λ \ {U}, set α ← 0.
Step 2. Scan the positions in the order i0 + 1, i0 + 2, . . ., to find the minimum labelled

number i1 such that D[i1] = U , set α ← α + 1.
Step 3. Scan the positions in the order i1 + 1, i1 + 2, . . ., set α ← α + 1 if there is a

position j such that D[j] ∈ Λ \ {U}; and α ← α otherwise. Stop.

Theorem 3 Algorithm 1 will be completed in O(n) time, where n is the number of genes
in π. The maximum element U separates Λ \ {U} iff α = 2. In particular, if Λ is a set
of unoriented components, then the maximum element U is the maximum knot in Λ iff
α = 1.

3.2 The linear algorithm in general case

Bader et al. [8] give a linear-time algorithm, named BMY here, which computes all the
connected components of the interleaving graph of signed permutions. Based on BMY
algorithm, we will design a linear algorithm to compute genomic distance between multi-
chromosomal genomes, i.e., we need to compute the parameters in formula (2) in linear
time.

Given genomes Π and Γ as in subsection 2.3.2. From the definition of G(Π,Γ), the
interleaving graph H(Π,Γ) is independent of cappings of Π and Γ, and concatenations
of their cappings. Assume without loss of generality that Π̂ = {π̂(1), π̂(2), . . . , π̂(N), },
Γ̂ = {γ̂(1), γ̂(2), . . . , γ̂(N), },π̂ = π̂(1) + . . . + π̂(N),γ̂ = γ̂(1) + . . . + γ̂(N), where π̂(k) =
{c2(k−1), π(k)1, . . . , π(k)nk

, c2(k−1)+1} and γ̂(k) = {c2(k−1), γ(k)1, . . . , γ(k)mk
, c2(k−1)+1},1 ≤

k ≤ N .
By making no distinction between paths and cycles in G(Π,Γ), we can invoke BMY

algorithm to compute all the components of the interleaving graph H(Π,Γ). At the same
time, we get all the informations required to compute the parameters in formula (2): in-
trachromosomal unoriented components and oriented components, pseud-real components,
ΠΓ-components, ΓΓ-components and ΠΠ-components.

Consider the concatenation π̂ of capping Π̂. The tails of π̂ are in position 0 and position
2

∑k−1
j=1 nj + 4N + 1. For every k, the kth chromosome π̂(k) in Π̂ takes 2nk + 4 positions:

2
∑k−1

j=1 nj + 4(k − 1) + 1, . . . , 2
∑k

j=1 nj + 4k.
Phase 1
For each k, the vertex vi(2

∑k−1
j=1 nj +4(k−1)+2 ≤ i ≤ 2

∑k−1
j=1 nj +4k−1) in position

i in the kth chromosome π̂(k) have one neighbor ai in π̂ (π̂-neighbor) and one neighbor
bi in γ̂(γ̂-neighbor) except for the two tails in π̂. Scanning π̂ and γ̂, we can get the
two neighbors. In particular, we suppose that bi = − (blank) if bi is a π-cap or γ-tail in
G(Π,Γ). Define ci = 1 if vi is a Π-cap, c = 2 if vi is a Γ-tail, and ci = 0 otherwise. We
label each position i, corresponding to a non-isolated vertice in G(Π,Γ), with (vi, ai, bi, ci).

For each i, we use ei to denote the gray edge involving position i, C[i] to denote the
cycle involving position i. Scanning the permutation π̂ again, we can get all the gray
edges, cycles and paths in G(Π,Γ), we also get the value of parameter c(Π,Γ) in formula
(2). We can get the value ω(ei) from [ei.B, ei.E], get the value g(C[i]) from previous

8

labels for all positions. From Lemma 3, we can calculate ω(C[i]). Label position i with
(C[i].B,C[i].E, ω(C[i]), g(C[i])).

This phase can be completed in O(n) time.
Phase 2
Now we invoke BMY algorithm to compute all the components of the interleaving

graph H(Π,Γ). For each i, let D[i] be the connected component (may be a 1-cycle or
an isolated edge)involving position i in G[Π,Γ]. From Lemma 3 and Lemma 4, we can
calculate ω(D[i]) and g(C[i]). Label position i with (D[i].B,D[i].E, ω(D[i]), g(D[i])).

