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Abstract: - An effective method for calculating the Bayesian lower unconditional Cramer-Rao bound on 
condition that the state-vector is constant has been proposed. The recurrence formula for calculating the Fisher 
information matrix is proved. The method is applicable to arbitrary model noises including non-Gaussian ones. 
The effectiveness of the approach proposed is shown by applying to the bearing-only tracking problem. 
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1 Introduction 

Bayesian inference is used in signal 
processing if handling of any uncertainties is 
required. In Bayesian framework, the potential 
accuracy of the state-vector estimator is expressed 
in terms of the unconditional covariance matrix [1]. 
If the filtering problem solved is nonlinear, that 
matrix is difficult to evaluate. On the other hand, it 
is well-known, that the lower bound for the 
unconditional covariance matrix may be determined 
using the Cramer-Rao inequality. That bound is 
called the Cramer-Rao bound (CRB) [2]. The values 
of CRB depend on only the joint p.d.f. for the 
measurements and the state-vector, so multiple 
calculations of the estimator are not necessary. 
Despite the fact that CRB bound is easier to 
calculate than the unconditional covariance matrix, 
one need to evaluate multiple integrals over high-
dimensional spaces. At the same time, calculations 
must be very accurate to guarantee correct 
computing the Fisher matrix inverse. In essence, the 
only tool to handle such integrals is the Monte Carlo 
method, but direct applying is usually ineffective 
because the high dimensionality entails the large 
variance of Monte Carlo estimators. Important 
sampling method [1] decreasing that variance has to 
be applied to set of integrals, thus one need to seek 
several important sampling distributions for each 
element of the Fisher matrix, which results in high 
computational burden. The remedy to overcome this 
difficulty is using some recurrence formula, in 
which expectations would be taken over a low-
dimensional space. Such a formula is derived in [2] 
for the quite general model where the state-vector is 

varying with time and the measurement and system 
noises are additive Gaussian. In our paper, we 
propose a recurrence formula for the special case of 
the constant state-vector, however, we do not 
impose any restrictions on the model noises, 
particularly, the noises are not supposed to be 
Gaussian. So our formula doesn’t follow from one 
obtained in [2], if the constant state-vector is 
substituted. It can be shown that our formula and the 
formula from (2) produce the same results when the 
noises are additive Gaussian and the state-vector is 
constant. At the same time, our result doesn’t follow 
from more complicated and general recurrence 
formula derived in [3]. It should be noted, there is 
number of the recurrence formulas referred to 
conditional CRB (see [4, 5]) but in this investigation 
we are limited by unconditional CRB exclusively. 
The paper is organized as follows: in section 2 the 
problem is formulated and denotes are introduced, 
in the section 3 our recurrence formula is proved, 
the description of the proposed recurrence algorithm 
for CRB and the non-recurrence procedure chosen 
to compare results can be found in section 4. Section 
5 is devoted to simulation results, the simplest 
bearing-only tracking problem is considered, and 
the conclusion is in the section 6.  
 
2 Problem Formulation 

Let the behavior of a discrete-time dynamical 
system depend on the random vector nR∈v  with 
probability density function (p.d.f.) ( )vp . Suppose 
the value of v  is unknown, but the noised 
measurements 
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with independent errors are available at each thi  
moment of time. Let the joint p.d.f. ( )ip :1,yv  be 
known, and our aim is to define at any time 

( ),2,1=iti  the value of a vector function 

( ) pn
i RR →ϕ :v . Let ( )ii :1yϕ  be an estimate of 
( )viϕ , then 
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is a correlation matrix of estimation errors [5]. 
Hereafter ( ).pE  denotes the expectation w.r.t. 
p.d.f. ( ).p . In particular, the diagonal elements of 

iP  are mean squared errors of the state-vector ( )viϕ  
estimated components. Then the posterior Cramer 
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The inequality sign in (2) means the difference of 
left and right matrixes is positive definite. The 
matrix iJ  is called Fisher information matrix, and 








∂
ϕ∂
v

i  is the Jacobian matrix of the vector-function 

iϕ . Product of the matrixes in right side of (2) 
defines Cramer Rao lower Bound for estimating 

( )viϕ  using ( )ii :1yϕ . Inequality (2) holds for the 
quite wide class of the practically significant 
estimators ( )ii :1yϕ  including  biased estimators. 
The sufficient conditions for holding (2) can be 
found in [5]. As one can see from (2) and (3), the 
most difficult task is to evaluate the Fisher matrix, 
since it is imn + -dimensional integral and the 
calculations may be extremely time-consuming at 
the large number of measurements i . Next section a 
recurrence formula for the Fisher matrix is deduced, 
which allows reducing the problem to the 
computation of only mn + -dimensional integrals at 
each estimating step. 
 

