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Abstract: - In this paper, we consider the problem of M-ary signal detection based on the generalized approach 

to signal processing (GASP) in noise over a single-input multiple-output (SIMO) channel affected by the frequ-

ency-dispersive Rayleigh distributed fading and corrupted by the additive non-Gaussian noise modelled as 

spherically invariant random process. We derive both the optimum generalized detector (GD) structure based 

on GASP and a suboptimal reduced-complexity GD applying the low energy coherence approach jointly with 

the GASP in noise. Both GD structures are independent of the actual noise statistics. We also carry out a perfo-

rmance analysis of both GDs and compare with the conventional receivers. The performance analysis is carried 

out with reference to the case that the channel is affected by a frequency-selective fading and for a binary freq-

uency-shift keying (BFSK) signalling format. The results obtained through both a Chernoff-bounding technique 

and Monte Carlo simulations reveal that the adoption of diversity also represents a suitable means to restore pe-

rformance in the presence of dispersive fading and impulsive non-Gaussian noise. It is also shown that the sub-

optimal GD incurs a limited loss with respect to the optimum GD and this loss is less in comparison with the 

conventional receiver. 
 

 

Key-Words: - Generalized detector (GD), additive non-Gaussian noise, array processing, diversity, detection 

performance, generalized approach to signal processing (GASP), spherically invariant random processes. 

 

1 Introduction 
In the design of wireless communication systems, 

two main disturbance factors are to be properly ac-

counted for, i.e. the fading and additive noise. As to 

the former, it is usually taken into account by mode-

lling the propagation channel as a linear-time-vary-

ing filter with random impulse response [1], [2]. In-

deed, such a model is general enough to encompass 

the most relevant instances of fading usually encou-

ntered in practice, i.e. frequency- and/or time-selec-

tive fading, and flat-flat fading. As to the additive 

noise, such a disturbance has been classically mode-

lled as a possibly correlated Gaussian random pro-

cess. However, the number of studies in the past few 

decades has shown, through both theoretical consi-

derations and experimental results, that Gaussian ra-

ndom processes, even though they represent a faith-

ful model for the thermal noise, are largely inadequ-

ate to model the effect of real-life noise processes, 

such as atmospheric and man-made noise [3]–[6]  

arising, for example, in outdoor mobile communica-

tion systems. 

It has also been shown that non-Gaussian distur-

bances are commonly encountered in indoor enviro-

nments, for example, offices, hospitals, and factori-

es [7], [8], as well as in underwater communications 

applications [9]. These disturbances have an impul-

sive nature, i.e. they are characterized by a signific-

ant probability of observing large interference levels 

Since conventional receivers exhibit dramatic perfo-

rmance degradations in the presence of non-Gaussi-

an impulsive noise, a great attention has been direc-

ted toward the development of non-Gaussian noise 

models and the design of optimized detection struc-

tures that are able to operate in such hostile environ-

ments. 

Among the most popular non-Gaussian noise 

models considered thus far, we cite the alpha-stable 

model [10], the Middleton Class-A and Class-B noi-

se [11], the Gaussian-mixture model [12] which, in 

turn, is a truncated version, at the first order, of the 

Middleton Class-A noise, and the compound Gaus-

sian model [13], [14]. In particular, in the recent 

past, the latter model, subsuming, as special cases, 

many marginal probability density functions (pdfs) 

that have been found appropriate for modelling the 

impulsive noise, like, for instance, the Middleton 

Class-A noise, the Gaussian-mixture noise [14], and 

the symmetric alpha-stable noise [15]. They can be 

deemed as the product of a Gaussian, possibly com-
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plex random process times a real non-negative one 

[16]. 

Physically, the former component, which is usu-

ally referred to as speckle, accounts for the conditio-

nal validity of the central limit theorem, whereas the 

latter, the so-called texture process, rules the gross  

characteristics of the noise source. Very interesting 

property of compound-Gaussian processes is that, 

when observed on time intervals whose duration is 

significantly shorter than the average decorrelation 

time of the texture component, they reduce to sphe-

rically invariant random processes (SIRPs) [17] and 

[18], which have been widely adopted to model the 

impulsive noise in wireless communications [13], 

[14], and [19], multiple access interference in direct-

sequence spread spectrum cellular networks [20], 

and clutter echoes in radar applications [21], [22]. 

In the present paper, we consider the problem of 

detecting one of M signals transmitted upon a zero-

mean fading dispersive channel and embedded in 

SIRP noise by the generalized detector (GD) based 

on the generalized approach to signal processing 

(GASP) in noise [23]–[28]. The similar problem has 

been previously addressed. In [14], the optimum re-

ceiver for flat-flat Rayleigh fading channels has be-

en derived, whereas in [29], the case of Rayleigh-di-

stributed, dispersive fading has been considered. It 

has been shown therein that the receiver structure 

consists of an estimator of the short-term condition-

nal, i.e. given the texture component, noise power 

and of a bank of M estimators/correlators keyed to 

the estimated value of the noise power. 

