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Abstract: - The use of the discrete orthogonal moments, as feature descriptors in image analysis and pattern 

recognition is limited by their high computational cost. To solve this problem, we propose, in this paper a new 

approach for fast computation of Charlier‟s discrete orthogonal moments. This approach is based on the use of 

recurrence relation with respect to variable x instead of order n in the computation of Charlier‟s discrete 

orthogonal polynomials and on the image block representation for binary images and intensity slice 

representation for gray-scale images. The acceleration of the computation time of Charlier moments is due to 

an innovative image representation, where the image is described by a number of homogenous rectangular 

blocks instead of individual pixels. A novel set of invariants moment based on the Charlier moments is also 

proposed. These invariants moment are derived algebraically from the geometric moment invariants and their 

computation is accelerated using image representation scheme. The proposed algorithms are tested in several 

well known computer vision datasets, regarding computational time, image reconstruction, invariability and 

classification. The performance of Charlier invariants moment used as pattern features for a pattern recognition 

and classification is compared with Hu and Legendre invariants moment. 

 

 

Key-Words: - Charlier discrete orthogonal polynomials, Charlier moments, Charlier invariant moments, Image 
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1 Introduction 

The image moments has been widely used for image 

analysis and pattern recognition [1]-[7]. Hu [1] is 

the first who introduced the geometric moments in 

the field of the image in 1962. He derived a full set 

of geometric moment invariants under translation, 

scaling and rotation. These invariant moments are 

successfully used as image descriptors in many 

pattern recognition and classification. However, the 

non orthogonal of the Geometric moments causes 

the redundancy of information which less efficient 

in difficult problems where more discriminative 

information needs to be captured. To overcome this 

problem, Teague [4] in 1980 introduced the 

orthogonal continuous moments defined in terms of 

Legendre and Zernike orthogonal continuous 

polynomials. The orthogonal property assures the 

robustness against noise and eliminates the 

redundancy of information [4]. The computation of 

continuous orthogonal moments as Legendre, 

Zernike, Pseudo-Zernike and Fourier-Mellin 

requires the discretization of continuous space and 

the approximation of the integral. This increases the 

computational complexity and causes the 

discretization error [5]-[9]. To eliminate this error 

and to simplify the computational complexity, the 

discrete orthogonal moments such as Tchebichef, 

Krawchouk, and Hahn have been introduced in 

image analysis and pattern recognition [10]-[13]. 

The discrete orthogonal moments are defined from 

the discrete orthogonal polynomials which eliminate 

the need for numerical approximation and satisfy 

the orthogonal property precisely [14]. Indeed, it 

was proved that these discrete orthogonal moments 

have better capability in image representation than 

the continuous orthogonal moments [10]-[14]. The 

computation of discrete orthogonal moments is 

limited by two major difficulties. The first is related 

to the high computational cost especially for large 

size image and the higher orders. The second is 

related to the propagation of numerical error in the 

computation of discrete orthogonal polynomials. 

Indeed, the calculated values of discrete orthogonal 

polynomials, using the hypergeometric function and 

recurrence relation of three-terms with respect to the 

order n of discrete orthogonal polynomials, are 

complex and require a lot of time for all higher 

orders which causes the propagation of numerical 

error [14]. To limit this error and to reduce the time 

calculation of moments and also to ameliorate the 
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accuracy of image reconstruction the scientists 

propose the use of the recurrence relation with 

respect to the variable x instead of the order n in the 

calculation of discrete orthogonal polynomials [13]-

[14]. To reduce the computational time cost of 

moments, several algorithms are introduced in 

literature [15]-[24]. Spiliotis and Mertzios [15] have 

presented a fast algorithm to calculate the geometric 

moments for binary images using the image block 

representation. Papakostas et al [16] have given an 

algorithm that permits the fast and accurate 

computation of Legendre moments based on the 

Image Slice Representation (ISR) method. Shu et al 

[17] have introduced an approach to accelerate the 

time computation of Tchebichef moments by 

deriving some properties of Tchebichef polynomials 

and by using the image block representation for 

binary images and image slice representation for 

gray-scale images. Hosny in [20] has proposed an 

exact and a fast computation of geometric moments 

for gray scale images by applying the methodology 

of image block representation. The geometric 

invariant moments and the orthogonal invariant 

moments have been studied by several researchers 

[1]-[3], [25]-[30]. In literature, the orthogonal 

invariant moments are calculated directly from the 

orthogonal polynomials or indirectly as linear 

combination of geometric moments. Indeed, Chong 

et al [25]-[26] have introduced an effective method 

to construct the translation and scale invariants of 

Legendre and Zernike moments. Zhu and al [27] 

