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Abstract: - The variable block sizes motion estimation in H.264 is key technique to remove inter-frame 
redundancy. This technique not only requires huge memory bandwidth but also its computation complexity is 
higher. Therefore, this paper proposes one efficient sub-pixel search algorithm for reducing computation 
complexity and bandwidth utilization, and a novel VLSI architecture for this algorithm which simplifies variable 
block sizes motion estimation. The proposed method is efficient compared with those of existing methods which 
have negative effects on compression, with respect to chip area, operation frequency, and throughput rate. The 
proposed sub-pixel search architecture decreases the numbers of search pixels of full pixels motion estimation 
by around 70% and the chip area by around 40% than the others search algorithm. Besides, an optimized motion 
estimation MV prediction algorithm is used to  remove data dependency, and optimization storage policies are 
used to  save hardware resources. The proposed sub-pixel search architecture can work at 200 MHz with 530k 
gate count, which supports high-definition television 1920×1080 format. 
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1   Introduction 
The H.264 Advanced Video Codec is an ITU 
standard for encoding and decoding video with a 
target coding efficiency twice that of H.263 and with 
comparable quality [1]. An increasing number of 
services and growing popularity of HDTV are 
creating much more need for higher coding 
efficiency. An important coding tool of H.264 is the 
variable block size matching algorithm for the ME 
(Motion Estimation) which is a part of the prediction 
step [2]. Because of the use of variable 
block-matching motion estimation (Variable Block 
Sizes Motion Estimation, VBSME), multiple 
reference frame motion compensation (Motion 
Compensation, MC) and Lagrange rate-distortion 
optimization (Rate Distortion Optimization, RDO) 
and other advanced coding techniques, making the 
integer pixel motion estimation (IME) and fractional 
pixel motion estimation (FME) consisting of 
inter-frame motion estimation process takes up more 
than 70% of the entire encoder encoding computing 
time [3]. So the integer pixel motion estimation is the 
bottleneck of H.264 encoder hardware 
implementation [4]. The key problem of the H.264 
encoder for HDTV is that the bandwidth of memories 
access is limited. 

Many efficient techniques have been used to 
reduce the complexity, for example Full-Search 
motion estimation, UMHexagon search, NTSS 

search etc by JM software. At the same time many 
hardware architecture have been proposed by some 
researchers. The authors researched full-pixel search 
motion estimation hardware implementation includes 
Anchao Tsai, Mohammed Sayed and Weifeng He 
etc. In paper [5], the authors present an efficient 
architecture design based on the search point 
reduction for HDTV variable block size ME of 
H.264/AVC. The hardware architecture is 
implemented with the 2-D systolic array and it 
successfully increases the coding speed at the 
expense of hardware cost. The 2-D systolic array 
successfully reduces the data reuse for pixel SAD 
computation, but it increased the number of control 
circuits for its complexity. In paper [6], the authors 
researched parallel-pipelined architecture based on 
full search block matching algorithm, proposed an 
architecture consisting of two main parts: the SAD 
computing part and the SAD comparing part with 
pipeline registers between them and a control unit to 
control their operation. Using the techniques of 
pipeline circuit and reducing supply voltage reduce 
the power consumption and simplify the control 
circuit. But the drawback of this technique is that the 
data reuse rate is low for reading data from storage. 
The full-search algorithm exhaustively computes all 
candidate blocks to find the best match within a 
particular window [7]-[9]. Therefore, this technique 
has enormous complexity. In order to reduce the 
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motion estimation complexity, many fast searching 
algorithms are presented [10]-[13], but they have not 
perfect solutions. In paper [10] and [11], the authors 
use fast ME algorithm called HMDS to reduce 
bandwidth, but the hardware implementation of 
HMDS algorithms need more logic circuits. In paper 
[12] and [13], the  modified three step search (TSS) 
algorithm is  used to  reduce  the  computational  cost  
and  the memory access in the  motion  estimation 
part. Those fast ME algorithm can dramatically 
reduce the search points, but the efficiency of VLSI 
architecture is decreased because of the lack of 
regularity. So the most VLSI implementations of 
motion estimations adopt full-search mode for 
regular designs [14] [15].However, such full-search 
chips are not suitable for portable systems due to 
more bandwidth and power consumption for HDTV. 