Theoretically, the GD can be applied to detect 

any signal, i.e. the signal with known or unknown, 

deterministic or random parameters. The GD imple-

mentation in wireless communication and radar is 

discussed in [30]–[34] and [28], respectively. The 

signal detection performance improvement using 

GD in radar sensor system is investigated in [35]–

[38]. The first attempt to investigate the GD emplo-

yment in cognitive radio networks has been discus-

sed in [39]. 

Since such a structure is not realizable, a subop-

timum detection structure has been introduced and 

analyzed in [40]. In this paper, we design the GD 

extending conditions discussed in [29], [40] to the 

case that a diversity technique is employed. It is 

well known that the adoption of diversity techniques 

is effective in mitigating the negative effects of the 

fading, and since conventional diversity techniques 

can incur heavy performance loss in the presence of 

impulsive disturbance [41], it is of interest to envis-

age the GD for optimized diversity reception in non- 

Gaussian noise. 

We show that the optimum GD is independent 

of the joint pdf of the texture components on each 

diversity branch. We also derive a suboptimum GD, 

which is amenable to a practice. We focus on the re-

levant binary frequency-shift-keying BFSK) signall-

ing case and provide the probability of error as well 

as the optimum GD and the suboptimum GD. We 

assess the channel diversity order impact and noise 

spikiness on the performance. 
The remainder of the present paper is organized 

as follows. The problem statement is declared in Se-

ction 2. The brief description of GD structure and 

the main functioning principles are delivered in Sec-

tion 3. Additionally the design of optimal and sub-

optimal GD structures is discussed in Section 3. 

Special cases, namely the channels with flat-flat Ra-

yleigh fading and the channels with slow frequency-

selective Rayleigh fading are discussed in Section 4. 

Evaluation of the probability of error for designed 

GD structures in the presence of spherically invari-

ant disturbance is carried out in Section 5. Simulati-

on results allowing us to define the Chernoff bounds 

for the given probability of error are presented in 

Section 6. Some conclusions are made in Section 7. 

2 Problem Statement 
The problem is to derive the GD aimed at detecting 

one out of M signals propagating through single-in-

put multiple-output (SIMO) channel affected by dis-

persive fading and introducing additive non-Gaussi-

an noise. In other words, we have to deal with the 

following M-ary hypothesis test: 

                

],0[    ,,1             

 

)()()( 

............................... 

)()()( 

,

1,11

TtMi

tntstx

tntstx

PiPP

i

i



















H
 ,            (1) 

where P is the channel diversity order and ],0[ T  is 

the observation interval; the waveforms
P
pp tx 1}{ )(   

are the complex envelopes of the P distinct channel 

outputs; Mits P
pip ,,1,)( 1, }{  represent the base-

band equivalents of the useful signal received on the 

P diversity branches under the ith hypothesis. 

Since the channel is affected by dispersive fad-

ing, we may assume [2] that these waveforms are re-

lated to the corresponding transmitted signals )(tui  

      




 ],0[     ,  )(),()(, Ttdtuthts ipip       (2) 
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where Ppthp ,,1),,(  is the random impulse res-

ponse of the channel p-th diversity branch and is 

modelled as a Gaussian random process with respect 

to the variable t. In keeping with the uncorrelated-

scattering model, we assume that the random proces-

ses Ppthp ,,1),,(  are all statistically independ-

ent. 

As a consequence, the waveforms P
pip ts 1, }{ )(  are 

themselves the independent complex Gaussian rand-

om processes that we assume to be zero-mean and 

with the covariance function given by 

                 
],0[,    ,,1    

 ,  )()(),( ][ ,,

TtMi

stsEtCov ipip



 






              (3) 

and independent of p (the channel correlation prope-

rties are identical of each branch) and upper bound-

ed by a finite positive constant. This last assumption 

poses the constraint on the average receive energy in 

the i-th hypothesis  
T

ii dtttCov
 

0 
),(E . 

We also assume in keeping with the model [42] 

that 0)]()([ ,, ipip stsE . This is not a true limitation 

in most practical instances, and it is necessarily sati-

sfied if the channel is wide sense stationary. Finally, 

as to the additive non-Gaussian disturbances 
P
pp tn 1)}({  , we resort to the widely adopted compo-

und model, i.e. we deem the waveform )(tn p as the 

product of two independent processes: 

               Pptgttn ppp ,,1    ,  )()()(           (4) 

where )(tp is a real non-negative random process 

with marginal pdf )(
p

f and )(tg p is a zero-mean 

complex Gaussian process. If the average decorre-

lation time of )(tp is much larger than the observa-

tion interval ],0[ T , then the disturbance process de-

generates into SIPR [17], i.e. 