This phase will be completed in O(n) time.
Phase 3.
In order to compute all the reminder parameters in formula (2), we should to find

out all the real-knots and semi-real-knots in IU(Π,Γ), decide whether each real-knot is a
super-real-knot and whether there exist the maximum real-knot or maximum semi-real-
knot. We should know all real-knots in RU(Π,Γ), decide whether each real-knot is a
super-real-knot. First of all,we need to know whether a pseud-real component is a real
component. Hence we scan the set Φ0 of all the unoriented pseud-real components,all
the unoriented ΠΓ-components, and all the ΓΓ-components, in order to find its subset
Φ, which consists of all pseud-real components and ΠΓ-components in IU(Π,Γ), and all
intrachromosomal ΓΓ-components in H(Π,Γ). It is clearly that Φ0 = {D[i]|g(D[i]) =
0, ω(D[i]) = 0, D.E 6= D.B + 1} ∪ {D[i]|g(D[i]) = 1, ω(D[i]) = 0} ∪ {D[i]|g(D[i]) = 2}.

We can easily get the following Lemma:

Lemma 6 For each D ∈ IU(Π,Γ), D is a real-component iff (1) D ∈ Φ, g(D) = 0, ω(D) =
0; and (2)for each D′ ∈ Φ, such that [D′.B,D′.E] ⊆ [D.B, D.E], we have g(D′) = 0.

In algorithm 2, we skip all vertices belonging to the interchromosomal component in
Φ0 or belonging to the components not included in Φ0. The remainder vertices belong to
the components in Φ. We want to produce the covering graph Ω on Φ. For each x ∈ Ω, if
it is a real-component(ΠΓ-component), and there is no another y ∈ Ω, such y is covered
by x, then x is called a minimal real-component(minimal Π,Γ-component). We can define
maximal real-components and maximal ΠΓ-components in the same way.

For each D ∈ Φ, we use β(D) to denote the number of components in Φ covered
by D. For each k, we introduce the following subsets of Φ involving the vertices in the
positions of the kth chromosome: we use Ak to denote the set of all minimal real-knots
which are isolated in Ω; A′k the set of all maximal real-components that are not minimal
in Ω; Ak the set of all minimal real-knots which are not isolated; Bk the set of all minimal
semi-real-knots; B′

k the set of all maximal ΠΓ-components that are not minimal. Clearly,
all minimal real-components are minimal knots, all minimal ΠΓ-components are minimal
semi-real-knots. Hence we have the following conclusion:

Lemma 7 The set of all minimal real-knots in IU(Π,Γ) is A =
⋃N

k=1(Ak∪Ak).The set of
all minimal semi-real-knots in IU(Π,Γ) is B =

⋃N
k=1 Bk. Hence the number of minimal

real-knots is r′ =
∑N

k=1 |Ak|, the number of minimal semi-real-knots is s′ =
∑N

k=1 |Bk|.

For each i,we use parent(D[i]) to denote the element covering D[i] in Ω. We use g(D[i])
to denote the current information about D[i]: g(D[i]) = 0 indicate that there exist only
cycles on D[i] and the current scanned subinterval of D[i];g(D[i]) = 1 indicate that there
exist ΠΓ-path but no other kind path; and g(D[i]) = 2 indicate that there exist ΓΓ-path

9

but no ΠΠ-path. By implementing Algorithm 2, for each k, we can get Ak, Ak, A
′
k, Bk, Bk

and the set A of all minimal real-components.

Algorithm 2
Input: permutation π̂

Output: parentD[i],g(D[i]),β(D[i]),for each i.Ak, Ak, A
′
k, Bk, B

′
k, for each k

Begin

1. scan the permutation, label each position i with D[i].B, set up

(D[i].B,D[i].E, ω(D[i]), g(D[i]))

2. initialize the parameters: R ← −1, stack = ∅, r′ ← 0, s′ ← 0

3. for k ← 1 to N do
L ← R + 3, R ← R + 2nk + 4, Ak ← ∅, Ak ← ∅, A′k ← ∅, Bk ← ∅, B′

k ← ∅
fori ← L to R do
if D[i] /∈ Φ0 then skip i
else if D[i].B < L or D[i].E > R then skip i
else if i = D[i].B then push D[i] and β(D[i]) ← 0
else
if i = D[i].E then pop D[i]

(a) if (stack = ∅) ∧ (β(D[i]) = 0) then
i. if g(D[i]) = 0 then (Ak ← Ak ∪ {D[i]}, r′ ← r′ + 1)
ii. else if g(D[i]) = 1 then (Bk ← Bk ∪ {D[i]}, s′ ← s′ + 1)
iii. else skip i

(b) else if stack 6= ∅ then
i. parent(D[i]) ← top, g(top) ← max{g(top), g(D[i])}, β(top) ← β(top) + 1
ii. if β(D[i]) = 0 then