This paper proposes an efficient sub-pixel search 
algorithm for variable block-matching motion 
estimation. The efficiency of the sub-pixel search 
cooperated with a simplified predicted MV is verified 
for H.264/AVC encoders. We found that the 
sub-pixel search ME can reduce 
hardware consumption around 40% compared to JM 
reference software with negligible video quality loss. 
To realize the sub-pixel search algorithm, the 
VBSME architecture is designed by using a 1-D 
systolic array. Thus, the proposed architecture can 
compute the optimal MV more efficiently than the 
existing ones found in the literature. The proposed 
VBSME architecture with input memory array 
includes the sum computation of absolute difference 
(SAD) and Lagrangian cost function. Simulation 
results demonstrate that the proposed scheme has 
better coding performance than conventional 
architectures. 

The remainder of this paper is organized as 
follows. Section II introduces the proposed SPR 
algorithm. Section III presents the proposed very 
large-scale integrated VLSI architecture for VBSME 
implementation using SPR method. Section IV, 
presents the experimental results using several video 
sequences, in order to verify the effectiveness of the 
proposed SPR algorithm. Conclusions are finally 
drawn in Section V. 

 
 

2 Proposed Sub-pixel Search 
Algorithms 
In video encoding systems, the motion estimation 
(ME) can remove most inter-frame redundancy, so a 
high compression ratio can be realized. Among 
various motion estimation algorithms, fast 
full-search algorithm is usually used because of its 

perfect effect and regular computation [16]. Thus, we 
propose an efficient sub-pixel search algorithm for 
variable block-matching motion estimation, in order 
to reduce the bandwidth and power consumption. 

 
 

2.1 VBSME Algorithm 
In a typical VBSME, each frame of a video sequence 
is divided into a fixed number of no overlapped 
square blocks [17]. The search for the best matching 
block is compared with the previous frame search 
area. The sum of absolute differences (SAD) is used 
as the main metric. SAD is shown (1) as below: 
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In the H.264/AVC motion estimation, the current 

frame is divided into a number of small 
macroblocks(MBs) of size 16×16. The tree structure 
motion estimation method is used in the H.264 
VBSME. As shown in figure 1, the luminance MB 
size of 16×16 may be divided into 16×8, 8×16, 8×8, 
and 8×8 block also may be divided into 4×8, 8×4, 
4×4 blocks [18]. The tree structure motion estimation 
method in VBSME can adopt many combinations of 
variable block-sizes to match the shape of different 
objects in the video frame [19]. As a result, the 
coding efficiency of the tree structure motion 
compensation method is better than the previous 
approaches. Although it can achieve a higher 
compression ratio, it not only requires large 
computation complexity but also needs huge memory 
bandwidth for HDTV. 

(1)16x16

(2)16x8

(3)8x16

(4)8x8

(6)4x8
(7)4x4

(5)8x4

 
Fig.1. The tree structure motion estimation for H.264 
 
 
2.2 Proposed Sub-pixel Search  Algorithm 
In order to reduce the bandwidth and power 
consumption, the paper proposed the Sub-pixel 
Search Algorithm base on similarity value of 
adjacent pielxs.  

 
2.2.1 Sub-pixel Extraction 
We compress the variable macroblocks data into a 
quarter of original MB of image according to 
similarity of adjacent pielxs. Simultaneously, we 
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obtain sub-pixel(SuP) on the basis of regulation (2), 
as below: 

[ ]),max(),,max( )1,1(),1()1,(),( ++++= jijijiji PPPPMINSuP  
----------------------------------------------------------(2) 
Accordingly each frame size of M×N of a video 
sequence is compressed into to a quarter of  original 
frame, and the number of each macroblock pixel 
ponits is reduced to a quarter of  original MB. So the 
computing load is enormous reduction in VBSME. 
As shown in the figure 2. 

(MxN) ¼

MxN  
Fig.2. The sub-pixel extraction 
 
2.2.2 Hierarchy search mode 
We adopt hierarchy search mode to achieve sub-pixel 
search algorithm, which has two steps: First 
sub-pixel points search, then full-pixel search.  

In the sub-pixel points search, the current MB and 
the corresponding reference frame use the sub-pixel 
data. In addition, the tree structure motion estimation 
method which has 7 partition block patterns can reuse 
the smaller blocks’ SADs to calculate the larger 
blocks’ SAD of an 8×8 block in parallel. According 
to the formula (2), each current MB size is changed to 
a quarter of the original MB. As shown in figure 3, 
we first calculate the a(2×2) block SAD, then 
calculate the b(4×2) and c(2×4) blocks by 
combinations of corresponding a(2×2) blocks. So we 
can achieve SAD of d(4×4), e(8×4), f(4×8), g(8×8) 
blocks by this method.  
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Fig.3. Different sub-blocks of a 16×16 MB for 
H.264/ AVC 

In the full-pixel search, the current MB and the 
corresponding reference frame use the full-pixel data. 