              Pptgtn ppp ,,1    ,  )()(   .             (5) 

From now on, we assume that such a condition 

is fulfilled, and we refer to [13] and [14] for further 

details on the noise model, as well as for a list of all 

of the marginal pdfs that are compatible with (5). 

Additionally, we assume 1][ 2 pE  and that the corr-

elation function of the random process )(tg p is eith-

er known or has been perfectly estimated based on 

(5). While previous papers had assumed that the no-

ise realization )(,),(1 tntn P were statistically inde-

pendent, in this paper, this hypothesis is relaxed. 

To be more definite, we assume that the Gaussi-

an components )(,),(1 tgtg P are uncorrelated (in-

dependent), whereas the random variables P ,,1   

are arbitrary correlated. We thus denote by 

),,( 1,,1 PP
f   their joint pdf. It is worth pointing 

out that the above model subsumes the special case 

that the random variables P ,,1  are either statisti-

cally independent or fully correlated, P 1 .  

Additionally, it permits modelling a much wider 

class of situations that may occur in practice. For in-

stance, if one assumes that the P diversity observati-

ons are due to a temporal diversity, it is apparent 

that if the temporal distance between consecutive 

observations is comparable with the average décor-

relation time of the process )(t , then the random 

variables P ,,1  can be assumed to be neither in-

dependent nor fully correlated. Such a model also 

turns out to be useful in clutter modelling in that if 

the diversity observations are due to the returns 

from neighbouring cells, the corresponding texture 

components may be correlated [43]. 

For a sake of simplicity, consider the white noi-

se case, i.e. )(tnp possesses an impulsive covariance 

p  

)(2)(2),( 0
2

0 ][   ttEtCov pn NN   ,                                                         

(6) 

where 02N is the power spectral density (PSD) of 

the Gaussian component of the noise processes 

)(,),(1 tgtg P . Notice that this last assumption do-

es not imply any loss of generality should the noise 

possess a non-impulsive correlation. 

Then, due to the closure of SIRP with respect to 

linear transformations, the classification problem 

could be reduced to the above form by simply pre-

processing the observables through a linear whiten-

ing filter. In such a situation, the )(, ts ip represent the 

useful signals at the output of the channel cascade 

and of the whitening filter. Due to the linearity of 

such systems, they are still Gaussian processes with 

known covariance functions. 

Finally, we highlight here that the assumption 

that the useful signals and noise covariance functi-

ons (3) and (6) are independent of the index p has 

been made to simplify notation. 

3 GD Structure 

3.1 Main functioning principles 
As we mentioned before, the GD is constructed in 

accordance with the generalized approach to signal 
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processing (GASP) in noise [23]–[28]. The GASP 

introduces an additional noise source that does not 

carry any information about the signal with the pur-

pose to improve the qualitative signal detection per-

formance. This additional noise can be considered 

as the reference noise without any information about 

the signal to be detected. 

The jointly sufficient statistics of the mean and 

variance of the likelihood function is obtained in the 

case of GASP employment, while the classical and 

modern signal processing theories can deliver only a 

sufficient statistics of the mean or variance of the li-

kelihood function (no the jointly sufficient statistics 

of the mean and variance of the likelihood function). 

Thus, GASP implementation allows us to obtain 

more information about the input process or receive-

ed  signal.                       

Owing to this fact, the detectors constructed ba-

sed on GASP basis are able to improve the signal 

detection performance in comparison with other co-

nventional detectors. The GD consists of three chan- 

 

 

nels (see Fig. 1): the correlation channel (the preli-

minary filter PF, the multipliers 1 and 2, the model 

signal generator MSG); the autocorrelation channel 

(PF, the additional filter AF, multipliers 3 and 4, su-

mmator 1); and the compensation channel (summa-

tors 2 and 3, accumulator 1). 

As we can see from Fig. 1, under the hypothesis 

1H (a “yes” signal), the GD correlation channel ge-

nerates the signal component ][][mod ksks ii caused by 

interaction between the model signal and the incom-

ing signal and the noise component ][][mod kks ii  cau-

sed by interaction between the model signal ][mod ksi  

(the MSG output) and the noise ][ki (the PF output) 

Under the hypothesis 1H , the GD autocorrelation 

channel generates the signal energy ][2 ksi and the ra-

ndom component ][][ kks ii  caused by interaction 

between the ][ksi signal and the noise ][ki  (the PF 

output). The main purpose of the GD compensation 

 

 

 
 

Figure 1. Principal flowchart of GD. 

  

channel is to cancel the GD correlation channel noi- 

se component ][][mod kks ii  and the GD autocorrela-

tion channel random component ][][ kks ii  based on 

the same nature of the noise ][ki . For description 

of the GD flowchart we consider the discrete-time 

processes without loss of any generality. 

Evidently, this cancelation is possible only sati-

sfying the condition of equality between the signal 

model ][mod ksi  and incoming signal ][ksi  over the 

whole range of parameters. The condition ][mod ksi   

][ksi is the main functioning condition of the GD. 