3 Recurrence formula for the 
Fisher matrix 

Theorem 1.  Let the errors of measurements 
iyyy ,,, 21   are mutually independent. Suppose 

the p.d.f. ( )vy |ip  is of class 2C with respect to v . 
Then the Fisher matrix iJ  in (3) satisfies the 
recurrence formula  
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Here, ( )vyv
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and we get 
( )( ) ( )( ) ( )( )vyyvyv vvv |ln,ln,ln 1:1:1 iii ppp ∇+∇=∇ − . 
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Substituting (6) in (3), we obtain another 
representation of the Fisher matrix: 
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and using the transposition formula for a matrix 
product we get equation 
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Now transform the summands in the right side of 
(7). Taking into account that 
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we have the following sequence of equations 
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In (9), by kd −v  the volume element of the )1( −n -
dimensional Euclidean space is denoted, that is 

∏
≠
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− =
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v . When integrating by parts in (9), 

we use the fact that ( ) 0,lim 1:1 =−∞→ iv
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k

yv . Thus, from 

(8) and (9) we obtain the simplified expression for 
the sum of the second and third terms in (7): 
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Then simplify the fourth term in (7): 
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At last, transforming the first term in (7) yields 
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Now the required recurrence relation (4) follows 
from (10) − (12). Theorem 1 is proved. 

The advantage of using (4) in comparison with 
to direct non-recurrence formula (3) is that the 
expectation in (3) is taken over the ( )nim + -
dimensional space while in (4) we have to evaluate 
the i  expectations over only ( )nm + -dimensional 
space. As numerical experiments have shown, the 
recurrence formula (4) allows us to speed up the 
computations significantly. It should be note, the 
dimension of integrals in the recurrence relations 
from [2] equals n, so if the measurements noise is 
additive Gaussian, then approach proposed in [2] 
may be more suitable. However, in case the non-
Gaussian noise (for example, a glint noise [6]) the 
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relationships from [2] can’t be applied, while the 
formula (4) is applicable in that situation. 
 
4 Describing recurrence and non-
recurrence algorithms for CRB. 

Evaluating CRB, one need to calculate two 

matrixes ( )
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deviation value, as it is usually done in Monte Carlo 
method. As regards the second matrix -1

iJ , the 
situation is more complicated, since the Monte 
Carlo method has to be applied to iJ  not to -1

iJ , 
and one has to deterrmine the error in calculation of 

-1
iJ  knowing the information about the iJ  

calculation error only. For this aim, the Theorem 2 
is formulated below without proof. 
 
Theorem 2 [7] .  
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serve as a criterion for accuracy of approximate 
computing -1

iJ . Then, basing on (13) and (14), the 
condition for the computational procedure stop may 
be written as  
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where waves are above the approximate values of 
the corresponding matrixes. Now for the 
straigtforward non-recurrence method we have 
relations 
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where ( ) Nki

kk ,1,, :1
)()( =yv  are the random 

independent  vectors with p.d.f. ( )i
kkp :1

)()( ,yv , 
( )iJ~σ  is the matrix containing the standard 

deviations of elements iJ~  and N is number of 
Monte Carlo realizations. Given the accuracy 
parameter 0>ε , the computation stops as soon as 
the condition (16) is satisfied. When iJ  is 
calculated using the recurrence formula (4), the 
Monte Carlo method is applied i times and the 
algorithm is given by the formulas listed below. 
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However the conditions of computing halt in this 
case are the set of inequalities for each i, namely 
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In comparison with the non-recurrence procedure 
(17), some additional error may be accumulated at 
each step of the recursion (4) when relations (18)-
(19) are used but as our numerical experiments have 
shown, that error is very small and may be ignored. 
 
5 Numerical experiments 

Тo examine the effectiveness of the formula 
given by (4) we have considered the simplest 
discrete bearing-only tracking problem [8]. Let the 
object observed (for example, a ship or submarine) 
with coordinates ( ) ( )( ))(, 21 txtxt =x  moves 
according to linear model 

( ) ii tt vxx += 0  

where ( )21 ,vv=v  is some constant velocity and 
( )2

0
1
00 , xx=x  is the initial position of the object. 