In addition, this step only searches eight points 
surround the sub-pixel that computed in step one. 

 
2.2.3 Optimize predictions of motion vector 
In H.264/AVC, predicted motion vectors of different 
block sizes have different values as described in [20]. 
However, it is very complex for hardware 
implementation, because the data dependency of the 
neighboring MBs makes the 1-D systolic array 
difficult to implement. In order to reduce the data 
dependency of the neighboring MBs, the author 
proposed a modified PMV strategy in paper [21]. 
This strategy is that the PMV values of all types of 
block size are calculated from the median of left MB, 
up MB, and right-up MB. However, we have to 
slightly modify this design for sub-pixel search 
implementation. The proposed PMV values of all 
types of block size are calculated from the median of 
left-down MB, up MB, and right-up MB. Therefore 
the predictions of motion vector should have 
common values for each MB and its sub-blocks. 

 
 

3   Hardware Architecture Design 
 
 
3.1 Overview of the Architecture in 
H.264/AVC 
The MB is the basic unit of operation in the video 
frames processing of H.264 encoder, it includes a 
16×16 luminance MB and a 8×8 chrominance [22]. 
The encoder is organized as a pipeline architecture 
processing the data on a MB basis. The pipeline has 
four stages. As shown in figure 4, the first stage 
consists of the sub-pixel motion estimation (ME), the 
second stage involves the integer ME and fraction 
ME, the third stage consists of the motion 
compensation (MC) and the intra prediction and the 
TQ and the Inverse TQ, the fourth stage involves the 
Deblocking Filter and Entropy code. At last the code 
stream data are output. The Sub-pixel ME and 
full-pixel ME module are discussed only in this 
paper. 

MC

I nt r a 
Pr edi ct i on

（ l uma16× 16（
l uma4× 4（
Chr oma8× 8（

T/
Q/
Q- 1/
T- 1

STAGE1 STAGE2 STAGE3 STAGE4

Debl ock 
Fi l t er

Ent r opy

Sub_pi xel  ME

I nt eger  ME

Fr act i on ME

 Fig.4. H. 264 encoder hardware architecture 
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3.2 Overview of the Architecture in Sub-pixel 
To achieve the HDTV (1920 × 1080, 30Hz) video 
encoder Motion Estimation, a high efficient data 
reusable architecture is presented. Fig. 5 shows the 
block diagram of the proposed architecture which 
consists of the Sub-pixel ME and Integer ME 
module.  Additionally, both of the modules are 
connected with pipeline registers. The Sub-pixel ME 

pipeline scheme is adopted to divide the proposed 
architecture into three parts for easy realization. The 
first part is the data input system which comprises 
two major modules. One is the Cur_Ram which 
stores the current data from memory. Another is 
Sub_Ref_Ram which stores the sub-pixels reference 
data from memory. The second part is the SAD 
compute array 

SDRAM

Cur
Sram

Ref
Sram

Cur_Ram

Sub_Ref_Ram

PEarry
1

PEarry
2

PEarry
3

PEarry
4

Refdata_ Reassign_Unit

Add_acc

Motion_
cost

+SAD

RDO
Unit

Refaddr
Generate

Unit

Mv_Ram MV_Pred
Unit

SYSTEM_ CONTROL_FSM

BUS

RefMb_data
Reftrol Addr

Data_mb_ position
 

Data Flow 

Control Flow

Ram1 Ram2 Ram3

Sub_Cur_data assign

PEarry
MV_out
Sub_pixel

MV_out
IME

Cur_Data

Ref_Data

Access

Access

Fig.5 The architecture of H.264 VBSME 
which includes PEarrays 1-4 and Add_acc. The third 
part is the Motion cost and RDO Unit. The System 
Control Unit, which schedules the pipeline 
operations, completes the encoder architecture. The 
pipeline processes each MB as follows: First The 
luma pixel of the reference video is input to the 
Sub_Ref_Ram by computing sub-pixel. The luma 
component of the current MB is input to the 
Cur_Ram according to current MB Coordinate. At 
the same time, the Refadder Generate Unit compute 
the predicted motion vector (PMV) by using the MV 
of left MB, up MB, and right-up MB. Then the luma 
pixel data is loaded to the Ram1 Ram2 process 
element arrays (PEarry) compute the SAD of current 
pixel and reference pixel. Firstly, the Add_acc tree is 
used to get the sub-macroblock SAD of variable 
block-matching. Secondly, the third part computes 
each block cost including the Motion cost and the 
corresponding SAD. At last, the best matching block 
MV is selected by the RDO Unit and output to the 
Full-PE which is used to search the full pixel point.  