Satisfying this condition, we are able to define the 

incoming signal parameters. 

Naturally, in practice, the signal parameters are 

random. How we can satisfy the GD main function-

ing condition and define the signal parameters in 

practice if there is no a priori information about the 

signal and there is an uncertainty in signal parame-

ters, i.e. signal parameters are random, is discussed 

in detail in [23]–[25]. 
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Under the hypothesis 0H – a “no” incoming sig-

nal – satisfying the GD main functioning condition, 

i.e. ][][mod ksks ii  , we obtain the background noise 

][][ 22 kk ii   only at the GD output. Additionally, 

the practical implementation of the GD decision sta-

tistics requires an estimation of the noise variance 
2
n using the reference noise ][ki at the AF output. 

AF is the reference noise source and the PF band-

width is matched with the band width of the incom-

ing signal to be detected. The threshold apparatus 

(THRA) device defines the GD threshold.  

The linear systems (the PF and AF) can be con-

sidered as the band-pass filters with the impulse res-

ponses ][mhPF and ][mhAF , respectively. For simpli-

city of analysis, we assume that these filters have 

the same amplitude-frequency characteristics or im-

pulse responses by shape. Moreover, the AF central 

frequency is detuned relative to the PF central freq-

uency on such a value that the incoming signal can 

not pass through the AF.  The PF bandwidth is mat-

ched with the incoming signal bandwidth. Thus, the 

incoming signal and noise can be appeared at the PF 

output and the only noise is appeared at the AF out-

put. 

If a value of detuning between the AF and PF 

central frequencies is more than
sf 54 , where sf  

is the signal bandwidth, the processes at the AF and 

PF outputs can be considered as the uncorrelated 

and independent processes and, in practice, under 

this condition, the coefficient of correlation between 

PF and AF output processes is not more than 0.05 

that was confirmed by experiment in [44] and [45].    

The processes at the AF and PF outputs present 

the input stochastic samples from two independent 

frequency-time regions. If the noise ][kw at the PF 

and AF inputs is Gaussian, the noise at their outputs 

is Gaussian, too, owing to the fact that PF and AF 

are the linear systems and we believe that these line-

ar systems do not change the statistical parameters 

of the input process. Thus, the AF can be consiered 

as a generator of reference noise with a priori infor-

mation a “no” signal (the reference noise sample). A 

detailed discussion of the AF and PF can be found 

in [25, Chapter 3] and [26, Chapter 5]. 

The noise at the PF and AF outputs can be pre-

sented in the following form:     
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AFAF
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mkwmhkkw
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      (7)      

Under the hypothesis 1H , the signal at the PF output 

(see Fig. 1) can be defined as ][][][ kkskx iii  , 

where ][ki  is the observed noise at the PF output 

and ][][][ kskhks ii  ; ][khi are the channel coeffici-

ents indicated here only in general case. Under the 

hypothesis 0H and for all i and k, the process ][kxi  

][ki at the PF output is subjected to the complex 

Gaussian distribution and can be considered as the 

independent and identically distributed (i.i.d) pro-

cess. The process at the AF output is the reference 

noise ][ki with the same statistical parameters as 

the noise ][ki . 

The decision statistics at the GD output presen-

ted in [23] and [25, Chapter 3] is extended to the ca-

se of antenna array employment when an adoption 

of multiple antennas and antenna arrays is effective 

to mitigate the negative attenuation and fading eff-

ects. The GD decision statistics can be presented in 

the following form:  
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H   ,               (8) 

where   )1(),...,0(  NxxX is the vector of the ran-

dom process forming at the PF output and GDTHR is 

the GD detection threshold. Under the hypotheses 

1H and 0H , and when the amplitude of the signal is 

equal to the amplitude of the model signal, i.e. 

][][mod ksks ii  , the GD decision statistics )(XGDT ta-

kes the following form, respectively: 
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In (9) the term s

N

k

M

i i Eks  


 

1

0 1

2 ][ corresponds 

to the average signal energy, and the term 

  


 



 


1

0 1

21

0 1

2 ][][
N

k

M

i i

N

k

M

i i kk   presents the back-

ground noise at the GD output. The GD background 

noise is a difference between the noise power form-

ing at the PF and AF outputs. Practical implementa-

tion of the GD decision statistics requires an estima-
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tion of the noise variance 2
n using the reference noi-

se at the AF output.  

3.2 Optimum GD structure design 
Given the M-ary hypothesis test (1), the synthesis of 

the optimum GD structure in the sense of attaining 

the minimum probability of error erP requires evalu-

ating the likelihood functionals under any hypothes-

is and adopting a maximum likelihood decision-ma-

king rule. Formally, we have 

        ][][ );(max);(ˆ
k

ik
ii tt HHHH xx 


      (10) 

with T
P txtxt )](,),([)( 1 x . The above functionals 

are usually evaluated through a limiting procedure 

(see Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of optimum GD in compound Gaussian noise. 