 

 

Fig.1 The object’s motion and the angles 
measured. 

The initial position 0x  assumed to be known, but 
the velocity v  is unknown, however, the prior p.d.f. 
( )vp  is available. The observer is located at the 

origin, and measures the object’s bearings iy  at the 
points of time ihti = , where h  is the time step. 
These measurements are affected by the random 

noises, so the model of measurements is defined as 
follows: 
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The noises iw , are centered independent identically 
distributed with the normal p.d.f. 

( ) ( ) ( )225,02 2/exp2,0, rwrrw ii −π=
−

N , 0>r . The 
aim is to determine the object’s position ( )itx  at 
each moment of time it  on condition that the vector 
of the measurements ],,[ 21:1 ii yyy =y is 
available. Let us show that the bearing-only tracking 
problem is the special case of the more general task 
described in section 2. Indeed, the motion of the 
object is fully determined by the unknown velocity 
vector ( )21 ,vv=v  with the prior p.d.f. ( )vp , and 
one is interested in estimating the value of the 
vector-function ( ) ihi vxv +=ϕ 0  given the vector 
of measurements ],,[ 21:1 ii yyy =y  at itt = . In 

our simulation, ( )100;9550 =x , °=1r , s.5=h , 
( ) ( )( )Evv 25,0,8;6, −= Np , 1.0=ε , where 
( )Σ,, mvN  is p.d.f. of the Normal distribution with 

the expectation m and the covariance matrix Σ , 
E is unitary matrix. Then the joint p.d.f. ( )ip :1,yv  
in (3) is 
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For the p.d.f. ( )vy |ip  and ( )ip yv,  in the 
recurrence formula (4) we have 
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Since ( ) ihi vxv +=ϕ 0  is linear function, then in 

(2) the matrix ( ) E
vv ihi

p =







∂
ϕ∂E . The lover 

Cramer-Rao bound has been computed both the 
non-recurrence and recurrence methods. The non-
recurrence method uses (3), (16), (17) while the 
recurrence method employs the recurrence relations 
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given by (4), (18), (19). The results of modeling are 
shown in Fig.2. Along with the CRB bounds the 
conditional potential accuracy lines for the optimal 
Bayesian estimator [2] are shown. Their values were 
obtained at the particular value of the 
measurements’ vector i:1y  which was modelled. The 
Bayesian optimal estimator is defined as  

( ) ( ) ( ){ } ( ){ }ih
ii pipi

opt
i vxvy yvyv +=ϕ=ϕ 0||:1 :1:1

EE    (21) 
The potential accuracy of the optimal estimator is 
described by the conditional covariance matrix  

( ) ( ) ( )( ) ( ) ( )( )






 ϕ−ϕϕ−ϕ=

T
ii

opt
iii

opt
ip

opt
i i

vyvyP yv :1:1| :1

E   (22) 

In (21) and (22) by ( )i:1|p yv  the posterior p.d.f. for 

the velocity v is denoted. To calculate opt
iP , we 

used the non-recurrence important sampling and the 
Delta-method [9] for estimating the calculation 
error. The estimate in (21) is optimal in the sense 
that its mean-square error with respect to the 
( )i:1|p yv  is minimal [10].  

 

 
Fig.2 1,4− CRBs for 1x  and 2x , recurrence method, 
2,5−CRBs for 1x  and 2x , non-recurrence method, 
3,6− conditional potential accuracy for 1x  and 2x . 
 
Table 1. Run time for both methods. 

Number of 
measure 
ments, i 

Run-time, sec. 
Recurrence 

method 
Non-

reccurence 
method 

60 26 1810 
30 12 490 

 

In Fig. 2, one can see that CRBs calculated both the 
recurrence and non-recurrence methods practically 
coincide, and the potential accuracy lines are above 
the CBR. Note the distance between CRB and the 
potential accuracy lines is rather small. From Table 

1, it is can be seen that the recurrence method works 
much faster then the non-recurrence method. 
 
6 Conclusion 
A new recurrent formula for unconditional Cramer-
Rao bounds has been derived. It is applicable for the 
constant state-vector without any restrictions 
imposed on the model noises. Particularly, the non-
Gaussian measurements noises are allowed. This 
formula significantly accelerates the computation of 
the CRB. 
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