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Abstract: - This work proposes a novel approach to arbitrary phased-array with a neural 
adaptive synthesis beamforming system. This system combines feedforward (FF) artificial 
neural network (ANN) with a backpropagation (BP) learning algorithm and linear antenna 
arrays. The proposed neural network allows the beamforming synthesis of array antenna 
steered beams and the creation of null in prescripted direction of interfering signals by 
controlling only the phase excitation of each element. Simulation results confirm the efficacy 
of the proposed scheme. 
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1. Introduction 
Adaptive antenna arrays require extensive 
modelling and simulations prior to their 
practical implementation [1]. In a smart 
antenna arrays system, the beam is 
positioned electronically by adjusting the 
phase between elements of an array in a 
predetermined manner. This operation of 
synthesis [2] for antenna arrays is essential 
in the conception of an optimised antenna. 
This way requires a faster and more 
accurate control of the radiation of 
antennas [3, 4]. The required processing 
has the task of maximizing the gain in the 
direction of the user, and canceling 
undesired signals, like inter-user 
interference, multipath and jammers, 
which highly degrade the system 
performances that use the hypothesis of 
uncorrelated noise [5]. In technical 
literature, the design of digital beam-
formers [6] has been accomplished 
considering different optimal criteria 
(corresponding to different design 
requirements), which are generally reduced 

to the optimization of a nonlinear function, 
using standard techniques of optimization. 
Unfortunately, these optimal criteria lead 
to the optimization of a nonlinear function, 
which can be onerous from a 
computational point of view. Neural 
Networks (NN) [7] reduce remarkably the 
computation time, thanks to their massive 
parallelism, fast convergence rates, and 
very large scale integration (VLSI) 
implementation. In fact, although NN 
consume time in the learning phase, they 
are very fast in the array synthesis 
processing, therefore allowing their use in 
real time. 

The Neural Networks have been 
shown [8, 9] to be useful in the control of 
phased arrays for detection and signal 
location. In particular, neural networks can 
control arrays with various types of 
element and network failures and can still 
perform accurate signal location, despite 
the errors. Since a trained neural network 
has output nodes that correspond to input 
waves from specific angular directions.  
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In this paper we explore the neural network 
model feasibility of realizing beams 
steering and reducing interfering signals in 
mobile communications. We use a phase 
excitation control to create desired beams 
and we present typical examples to 
demonstrate the efficiency of the proposed 
method. 
 
2. Synthesis Problem Formulation 
Mathematically, the purpose of numerical 
synthesis techniques is to minimize the 
error between the required radiated 
function and the computed one. The 
Madsen technique [10] of optimisation is 
used to build the base of training of our 
neural network. This method consists of a 
resolution of nonlinear systems equations 
with the minimax criterion. The result 
obtained is an equiripple synthesis pattern 
[2]. 

The angular behavior of the far 
field E of a linear spaced array of 2N 
radiators can be written as 
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With In, the complex weighting coefficient, 
xn the position of the nth element. 

 
Desired patterns are usually 

complex, and optimal realisable patterns 
can only be defined with respect to some 
error criterion. We will consider the 
minimax norm, defined as 
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Where M is the number of the sampled 
angular direction, Ed is the required pattern 
field, and Ec is the calculate pattern field. 
In pattern matching synthesis by minimax 
criterion, error weighting (Wj) in each 
direction can be adjusted to specify the 
desired levels of array pattern. This 
property may be used to steer the beam in 
all possible directions and to cancel 

interfering sources operating at the same 
frequency as that of the desired source, 
providing a spatial separation, which is 
large enough. 

With this norm we have equal 
relative error (equal decibel ripple) in the 
pattern region and equal side lobes in the 
side-lobe region. For the real field 
synthesis case, eqn. 1 is taken and the 
excitation distribution is symmetrical and 
conjugated with the array centre. The 
computed formulation is: 
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With '
nx , the relative position of the nth 

element with the array centre. 
In the case of power synthesis, the 

error to minimise is equal to the difference 
between the modulus of the computed 
function and the required one. It is proved 
[11] that the real synthesis is preferable in 
case of directive beam.  
 
3. Neural Networks For Steering 
Lobes And Interference 
Cancellation  
The architecture of the beamforming 
neural network (BFNN) consists of an 
antenna measurement input pre-processing, 
an artificial neural network, and an output 
post-processing. Pre-processing and post- 
processing configure the network 
interfaces to perform particular functions 
[12]. The neural network approximates the 
function that we model by adapting its 
internal structure to map the problem 
space. This section briefly summarizes the 
purpose and interaction of these functional 
elements.  
 