 

We evaluate the likelihood )(| QiQ
f xx H of the Q-

dimensional random vector T
Qxx ],,[ 1 x whose 

entries are the projections of the received signal al-

ong the first Q elements of suitable basis iB . There-

fore, the likelihood functional corresponding to iH is 

              
)(

)(
lim);(

|
][

QQ

Q

AF

Q

Q
i

AF

i

f

f
t

n

x
x

n

x H
H


   ,           (11) 

where )(
QQ

AFAF
f nn is the likelihood corresponding to 

the reference sample with a priori information a 

“no” signal is obtained in the additional reference 

noise forming at the AF output, i.e. no useful signal 

is observed at the P channel outputs. 

In order to evaluate the limit (11), we resort to a 

different basis for each hypothesis. We choose for 

the i-th hypothesis the Karhunen-Loeve basis iB de-

termined by the covariance function of the useful 

received signal under the hypothesis iH . Projecting 

the waveform received on the p-th diversity branch 

along the first N axes of the i-th basis yields the fol-

lowing N-dimensional vector: 

            Ppi
pNp

i
pN

i
pN ,,1   ,  ,,,  gsx         (12) 

where 
i

pN ,s and 
i

pN ,g are the corresponding projecti-

ons of the waveforms )(, ts ip and )(tg p . 

Since iB is the Karhunen-Loeve basis for the ra-

ndom processes )(,),( ,,1
tsts ii P

 , the entries of
i

pN ,s  

are a sequence of uncorrelated complex Gaussian 

random variables with variances )( 22

,,
,,

1 ii Nss   , 

which are the first N eigenvalues of the covariance 

function ),( utCovi , whereas the entries of pN ,g are a 

sequence of uncorrelated Gaussian variables with 

variance 02N . Here we adopt the common appro-

ach of assuming that any complete orthonormal sys-

tem is an orthonormal basis for white processes [14] 

and [46]. 

Upon defining the following NP-dimensional 

vector 

                    Ti iT

PN

iT

N

iT

NN
][

,2,1,
,,, xxxx                 (13) 

the likelihood functional taking into consideration 

subsection 3.1 and [23] and [25] can be written in 

the following form 
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where i
pjx , is the j-th entry of the vector i

pN ,x , the in-

tegrals in (14) are over the set P),0[     
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and 
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The convergence in measure of (14) for increa-

sing N to the likelihood functional ]);([ it Hx is ens-

ured by the Grenander theorem [46]. In order to ev-

aluate the above functional, we introduce the follo-

wing substitution 

              Pp
z

y
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i
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N
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4 4
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x
             (17)                                                              

where ||||  denotes the Euclidean norm. 

Applying the same limiting procedure as in [29], 

we come up with the following asymptotical 

expression: 
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(19) 

represents the ratio between the conditional likeli-

hoods for iH and 0H based on the observation of the 

signal received on the p-th channel output only.  

Equation (18) also requires evaluating 

                      
N

Z

i
p

N
p

N

2
, ||||

lim
x


   ,                    (20) 

that, following in [29], can be shown to converge in 

the mean square sense to the random variable 
244 pn for any of the Karhunen-Loeve basis ii ,B    

M,,1  . Due to the fact that the considered noise is 

white, this result also holds for the large signal-to-

noise ratios even though, in this case, a large numb-

er of summands is to be considered in order to achi-

eve a given target estimation accuracy. 

Notice also that 244 pn can be interpreted as a 

short-term noise power spectral density (PSD), na-

mely, the PSD that would be measured on sufficien-

tly short time intervals on the p-th channel output.  

Thus, the classification problem under study ad-

mits the sufficient statistics 
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The above equations demonstrate that the optimum 

GD structure for the problem given in (1) is comp-

letely canonical in that for any ),,( 1,,1 PP
f    

and, for any noise model in the class of compound-

Gaussian processes and for any correlation of the 

random variables P ,,1  , the likelihood functional 

is one and the same. Equation (21) can be interpret-

ed as a bank of P estimator-GDs [42] plus a bias 

term depending on the eigenvalues of the signal cor-

relation under the hypothesis iH . 

The optimum test based on GASP can be writt-

en in the following form: 

 iHĤ  
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2          (22) 

where )(ˆ
, ts ip is the linear minimum mean square es-

timator of )(, ts ip embedded in white noise with PSD 

pZ , namely, 

                
T

pipip duuxuthts
0

,, )(),()(ˆ   ,              (23) 
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where ),(, uth ip is the solution to the Wiener-Hopf 

equation 

 
T

iippipi tCovthZdzzhztCov
0

,, ),(),(),(),(   . 