have proposed a directly method based on 

Tchebichef polynomials to make the translation and 

scale of Tchebichef invariant moments. Papakostas 

in [28] have introduced a set of Krawchouk 

invariant moments computed over a finite number 

of image intensity slices extracted by applying the 

image slice representation. Karakasis et al [30] have 

proposed a generalized expression of the weighted 

dual Hahn invariant moments up to any order and 

for any value of their parameters based a linear 

combination of geometric moments. If most work 

has focused on the moments of Tchebichef, 

Krawchouk and dual Hahn, no attention has been 

paid to accelerate the time computation of Charlier 

discrete orthogonal moments and no report has been 

published on how to make the translation, scale and 

rotation invariants of Charlier‟s discrete orthogonal 

moments. In this paper, another new set of discrete 

orthogonal moments called Charlier moments is 

proposed. It is based on the Charlier discrete 

orthonormal polynomials. We also propose a new 

algorithm to accelerate the time computation of 

Charlier moments. Indeed, we proposed a fast 

method for calculating Charlier discrete orthogonal 

polynomials based on the recurrence relation with 

respect to variable x instead of order n. Furthermore, 

we propose a new computation method of Charlier 

moments by describing an image with a set of 

blocks instead of individual pixels. Two algorithms 

of image block representation IBR for binary 

images and image slice representation ISR for gray-

scale images are proposed. This proposed approach 

also discusses the ability of Charlier‟s discrete 

orthogonal moments to reconstruct binary and gray-

scale images with and without noise. For the 

purpose of object classification, it is vital that 

Charlier moments be independent of rotation, scale, 

and translation of the image. For this, we have 

proposed a new set of Charlier invariant moments 

under translation, scaling and rotation of the image. 

The Charlier‟s invariant moments are derived 

algebraically from the geometric invariant moments. 

A fast computation algorithm of Charlier invariant 

moments is proposed using the image block 

representation. The accuracy of object classification 

by Charlier invariant moments is compared with Hu 

[1] and Legendre [31] invariant moments. The rest 

of the paper is organized as follows: In Section 2, 

we present the definition of Charlier‟s discrete 

orthogonal polynomials. Section 3 presents a fast 

method to calculate Charlier‟s moments for binary 

and gray-scale images. In Section 4, the 

reconstruction of images by Charlier moments are 

provided. Section 5 gives two methods to calculate 

Charlier‟s invariant moments. Section 6 provides 

some experimental results concerning the reduction 

of the time computation of Charlier‟s moments, the 

reconstruction of image and the classification of the 

objects. Section 7, finally concludes this work. 

2 Charlier polynomials 

This section aims to present a short introduction to 

the theoretical background of Charlier polynomials 

with one variable. The nth discrete orthogonal 

polynomials of Charlier 1 ( )a

nC x  are defined by using 

hyper-geometric function as [32] 

1 1

2 0 1 ,

0

( ) ( , ;;1 )
n

a a k

n k n

k

C x F n x a x


   
 (1) 

where 1x,n 0,1,2 .N-1      ;     0a    

The hyper-geometric function 2 0F is defined as 
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The Pochhammer symbol ( )kx is defined as  

0( ) 1  and   ( ) ( 1)...( 1)  ; k 1kx x x x x k     
 (3) 

More explicitly, the nth order of Charlier discrete 

orthogonal polynomials defined in Eq. (1) can be 

rewrite as follows 
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The set of Charlier polynomials  1 ( )a

nC x forms a 

complete set of discrete basis functions with weight 

function  
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and satisfies the orthogonality condition 
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where 
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To avoid fluctuations in the numerical calculation of 

Charlier orthogonal polynomials we use their 

normalized form. The normalized Charlier 

polynomials are defined as 

 

1 1
( )

( ) ( )
( )

a a

n n

w x
C x C x

n


 (8) 

In addition, to accelerate the computation of weight 

function and squared norm functions, we use the 

following recurrence relations.The weight function 

as given in Eq.(5) can be written by recurrence 

formula as 

 

11( 1) ( )                (0)
1

aa
w x w x with w e

x


  

  (9) 

The squared norm as given in Eq. (7) can be written 

by recurrence formula as 

 1

1
      (n+1) (n)         with      (0) 1 

n

a
  


 

 (10) 

2.1 Computation of Charlier discrete 

orthogonal polynomials 
This section discusses the computational aspects of 

Charlier discrete orthogonal polynomials. It is 

shown in the first subsection the recurrence relations 

used to calculate the discrete orthogonal 

polynomials of Charlier with respect to n. In the 

next subsection, the utilization of the recurrence 

relations with respect to variable x is shown to 

accelerate the computational time.  