 
3.3 1-D Processing Element Array 
To increase process speed of motion estimation and 
reduce the data reuse for pixel SAD compute, the 
1-D systolic array is chosen as the basic architecture 
of a PEA to compute the SAD of a 2x2 block. As 
shown in Fig.6 The motion search engine is formed 
by four PEA arrays which are formed by 16  
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Fig.6 The architecture of PEarrays 1-4 
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PEAs. So this process engine can obtain the SAD of 
four macroblocks and its sub-macroblocks at one 
clock. Fig.7 shows the PEA structure, which is 
formed by 4 PEs of 16 PEAs. So this structure needs 
256 PEs to perform the entire computation. Fig.8 
shows the PE structure, which includes the search 
pixel data register (SRD-REG) and current pixel data 
register (CMD-REG) and the MV input unit. 
Because adjacent PEA arrays unit need the same 
search data and current pixel data, the SRD-REG and 
CMD-REG can be reused by adjacent PEA-arrays. 
The SRD-REG is used to hold the corresponding 
search region data and to change in next pulse. The 
CMD-REG stores the current data, and it is refreshed 
once when the Sub-pixel ME compute next MB MV. 
Firstly, the SAU is responsible for calculating the 
absolute difference between current block pixel and 
search area pixel. Then the SRD-REG is propagated 
to the next PE search data register (NSR), when the 
current block SAD is computed completely. 

PE0 PE1

PE2 PE3

Ref-Data

Cu
r-D

at
a

2x
2

SA
D

 
Fig.7 The architecture of PEA 

REGSRD

REGCMD

|C-R|

NSR

 
Fig.8 The architecture of PE 
 
 
3.4 Data Flow of PEA arrays 
The ME engine needs search pixel data (SRD) and 
current pixel data (CMD), which are read from the 
Sub_Ref_RAM and Cur_RAM. As shown in fig.9, 
the current_MB sub-pixel register of PEA arrays is 
assigned in left-to-right order when encoding one 
MB. There are 64 CMD-REG per sub-pixel MB, 
which is partitioned into 8 columns. For example, the 
first column C(i,0) is assigned firstly, next is 
C(i,1),...the last is C(i,7). The data is loaded in 
CMD-REG registers within 8 clocks cycles.  

C(0,0)

C(1,0)

C(7,0)

C(0,1)

C(1,1)

C(7,1)

C(0,7)

C(1,7)

C(7,7)

Current_MB

 
Fig.9. CMD register 

We designed the architecture as shown in fig.6 for 
increasing reusability for the search region data. As 
shown in fig.10, 88 SRD registers marked as S(0,0), 
S(0,1)...S(10,7) are used to store the search region 
pixel data. The operating process of VBSME engine 
is as following: firstly the SRD data is loaded in 
RAM1, RAM2 and RAM3. Then the S(0,0), S(1,0), 
S(2,0)...S(10,0) are loaded in first cycle, in the next 
cycle the data stored in first column register are 
shifted to the second column, and next cycle all data 
in the SRD register are shifted to next column. 
By this way, the search region data is 
refreshed in proper timing.  

S(0,0)
S(1,0)
S(2,0)
S(3,0)
S(4,0)
S(5,0)
S(6,0)
S(7,0)
S(8,0)
S(9,0)

S(10,0)

S(0,1)
S(1,1)
S(2,1)
S(3,1)
S(4,1)
S(5,1)
S(6,1)
S(7,1)
S(8,1)
S(9,1)
S(10,1)

S(0,7)
S(1,7)
S(2,7)
S(3,7)
S(4,7)
S(5,7)
S(6,7)
S(7,7)
S(8,7)
S(9,7)
S(10,7)