A. if g(D[i]) 6= 0 then skip i

B. else if g(top) = 0 then (Ak ← Ak ∪ {D[i]}, r′ ← r′ + 1)
C. else (Ak ← Ak ∪ {D[i]}, r′ ← r′ + 1)

iii. else
if g(D[i]) = 0 and g(top) 6= 0 then A′k ← A′k ∪ {D[i]}
else skip i

(c) else
i. if g(D[i]) = 0 then A′k ← A′k ∪ {D[i]}
ii. else if g(D[i]) = 1 then B′

k ← B′
k ∪ {D[i]}

iii. else skip i

4. return parent D[i],g(D[i]),β(D[i]), for each i.Ak, Ak, A
′
k, Bk, Bk, for each k

End
The validity of Algorithm 2 and the following theorem are clearly.

Theorem 4 (1)The output of Algorithm 2 satisfies:

g(D) = max{g(D′) : [g(D′).B, g(D′).E] ⊆ [g(D).B, g(D).E], D′ ∈ Ω}.
And D[i] is real-component iff g(D[i]) = 0, D[i] is a ΠΓ -component iff g(D[i]) = 1 and
D[i] is a ΓΓ-component iff g(D[i]) = 2

10

We can regard g(D) as the coloring of D ∈ Ω. Graph Ω2 obtained by delating all the
vertices colored 1 or 2 in Ω is the covering graph of RU(Π,Γ). And the graph obtained
by delating all the vertices colored 2 in Ω is denoted by Ω1. Let G be the covering graph
of RU(Π,Γ), then Ω ⊆ G ⊆ Ω1. We can easily get from Lemma 5 that the minimal set
of real-knot in RU(Π,Γ) is still A. We still use β(D) to denote the number of children of
D in G. For each G, Ω ⊆ G ⊆ Ω1, if the number of real knot in G is odd; and for each
D ∈ A, β(parent(D)) = 1, then we say that G has property (F). It is clear to see the
following result.

Theorem 5 (1)A minimal real-knot D in RU(Π,Γ) is a super-real-knot iff β(D) = 1 in
C”̧; a minimal real-knot D in RU(Π,Γ) is a super-real-knot iff β(D) = 1 in the covering
graph of RU(Π,Γ).

(2)If there is no maximum real-knot in H(Π,Γ), then RU(Π,Γ) is a fortress of real-
knots iff RU(Π,Γ) is a fortress of real-knots.

We use Ω0 to denote the subgraph of Ω1 obtained by delating all isolated vertices
coloring 1. We want to decide whether there exist the maximum real-knot and maximum
semi-real-knot in H(Π,Γ), whether RU is a fortress of real-knots or H(Π,Γ) is a weak
fortress of real-knots. Then we can get all parameters in formula (2).

Case 1. For each k, Ak = ∅.
In this case: Π = Γ,d(Π,Γ) = 0.
Case 2. There exists at least two k, such that Ak 6= ∅.
There is no maximum real-knot and no maximum semi-real-knot in H(Π,Γ), s =

s′, r = r′, gr = 0. H(Π,Γ) is not a weak-fortress-of-real-knots. Ω0 is the covering graph of
RU(Π,Γ). Hence if Ω0 has property (F), then RU(Π,Γ),fr = 1. Otherwise fr = 0.

The genomic distance can be computed in this case.
Case 3. There exists exactly one k, such that Ak 6= ∅.
Subcase 3.1 A′k = ∅, i.e., there is no maximal element in Ω2.
There is no maximum real-knot in H(Π,Γ), hence H(Π,Γ) is not a weak-fortress-of-

real-knots. Ω0 is the covering graph of H(Π,Γ). It is easy to see that RU(Π,Γ) is not a
fortress-of-real-knots. r = r′, gr = 0, fr = 0.

If (1)B′
k = {U} and U = parent(D), for any D ∈ Ak, and (2) execute Algorithm 1

on set N [U], we have α = 1. Then U is the maximum semi-real-knot in H(Π,Γ) and
s = s′ + 1.

Otherwise, s = s′.
We can compute the genomic distance in this case.
Subcase 3.2 A′k = {U1}.
(1)Ak 6= ∅, i.e., there exists some minimal real-knots in H(Π,Γ), which are isolated

vertices in Ω2. There is no maximum real-knot. Hence r = r′, gr = 0 and H(Π,Γ) is not
a weak-fortress-of-real-knots.