(24)                                            

As to the bias terms ipb , , they are given by 

PpMi
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j p

s

ip
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,,1 and ,,1  , 1ln

1

2

,

,  




















  .                                              

(25) 

The block diagram of the corresponding GD is 

shown in Fig. 2. The received signals )(,),(
1

txtx
P

  

are fed to P estimators of the noise short-term PSD, 

which are subsequently used for synthesizing the 

bank of MP minimum mean square error filters 

MiPph ip ,,1,,,1),,(,   to implement the 

test (22). The newly proposed GD structure is a ge-

neralization, to the case of multiple observations, of 

that proposed in [30], to which it reduces to 1P . 

3.3 Suboptimum GD structure design 
Practical implementation of the decision rule (22) 

requires an estimation of the short-term noise PSDs 

on each diversity branch and evaluation of the test 

statistic. This problem requires a real-time design of 

MP estimator-GDs that are keyed to the estimated 

values of the short-term PSDs. This would require a 

formidable computational effort, which seems to 

prevent any practical implementation of the new re-

ceiving structure. Accordingly, we develop an alter-

native suboptimal GD structure with lower comple-

xity. 

Assume that the signals ,,,1:)(,{ Ppts ip      

},,1 Mi   possess a low degree of coherence, 

namely, that their energy content is spread over a 

large number of orthogonal directions. Since 

                              





1

2

,
j

si ij
E   ,                        (26) 

the low degree of coherence assumption implies that 

the covariance functions ),( tCovi have a large num-

ber of nonzero eigenvalues and do not have any do-

minant eigenvalue. 

Under these circumstances, it is plausible to as-

sume that the following low energy coherence con-

dition is met: 

      ,2,1  , ,,1    , 2 0
2

,
 jMi

ijs N   .     (27) 

If this is the case, we can approximate the log-likeli-

hood functional (21) with its first-order McLaurin 

series expansion with starting point 0/2

,
ps Z

ij
 .  

Following the same steps as in [40], we obtain 

the following suboptimal within the limits GASP 

decision-making rule: 

  











P

p

T T

ipp

p

i dtdtCovxtx
Z1 0 0

2
),()()(

1ˆ HH  

                     
p

i

T

AF
Z

dttn
p

E








 
0

2 )(  

  

















P

p

T T

kpp

p

dtdtCovxtx
Z1 0 0

2
),()()(

1
  

ik
Z

dttn
p

k

T

AFp








     ,  )(
0

2 E
 . 

(28) 

The new GD again requires estimating the short 

-term noise PSDs PZZ ,,1  . Unlike the optimum GD 

(22), in the suboptimum GD (28), the MP mini-mum 

mean square error filters ,,,1),,(, Pph ip      

Mi ,,1  whose impulse responses depend on 

PZZ ,,1  through (24) are now replaced with M fil-

ters whose impulse response ),( tCovi is independ-

ent of the short-term noise PSDs realizations, which 

now affect the decision-making rule as mere propo-

rtionality factors. The only difficulty for practical 

implementation of such a GD scheme is the short-

term noise PSD estimation through (20). However, 

as already mentioned, such a drawback can be easi-

ly circumvented by retaining only a limited number 

of summands. 

4 Special Cases 

4.1 Channels with flat-flat Rayleigh fading 
Let us consider the situation where the fading is slow 

and non-selective so that the signal observed on the 

p-th channel output under the hypothesis iH  takes the 

form 

                )(}exp{)( tujAts ippp,i    ,               (29) 

where }exp{ pp jA  is a complex zero-mean Gaussi-

an random variable. The signal covariance function 

takes a form: 

                   )()(),(   iiii ututCov E   ,               (30) 
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where the assumption has been made that )(tui pos-

sesses unity norm. Notice that this equation repre-

sents the Mercer expansion of the covariance in a 

basis whose first unit vector is parallel to )(tui . 

It should be noted that since the Mercer expansi-

on of the useful signal covariance functions contains 

just one term, the low energy coherence condition is, 

in this case, equivalent to a low SNR condition. It 

thus follows that the low energy coherence GD can 

be now interpreted as a locally optimum GD, thus 

implying that for large SNRs, its performance is ex-

pectedly much poorer than that of the optimum GD. 

The corresponding eigenvalues are 

                 1  ,  0  ,  22

,,1
 k

ii ksis  E   .          (31) 

Accordingly, the minimum mean square error 

filters to be substituted in (26) have the following 

impulse responses: 

                 )()(),(,  


 ii
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i
ip utu

Z
th

E
E

  ,          (32) 

where the bias term is simply }{1ln, p

i

Zipb
E

 .We 

explicitly notice here that such a bias term turns out 

to depend on the estimated PSD pZ . Substituting in-

to (22), we find the optimum test 
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(33) 

whereas its low energy coherence suboptimal app-

roximation can be written in the following form: 
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(34) 

It is worth pointing out that both GDs are akin to 

the “square-law combiner” GD [25] that is well 

known to be the optimum GD in GASP [23]–[27] 

viewpoint for array signal detection in Rayleigh flat -

flat fading channels and Gaussian noise. The relev-

ant difference is due to the presence of short-term 

noise PSDs PZZ ,,1  , which weigh the contribution 

from each diversity branch. In the special case of 

equienergy signals, the bias terms in the above deci-

sion-making rules end up irrelevant, and the optim-

um GD test (33) reduces to a generalization of the 

usual incoherent GD, with the exception that the de-

cision statistic depends on the short-term noise PSD 

realizations. 