R
A

M
1

R
A

M
2

R
A

M
3

PEA array 4
PEA array 3
PEA array 2
PEA array 1

Fig.10.  SRD register 
 
 
3.5 Merge Module 
The advantage of the Sub-pixel Search Algorithm is 
that each block SAD of variable block sizes 
partitions can be computed at the same time. By this 
means the computation complexity is simplified for 
variable block-matching. As shown in fig.11, PEA0, 
PEA1,…PEA15 are SADs with each block of 2x2 
partition. The merging block of PEA0 and PEA1 is a 
SAD of 2x4 partition, the merging block of PEA0 
and PEA4 is a SAD of 4x2 partition, the merging 
block of PEA0, PEA1, PEA4, PEA5 is a 4x4 
partition. The SAD of 8x4, 4x8, 8x8 partition are 
calculated in the same way. A carry look-ahead 
adder is used to compute the SAD for avoid the long 
critical path. 
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PEA0
PEA4
PEA2
PEA6

PEA14

PEA1
PEA5
PEA3
PEA7

PEA15

2x22x4 4x24x48x44x8

8x8

 
Fig.11 Architecture of  the SAD  
 
 
3.6 Sub-pixel search memory organize 
As shown in Fig.12, the proposed hexagon search 
region replaces the rectangle region for reducing the 
search points in VBSME. The rectangle region is 
used in previous design. For example, the rectangle 
search region (128x64) is used in paper [23] and 
another paper [24] uses the square search region 
(65x65). There are 2112 pixels when the hexagon 
search region is adopted. The search pixels are 
reduced 31.5% from the square search region. So this 
method tremendously increases the processing speed 
without affecting the performance of video coding.  

In scheduling, each PE SRD must propagate its 
processed data to the neighboring PE. The 
interconnections between neighbor PEs and data 
holding memory are required. In order to simplify 
the design of SRD memory, we proposed to use three 
RAMs to store the SRD. As shown in Fig.10, each 
RAM could store 4 lines of pixels. According to the 
maximal line of 72 pixels, we used three 2k (72 × 4 × 
8bits) on-chip RAMs for the SRD to store each strip 
data at different instants. Consequently, we divided 
the search region into 14 independent regions as 
illustrated in Fig.12. Each independent region is 
called a strip. The search directions are from left to 
right and from top to bottom as shown in map. 

Just as shown in Fig.13, we need nine steps to 
fetch the entire SRD data from memories.  In the first 
step, the data of 0th, 1th and 2th strips will be 
mapped to RAM1 RAM2 and RAM3. In this step, 
the SAD of 1th strips MB are calculated 
and output the results. The following strips are 
required when motion search reaches the next stage. 
In step 2, the data of 3rd strip will be mapped to 
RAM1 and the reading order for input motion 
estimation engine is changed to RAM2 RAM3 
RAM1 from top to bottom. By using this method, the 
SAD of each pixel point is calculated in the search 
region.  

72 pixels

56
 p

ix
el

s

4 pixels

4 pixels

0th strip

2nd strip

13th strip

1st strip

F
Fig.12 The search region 

Step 1 

 0th Strip 

 1st Strip 

 2nd Strip 

RAM1

RAM2

RAM3

Step 2 Step 3

3rd Strip 

 4th Strip 

Step 11

 13th Strip 

 1/2/3 2/3/1  3/1/2  2/3/1 Order
 

Fig.13 Nine steps of fetching SRD memory 
The Table.1 shown the scheduling of motion 

estimation engine, all of search points are completed 
in 812 cycles. 
Table.1 Clock Distribution 

CLK SYSTEM_CONTROL
0~15 LOAD DATA

16~47

Position of MB

MB(15,0)~MB(31,3)Process 1st Strip
48~55 LOAD DATA
56~95 Process 2nd Strip MB(11,4)~MB(51,7)
96~103 LOAD DATA

104~151
152~159
160~215
216~223

Process 3rd Strip
LOAD DATA

Process 4th Strip
LOAD DATA

Process 5th Strip224~287
LOAD DATA

Process 6nd Strip
LOAD DATA

Process 7rd Strip
LOAD DATA

Process 8th Strip
LOAD DATA

Process 9th Strip
LOAD DATA

Process 10th Strip
LOAD DATA

Process 11th Strip

Process 12th Strip
LOAD DATA

MB(7,8)~MB(55,11)

MB(3,12)~MB(59,15)

MB(0,16)~MB(63,19)

MB(0,20)~MB(63,23)

MB(0,24)~MB(63,27)

MB(0,28)~MB(63,31)