(1.1)If (i).B′
k = {U} and U = parent(D), for any D ∈ Ak ∪ {U1}, and (ii) execute

Algorithm 1 on the set Λ = N [U],we have α = 1.
Then U is a maximum semi-real-knot and s = s′ + 1. Ω2 is the covering graph of

RU(Π,Γ). Clearly,RU(Π,Γ) is not a fortress of real-knots,fr = 0.
(1.2)In all other case, there is no maximum semi-real-knot in H(Π,Γ),s = s′. Ω0 is the

covering graph of RU(Π,Γ). Hence if G0 has property (F), then RU(Π,Γ) is a fortress of
real-knots, fr = 1. And fr = 0 otherwise.

We can compute the genomic distance in this case.

11

(2) Ak = ∅ , i.e., there exists no isolated minimal real-knot in Ω.
We use Algorithm 1 on the set Λ = N [U1].
(2.1)If α = 1, then U1 is a maximum real-knot in H(Π,Γ). There is no maximum

semi-real-knot in H(Π,Γ). Hence r = r′ + 1, s = s′, and Ω0 is the covering graph of
RU(Π,Γ).

(i).If s > 0 then gr = 1 else gr = 0.
(ii). If s > 0 and Ω2 has property (F), then H(Π,Γ) is a weak-fortress-of-real-knots,

fr = 1.
(iii). If G0 has property (F),but (ii) is not hold. Then H(Π,Γ) is not a weak-fortress-

of-real-knots
A. If B′

k 6= ∅ then |B′
k| = 1. Let B′

k = {U}, then U = parent(U1), U is the maximum
super-real-knot in RU(Π,Γ). RU(Π,Γ) is a fortress-of-real-knots, fr = 1.

B.B′
k = ∅.

a. If U1 has only one child U2 in Ω2, and we get α = 1 after executed Algorithm 1 on
the set Λ = N [U2].

Then U2 is a maximum real-knot in RU(Π,Γ) \ {U1}. Hence U1 is a super-real-knot
and fr = 1.

b. Otherwise, fr = 0.
(iii) In all other case, fr = 0.
(2.2)If α = 2 then U1 is not a maximum real-knot. H(Π,Γ) is not a weak-fortress-of-

real-knots.r = r′, gr = 0. RU(Π,Γ) has no maximum real-knot by Lemma 5. Ω0 is the
covering graph of RU(Π,Γ). Therefore, if Ω0 has property (F), RU(Π,Γ) is a fortress-of-
real-knots, fr = 1. And fr = 0 otherwise.

(i). If B′
k 6= ∅ then |B′

k| = 1. Let B′
k = {U}, then U = parent(U1), U is the maximum

semi-real-knot in H(Π,Γ), and s = s′ + 1.
(ii). If B′

k = ∅ then there is no maximum semi-real-knot in H(Π,Γ). s = s′.
Subcase 3.3 |A′k| ≥ 2. There is no maximum real-knot in H(Π,Γ), r = r′, gr = 0 and

H(Π,Γ) is not a weak fortress of real-knot. By Lemma 5, there is no maximum real-knot
in RU(Π,Γ).

(1).If (a)B′
k = {U} and U = parent(D), for any D ∈ Ak ∪ A′k; and (b)we have α = 1

after complete execute Algorithm 1 on the set Λ = N [U]. Then U is a maximum semi-
real-knot in H(Π,Γ), s = s′ + 1. Ω2 is the covering graph of RU(Π,Γ).

Ak 6= ∅.RU(Π,Γ) is not a fortress of real-knots, fr = 0.
Ak = ∅. If Ω2 has property (F), then RU(Π,Γ) is a fortress of real-knots, fr = 1.

fr = 0 otherwise.
(2). (1)is not hold, then s = s′. Ω0 is the covering graph of RU(Π,Γ). Therefore, if

Ω0 has property (F), RU(Π,Γ) is a fortress-of-real-knots, fr = 1. And fr = 0 otherwise.
We can compute the genomic distance in this case.
The above discussion can be described as the following algorithm.

Algorithm 3
Input: Covering graph Ω, parent D[i], for each i. Ak, Ak, A

′
k, Bk, B

′
k,1 ≤ k ≤ N

Output: genomic distance d
Begin

1. if ∀k(Ak = ∅) then r = s = gr = fr = 0

2. else if there exists at least two k, s.t.,Ak 6= ∅ then

12

(a) s = s′, r = r′, gr = 0

(b) if Ω0 has property (F) then fr = 1 else fr = 0

3. else

(a) if A′k = ∅ then
(1) r = r′, gr = 0, fr = 0
(2) if ((B′

k = {U}) ∧ (U = parent(D),∀D ∈ Ak) ∧ (the output of Algorithm 1
on Λ = N [U]) is α = 1))

then s = s′ + 1 else s = s′

(b) else if A′k = {U1} then
(1)if Ak 6= ∅ then

i. r = r′, gr = 0
ii. if ((B′

k = {U})∧ (U = parent(D),∀D ∈ Ak ∪ {U1})∧ (the output of Algo-
rithm on Λ = N [U]) is α = 1))
then (s = s′ + 1, fr = 1)
else
A. s = s′