4.2 Channels with slow frequency-selective     

      Rayleigh fading 
Now, assume that the channel random impulse resp-

onse can be written in the following form: 







1

0

1
,, )(}exp{)(),(

L

k

kpkppp kWjAt  , 

(35) 

where }exp{ ,, kpkp jA  is a set of zero-mean, indepe-

ndent complex Gaussian random variables, and L is 

the number of paths. Equation (35) represents the 

well known taped delay line channel model, which is 

widely encountered in wireless mobile communi-

cations. It is readily shown that in such a case, the 

received useful signal, upon transmission of )(tui , 

has the following covariance function: 






 
1

0

112  ,  ),( )()(
L

k

iiki kWukWtuAtCov   

                           Mi ,,1                           (36) 

where 2
kA is the statistical expectation (assumed in-

dependent of p) of the random variables
2

,kpA . These 

correlations admit L nonzero eigenvalues, and a 

procedure for evaluating their eigenvalues and eige-

nfunctions can be found in [47]. In the special case 

that the L paths are resolvable, i.e. 1WT , the op-

timum GD (18) assumes the following simplified 

form: 

 iHĤ
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where iE is the energy of the signal )(tui . The low 

energy coherence suboptimal GD (24) is instead 

written as 

 iHĤ
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Optimality of (37) obviously holds for one-short de-

tection, namely, neglecting the intersymbol interfer-

ence induced by the channel band limitedness. 

5 Performance Assessment 
In this section, we focus on the performance of the 

proposed GD structures. A general formula to eva-

luate the probability of error erP of any receiver in the 

presence of spherically invariant disturbance ta-kes 

the following form: 

                    ννν ν dfePP erer )()|(   ,               (39) 

where )|( νePer is the receiver probability of error in 

the presence of Gaussian noise with PSD on the p-th 

diversity branch 2
02 pvN . 

The problem to evaluate erP reduces to that of 

first analyzing the Gaussian case and then carrying 

out the integration (39). In order to give an insight 

into the GD performance, we consider a BFSK sig-

naling scheme, i.e. the base-band equivalents of the 

two transmitted waveforms are related as 

                  }2exp{)()( 12 ftjtutu     ,               (40) 

where 1 Tf denotes the frequency shift. Even for 

this simple case study, working out an analytical ex-

pression for the probability of error of both the opti-

mum GD and of its low energy coherence approxi-

mation is usually unwieldy even for the case of Ga-

ussian noise. 

With regard to the optimum GD structure, upper 

and lower bounds for the performance may be esta-

blished via Chernoff-bounding techniques. Genera-

lizing to the case of multiple observations, the pro-

cedure in [42], the conditional probability of error 

given P ,,1  can be bounded as 
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where )|( ν is the following conditional semiinva-

riant moment generating function 
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(42) 

with 
1

2 }{ js j
 being the set of common eigenvalues. 

Substituting this relationship into (41) and averag-

ing with respect to P ,,1  yields the unconditional 

bounds on the probability of error erP for the optim-

um GD (22). 

6 Simulation Results 
To proceed further in the GD performance there is a 

need to assign both the marginal pdf, as well as the 
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channel spectral characteristics. We assume hereaf-

ter the generalized Laplace noise, i.e. the marginal 

pdf of the p-th noise texture component takes the fo-

llowing form: 

         0  ,  exp
)(

2
)( }{ 212 


  xxxxf

p




 


       (43) 

where is a shape parameter, ruling the distribution 

behaviour. In particular, the limiting case   

implies )1()(  xxf
p

 and, eventually, the Gauss-

ian noise, where increasingly lower values of ac-

count for increasingly spikier noise distribution.  

Regarding the channel, we consider the case of 

the frequency-selective, slowly fading channel, i.e. 

the channel random impulse response is expressed 

by (35), implying that the useful signal correlation is 

that given in (36). For simplicity, we also assume 

that the paths are resolvable. In the following plots, 

the erP is evaluated by the following way: a) through 

a semianalytic procedure, i.e. by numerically avera-

ging the Chernoff bound (41) with respect to the re-

alizations of the P ,,1  , and b) by resorting to a 

Monte Carlo counting procedure. In this later case, 

the noise samples have been generated by multiply-

ing standard, i.e. with zero-mean and unit-variance 

complex Gaussian random variates time the rand-om 

realizations of P ,,1  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Chernoff bounds for the probability of error erP of the optimum GD. 