MB(3,32)~MB(59,35)

MB(7,36)~MB(55,39)

MB(11,40)~MB(51,43)

MB(15,44)~MB(47,47)

289~296
297~360
361~368
369~432
433~440
441~504
505~512
513~568
569~576
577~624
625~732
733~772
773~780
781~812

 
 
 

3.7 Proposed MV cost 
The MV cost represents the required bits for the 
difference of PMV and current motion vector. The 
architecture of MV cost adopted by predecessors is 
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look-up table, for example in paper [5]. However this 
method will use many ROM for look-up table, 
especially when the search region is larger. The 
whole architecture of MV cost is show in Fig. 14. We 
use the multiplexer to generate the data bits of 
absolute PMV. Then the results are enlarged by two 
times. Finally we obtain the MV cost by adding 1 to 
the results of second step. The experimental results 
show that the circuit is more rational and valid. 

6'd
5'd
4'd
3'd
2'd
1'd
0'd

|PMV|

6bit

<<1

1'b

MVcost

 
Fig.14 The architecture of MV cost 

 
 

3.8 Full pixel search 
In the first stage, the best matching point of sub-pixel 
is obtained by the blocks of PEarrays 1-4, Add_acc, 
Motion cost and RDO Unit. For example we obtain 
the best matching point in located the circle marked 
as 4(start) in fig.15. Then the search region data is 
mapped into the RAM. Then, we compute the SAD 
of full pixel search block by order 0,1,2,5,4,3,6,7,8, 
to increase efficiency, for the search data can be 
reused by adjacent PE arrays. Additionly, the MV 
cost of each point still uses the same results from the 
first stage  motion cost block, for the MV cost  keeps 
almost unchanged in the small size range. 

0 1 2
3 4 5
6 7 8  

Fig. 15 The map of full pixel search   
The architecture of full-pixels search shown in 

fig.16 can compute SAD of one bock of 4x4 in one 
clock. Based on the demand of HDTV encode, the 
same architecture numbers of 2 are added in the stage 
2. When the stage one ends, the Ref_Data RAM loads 
the corresponding data of reference pixle according 
to the best match coordinate. 

According to the H.264 implementation 
principle, we firstly need to obtain the best partition 
mode in 8x8,16X8,8X16 and 16x16. If the partition is 
8x8 mode, the other sub block partition SAD will be 
computed to select the best partition. The order of 
partition blcok process is 8x8, 16x8, 8x16 for reduce 
the steps of process. 
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Fig.16 The architecture of full pixel search 
 
 
4  Results and Discussion 
The algorithm presented in this paper is implemented 
with C program. It is compared with the fast search 
algorithm of JM16.2 in the same condition. The 
setting of initial conditions: (1)group of picture 
structure is IPPP; (2)Hadamard transform used; 
(3)MV search range 128× 96; (4)number of 
reference frames equal to 1. (5)RDO ON; (6)quarter 
pixel is used for MV resolution; (7)fast search 
integer pixel ME; (8) context-adaptive 
variable-length coding is enabled. 
 
 
4.1 Results of the sub-pixels search algorithm 
A series of video sequences were used in our 
simulations. These sequences cover a wide range of 
motion content with two different formats including 
QCIF and HDTV. In addition, each video test in 
three QP includes 28, 32 and 36. 

The simulation result of the sub-pixel algorithm 
shown in Table 3 depicts the performance with 
different sequences compared to JM16.2. The (+) 
sign in BD-BR and ( −) sign in BDPSNR indicate the 
coding loss. The performance of PSNR and bit-rate 
in Table 2 does not significantly degrade which is a 
good trade off between performance and hardware 
cost. Additionally, the BD-BR is greater for CIF  
than HDTV video, for the larger the size of video, 
the less MB is divided into sub-block and 
the better effect of sub-pixel search algorithm is. The 
proposed algorithm can save the search points by 
around 70% in ME and yields an acceptable 
performance, which is deemed worthy for hardware 
implementation. 

 
 

4.2 Results of the VLSI Architecture 
The proposed architecture was synthesized based on 
the Synopsys Design Compiler with SMIC 0 .13μm 
CMOS technology and Artisan Memory compiler. 
The circuit can operate at frequencies reaching 200 
MHz, subsequently allowing the VBSME processing 
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with a search range of 128 × 96. The total clock 
cycles required to process an MB is 812 clock cycle.  