B. if Ω0 has property (F) thenfr = 1 else fr = 0

(2)else execute Algorithm 1 on Λ = N [U1]

i. if α = 1 then
A. r = r′ + 1, s = s′

B.if s > 0 then
a. gr = 1
b. ifΩ2 has property (F)) then fr = 1
else
a. gr = 0
b. if Ω0 has property (F) then
b1. if B′

k 6= ∅ then fr = 1
b2. else if (B′

k = ∅)∧ (N(U1) = {U2})∧ (the output of Algorithm 1 on
Λ = N [U2] is α = 1)

b3. thenfr = 1
b4. else fr = 0

ii. else
A.r = r′, gr = 0
B.if Ω2 has property (F)then fr = 1 else fr = 0
C.if B′

k 6= ∅ then s = s′ + 1 else s = s′

(c) else
(1) r = r′.gr = 0
(2) if (B′

k = {U})∧(U = parent(D),∀D ∈ Ak∪A′k)∧(the output of Algorithm
1 on Λ = N [U] is α = 1)
then

i. s = s′ + 1
ii. if (Ak = ∅) ∧ (Ω2 has property (F)) then fr = 1 else fr = 0

13

else

i. s = s′

ii. if Ω0 has property (F)then fr = 1 else fr = 0

4. compute the genomic distance by formula (2) in Theorem 2

End
It is clear to see that Algorithm 3 can be completed in O(n), we can easily get the

following result:

Theorem 6 The genomic distance can be computed in the general case in O(n) time.

3.3 The special case –cotailed genomes

Similar to section 3.2, we can get the linear time algorithm to compute all the parameters
in formula (1), and get the following result. We omit the detail discussion since it is quite
simple in this case.

Theorem 7 The genomic distance can be computed in O(n) time for co-tailed genomes.

4 Conclusion

In this paper we present a simple, linear-time algorithm to compute the genomic dis-
tance between two signed multi-chromosomal genomes. The algorithm improves the com-
plexity of the algorithm, whose running time is , described in [11, 12]. It is important to
the study of multi- chromosomal genome evolution.

References

[1] Sankoff D, Edit distance for genomes comparison based on non-local operation. Proc.
3rd Ann. Symp. Combinatorial Pattern Matching, LNCS 1992,644:121-135,.

[2] Sankoff D, Leduc G, Antoine N, Paquin B, Lang B and Cedergren R, Gene order
comparisons for phylogenetic inference: evolution of the mitochondrial genome, Proc.
Nat. Sci. USA 1992,89:6575-6579.

[3] Kececioglu J and Sankoff D, Exact and approximation algorithms for the reversal
distance between two permutation, Algorithms 1995,13(1/2): 180-210.

[4] Bafna V and Pevzner P, Genome rearrangements and sorting by reversals, SIAM J.
Comput., 25:272-289.1996.

[5] Hannenhalli S and Pevzner P, Transforming cabbage into turnip (Polynomial algo-
rithm for sorting sighed permutations by reversals). In Proc.27th Annual ACM Sym-
posium on the theory of Computing, 1995a, 178-189.

[6] Berman P and Hannenhalli S, Fast sorting by reversals, Proc.7th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM’96)(Berlin), Springer, 1996, LNCS
1075,pp.168-185.

14

[7] Kaplan H, Shamir R and Tarjan R, Faster and simpler algorithm for sorting signed
permutations by reversals, SIAM Journal of Computing 1999,29(3): 880-892

[8] Bader D, Moret B and Yan M, A linear-time algorithm for computing inversion distance
between signed permutations with experimental study, J. comput. Biol.,2001,8:483-491.

[9] Kececioglu J and Ravi R, Of mice and men: evolutionary distances between genimes
under translocation, Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms1995:
604 613.

[10] Hannenhali S, Polynomial-time algorithm for computing translocation distance be-
tween genomes, Discrete Applied Mathematics,1996,71: 137-151.

[11] S. Hannenhali and P. Pevzner, Transforming men into mice-polynomial algorithm for
computing genomic distance problem. Proc. 36th IEEE Symposium on Foundations of
Computer Science , 581-592,1995.

[12] Shamir R and Pzery-Flato M, Two notes on genome rearrangement. Journal of Bioin-
formatics and Computational Biology 2003, 1(1): 71-94

15

16