 

The Chernoff bound for the optimum GD versus 

the averaged received radio-frequency energy cont-

rast that is defined as  


L

j ns j
P

1

5.042
0 )(4 at P   

2  and for two values of the noise shape parameter 

 is shown in Fig.3. The noise texture components 

have been assumed to be independent. 

Inspecting the curves, we see that the Chernoff 

bound provides a very reliable estimate of the actual 

probability of error erP , as the upper and lower bo-

unds follow each other very tightly. As expected, 

the results demonstrate that in the low erP region, the 

spikier the noise, i.e. the lower , the worse the GD 

performance. Conversely, the opposite behaviour is 

observed for small values of 0 . This fact might ap-

pear, at a first look, surprising. It may be analytical-

ly justified in light of the local validity of Jensen’s 

inequality [42] and is basically the same phenomen-

on that makes digital modulation schemes operating 

in Gaussian noise to achieve, for low values of 0 , 
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superior performance in Rayleigh flat-flat fading 

channels than in no-fading channels. Notice, this 

phenomenon is in accordance with that observed in 

[14]. 

In order to validate the Chernoff bound, we also 

show, on the same plots, some points obtained by 

Monte Carlo simulations. These points obviously lie 

between the corresponding upper and lower proba-

bility of error erP bounds. Additionally, we compare 

the GD Chernoff bound with that for the conventio-

nal optimum receiver [48]. Superiority of GD struc-

ture is evident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The probability of error erP at several values of P. 

 

In Fig. 4, the effect of the channel diversity ord-

er is investigated. Indeed, the optimum GD perfor-

mance versus 0 is represented for several values of 

P and with 1 . The PZZ ,,1  have been assumed 

exponentially correlated with the coefficient of corr-

elation equal to 2.0 . A procedure for generating 

these exponentially correlated random variables for 

integer and semi-integer values of is reported in 

[49]. As expected, as P increases, the GD performa-

nce ameliorates, thus confirming that diversity rep-

resents a suitable means to restore performance in 

severely hostile scenarios. 

Also, we compare the GD performance with the 

conventional optimum receiver one [48] and we see 

that the GD keeps superiority in this case, too. The 

optimum GD performance versus 0  for the genera-

lized Laplace noise at 4,1  P , and for several 

values of the correlation coefficient  is demonstra-

ted in Fig. 5. It is seen that the probability of error 

erP improves at vanishingly small values of  . For 

small values of  , the GD takes much advantage in 

the diversity observations. For high values of  , the 

realizations PZZ ,,1  are very similar and much less 

advantage can be gained through the adoption of a 

diversity strategy. Such GD performance improve-

ment is akin to that observed in signal diversity de-

tection in the presence of flat-flat fading and Gaus-

sian noise. We see that the GD outperforms the con-

ventional optimum receiver [48] by the probability 

of error erP . 

In Fig. 6, we compare the optimum GD perfor-

mance versus that of the low energy coherence GD. 
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We assumed 2.0 and 4P . It is seen that the pe-

rformance loss incurred by the low energy coheren-

ce GD with respect to the optimum GD is kept with-

in a fraction of 1 dB at the probability of error equal 

to .4
10


erP Simulation results that are not presented 

in the paper show that the crucial factor ruling the 

GD performance is the noise shape parameter, whe-

reas the particular noise distribution has a rather li-

mited effect on the probability of error erP . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The probability of error erP at several values of the coefficient of correlation. 

 

7 Conclusions 
In this paper, we have considered the problem of di-

versity detection of one out of M signals transmitted 

over a fading dispersive channel in the presence of 

non-Gaussian noise. We have modelled the additive 

noise on each channel diversity branch through a 

spherically invariant random process, and the opti-

mum GD has been shown to be independent of the 

actual joint pdf of the noise texture components pre-

sent on the channel diversity outputs. The optimum 

GD is similar to the optimum GD for Gaussian noi-

se, where the only difference is that the noise PSD 

02N is substituted with a perfect estimate of the 

short-term PSD realizations of the impulsive additi-

ve noise. 

We also derived a suboptimum GD matched 

with GASP based on the low energy coherence hy-

pothesis. At the performance analysis stage, we fo-

cused on frequency-selective slowly fading chann-

els and on a BFSK signalling scheme and evaluated 

the GD performance through both a semi-analytic 

bounding technique and computer simulations. Nu-

merical results have shown that the GD performan-

ce is affected by the average received energy cont-

rast, by the channel diversity order, and by the noise 

shape parameter, whereas it is only marginally affe-

cted by the actual noise distribution. Additionally, it 

is seen that in impulsive environments, diversity re-

presents a suitable strategy to improve GD perform-

ance.  
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Figure 6. The probability of error erP for the optimal and low energy coherence GDs. 
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