Table 3 compares the proposed method with 
previous works in hardware design of motion 
estimation. The search pixels processed per gate in 
one second (pixels/(s*gate)) represent the hardware 
efficiency. Considering the performance and 
efficiency of the proposed sub-pixels search 
algorithm, the two level architecture was used in the 
ME design. Each level used independent 1-D array 
architecture. 

 
Table.2. Simulation results for different video size 

The proposed architecture has SAD and MV cost 
electric circuit, whereas papers [25], [23], [26] and 
[27] have only SAD circuit. The hardware efficiency 
of proposed architecture was improved more than 4 
times comparing with other method. The proposed 
architecture processes an MB within 812 cycles. 
Therefore, the resulting values explain why the 
proposed method performs better than that in [26] 
and [27]. The proposed sub-pixel search ME 
intellectual property covered with full search range of 
128 × 96 can process 1920 × 1080 video sequence at 
200 MHz. 

BD-
PSNR

-0.07

-0.07

-0.09

-0.07

-0.05

-0.03

-0.89

-0.02

-0.03

-0.03

Sequences

CIF

HDTV
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foreman

mobile

factory
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touchdown_pass
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Full search Subpixel search QP

28
32
36
28
32
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28
32
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32
36
28
32
36
28
32
36

kbits/s kbits/s PSNR PSNR
1657.92

990.77

589.30

35.09

32.08 

29.42

1733.9

1032.43

616.85

35.02 

32.01 

29.33 

BD-BR

+4.58%   

+4.20%

+4.67%

665.57

409.2

260.2

37.34

35.1

32.84

679.2

418.03

262.9 

37.27

35.05

32.81

+2.05%

+2.15%

+1.04%

2735.81

1571.57

870.93

34.42

30.97
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2811.89

1603.92

875.52

34.32

30.87

27.89 

+2.78%

+2.06%

+0.52%

-0.1

-0.1

8505.65 

4936.37

2914.99

38.3 

35.88

33.84

8577.89 

2945.62

38.28

35.85

33.81

+0.85%

+0.98%

+1.05%

57317.04

40121.28

27213.78

38.64

36.04

33.84

57318.19

40125.6 

27215.28

38.64 

36.03 

33.69

+0.002%

+0.01%

+0.005%

0

-0.01

-0.05

31609.78

19431.46

11280. 14

38.77

36.97

35.43

31620.53

19436.11

11287.20 

38.77

36.97

35.43

+0.03%

+0.02%

+0.06%

0

0

0

38879.23

20508.00

11260.61

34.69

32.58

30.53

39333.89 

20750.02

11366.69

34.65

32.54 

30.47 

  
+1.16%

+0.82%

+0.93%

-0.04
-0.03

-0.06

4984.80 

 
 

Table.3 Comparison of the Proposed Architecture and Previous Works
Paper

Search range

Architecture

Process ( um )

Work frequency（ MHz（

Function

Cycles/MB

33x33

[23] [5] [26] [27] Proposed

2-D 1-D

128x64

200 108 200 200 260 200

0.18

160k 330k 597k 210k 530k

SAD SAD+Mvcost

48x32

0.18 0.13

SAD+Mvcost

16x16 16x16 128x96

0.18 0.18 0.13

Area : Gate - count 330k

1129 8270 1614 256 5216 812

Search pixels/s/gate 9973241206 335 1003 4730

[25]

SAD
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V. Conclusion 

This paper presentes an efficient motion 
estimation algorithm based on the fast search 
algorithm for HDTV variable block size ME of 
H.264/AVC. The proposed algorithm can effectively 
complete the motion estimation with a peak  
signal-to-noise  ratio  drop  of  less  than  0.1 dB than 
that of the fast search algorithm, and a maximum 
video  codec bit rates drop  of  less  than  1.16% than 
that of fast search algorithm of HDTV. In addition, 
the accuracy of the proposed algorithm makes it 
highly promising for hardware design 
implementation. The hardware architecture is 
implemented with the 1-D systolic array and its 
related circuits are successfully simulated for the 
H.264/AVC. The chip can operate at 200 MHz with a 
gate count of 530 k, including the memory modules. 
The proposed method is efficient compared with 
those of existing methods with respect to chip area, 
operation frequency, and throughput rate with 
negative effects on compression. The proposed 
sub-pixel search architecture decreases the numbers 
of search pixels of full pixels motion estimation by 
around 70% and the chip area by around 40% than 
the previous full pixels search algorithm.  
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