3.1 Pre-processing 
 Network pre-processing exploits antenna 
expertise to simplify and enhance neural 
network inputs. It removes redundant or 
irrelevant information, eliminates artificial 
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discontinuities in the input function space, 
and reduces problem inputs to a small set 
of relevant information. In the pre-
processing two steps should be done. The 
first step of pre-processing divides the 
space in 17 sectors, repeated every 10° in 
the interval from -85 degrees to +85 
degrees inclusive. More accurate space 
division sectors can be reached by 
increasing the number of element arrays. 
The input vector to the entry of network is 
in the form of a 17 bit binary code (one bit 
for each sector); all of the bits were set to 
zero except two (+1 and -1) or  (+1 and 
+1). A bin input of +1 indicates a source 
exactly on (main lobe) in the sector, the bin 
location of 0 represents no source in the 
sector and the bin location of -1 indicates a 
null interfering in the sector. This step has 
the advantage to decrease considerably the 
number of unknown variables. 
Convergence may then be achieved more 
rapidly. 

The second step of pre-processing 
reduces the ponderation phase 
discontinuities between consecutive array 
elements. Discontinuities make it difficult 
for the network to learn the mapping from 
a small discrete set of training points. To 
eliminate this difficulty we use the sine and 
cosine of the phase ponderations as final 
processed inputs. We train the output 
nodes to emit values between -1 and +1, 
inclusive, which represent the cosine and 
sine of phase for each antenna element.  
 
3.2 Neural Architecture and Network 
Training 
The choice of neural network architecture 
is crucial for developing a successful 
application. In our case we chose feed-
forward network (FF) for antenna’s 
synthesis application. Because first it 
solves complicated non linear (NL) 
function models. Second it makes possible 
the increasing of hidden layers number and 
finally for its speed of convergence. For 

(FF) the computation will only produce 
correct results if the network has been 
adequately trained with pairs of inputs and 
their corresponding outputs. The training 
set was formed by some significant results 
obtained from the above method of 
synthesis. The Network weights are 
adjusted using a modified gradient descent-
learning algorithm known as 
backpropagation (BP). The hidden and 
output layers use hyperbolic tangent (tanh) 
functions for being active. The resulting 
output gives (2xN) values. 
 
3.3 Post-processing 
For our simulation an eight elements array 
antenna is used. Each output vector 
contains eight cosines and eight sines for 
the phase differences between antenna 
elements.  This technique performs well 
for two steering lobes and steering lobe 
with null interfering in any desired 
direction. 
 
4. Simulation Results 
In each case, the aim of the search is to 
find the phase of each antenna array 
element, for steering lobes and for power 
null direction. 

Table 1 shows the values of neural 
synthesis simulation for an 8 element 
linear array obtained from FF with BP. 

 

 
Table 1: Excitations for different steering 
lobes and interference nulling. 
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Figures (1, 2 and 3) show the simulation 
results for the desired signal and to place 
nulls in the direction of the interfering 
signals. 
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Fig. 1. Steering lobe in sector 2 (-49°) and 

interference nulling in sector 5 (-20°). 
 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-40

-35

-30

-25

-20

-15

-10

-5

0

teta, degree 

dB 

 
Fig. 2. Steering lobe in sector 2 (-50°) and 

interference nulling in sector 9 (20°). 
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Fig. 3. Steering lobe in sector 6 (-10°) and 

interference nulling in sector 8 (10°). 
 

 
Table 2 shows the simulation results for 
two steering lobes in some desired 
directions. 
 

 
Table 2: Excitations for two steering lobes. 
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Fig. 4. Two Steering lobes in sector 4 (-

49°) and in sector 7 (-22°). 
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Fig. 5. Two Steering lobes in sector 7(-

20°) and in sector 9 (0°). 
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Fig. 6. Two Steering lobes in sector 6(-

30°) and in sector 12 (31°). 
 
We can observe from figures that this 
neural model is able to compute the phases 
for multibeam arrays of two steering lobes 
(Figures 4, 5 and 6). 

As the figures indicate, we can 
observe the performance of our network. 
The network has shown its ability to 
generate reasonable results in all checked 
cases. This algorithm holds not only for the 
examples presented above, but also 
appears to be general for all cases of 
synthesized desired characteristics of 
steered beams, an adaptive algorithm used 
to adapt the weights of the array in order to 
track the desired signal and to place nulls 
in the direction of the interfering signals. 
 
4. CONCLUSION 
The presented method is very practical for 
neural network implementation. The 
convergence and the generalization of the 
results are efficiently reached and the 
obtained “not trained” solutions are very 
accurate. The neural approach based on the 
(FF) Neural Network with BP shows good 
simulation results and allows a real time 
synthesis of desired steering beam with 
nulling interference directions. 
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