2.1.1 Recurrence relation with respect to n  
As the computation of normalized Charlier 

polynomials by Eq. (1) has a great computational 

time cost, we use the following three-term 

recurrence relations with respect to order n [33] 

 

1 1 11 1
1 2

1

1 1
( ) ( ) ( )a a a

n n n

a x n a n
C x C x C x

a n n
 

   
   

(11) 

The initial values of this recurrence relation are 

defined as 

 

1 1 1
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 (12) 

2.1.2 Recurrence relation with respect to x 

In order to extract the recurrence formula with 

respect to variable x we will use the partial 

difference equation and the forward and backward 

finite difference operator. The discrete orthogonal 

polynomials of Charlier 1 ( )a

nC x  satisfy the following 

first-order partial difference equation [32]. 

 
1 1 1( ) ( ) ( ) ( ) ( ) 0 a a a

n n n nx C x x C x C x        
 (13) 

where ( ) x  and ( )x  are the second and first 

degree functions, respectively,  n  is an appropriate 

constant defined as: 

 1( )      ;  ( )   ;    nx x x a x n     
 (14) 

The forward and backward finite difference operator 

  and   are defined by: 

 
( ) ( 1) ( )          ( ) ( ) ( 1)n n n n n nP x P x P x and P x P x P x       

(15) 

Considering the properties of the operator   and   

we have 

 
( ) ( 1) 2 ( ) ( 1)n n n nP x P x P x P x     

 (16) 

The recurrence relations of Charlier discrete 

orthogonal polynomials with respect to x can be 

obtained through Eq. (13), Eq. (15) and Eq. (16) as 

follows 

1

1 1

1

1 1

( )
( )

( 1) ( 1)

2 ( 1) ( 1) ( 1) ( 1)
          ( 1) ( 2)

( 1) ( 2)

a

a an

w x
C x

x x

x x x x
C x C x

w x w x

 

    


  

       
    

   



 

(17) 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Abdeslam Hmimid, Mhamed Sayyouri, Hassan

E-ISSN: 2224-3488 158 Volume 10, 2014



The initial values of recurrence relation with 

respect to x are defined as 

 

1 1 11

1

(0) (1)
(0)    and    (1) (0)

( ) (0)

a a a

n n n

w a n w
C C C

n a w


   

(18) 

3 Fast Computation of Charlier 

Discrete Orthogonal Moments 
The two-dimensional (2-D) Charlier discrete 

orthogonal moment of order (n+m) of an image 

intensity function ( , )f x y  with size MxN is defined 

as 

 

1 1

1 1

0 0

( ) ( ) ( , )
M N

a a

nm n m

x y

CM C x C y f x y
 

 

  

 (19) 

with 1 ( )a

nC x  is the nth order orthonormal Charlier 

polynomials. 

The computation of Charlier moments by using Eq. 

(19) seems to be a time consuming task mainly due 

to two factors. First, the need of computing a set of 

complicated quantities for each moment order and 

second, the need to evaluate the polynomial values 

for each pixel of the image, decelerate the whole 

process. While, in the first case a recurrence relation 

with respect to x introduce efficient algorithm, 

which recursively compute the orthogonal 

polynomials, little attention has been given in the 

second case. Moreover, the computation of Charlier 

moments, by using less mathematical operations of 

the image pixels is achieved by describing an image 

with a set of blocks instead of individual pixels. The 

computation of Charlier moments can be accelerated 

by using the methodology of the image block 

representation [15]. 

In the following two subsections, we will propose a 

new formula to fast compute the discrete orthogonal 

Charlier moments in the image blocks 

representation for binary and gray-scale images. 

3.1 For Binary Images  
In order to accelerate the time computation of 

Charlier moments we will apply the algorithm of 

image block representation (IBR) [15]. In this 

approach, the binary image is represented as a set of 

blocks, each block corresponding to an object. This 

block is defined as a rectangular area that includes a 

set of connected pixels. By applying the IBR 

algorithm, the binary image is described by the 

relation: 

 
 ( , ) , 0,1,...., 1if x y b i K  

 (20) 

where ib  is the ith block and K is the total number 

of blocks. Each block is described by the 

coordinates of the upper left and down right corner 

in vertical and horizontal axes. The Eq. (19) can be 

rewritten as  

 

2, 2,

1 1

1, 1,

1 1

0 0

( ) ( )
b bi i

i

b bi i

x yk k
ba a

nm n m nm

i x x y y i

CM C x C y CM
 

   

     

 (21) 

with 1, 2,( , )
i ib bx x and 1, 2,( , )

i ib by y  are 

respectively the coordinates in the upper left and 

lower right block ib , and ib

nmCM  the moment the 

block ib  is given by: 
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with 
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 (23) 

3.2 For Gray-Scale Images 
The approach of intensity slice representation (ISR) 

decomposes an image gray-scale ( , )f x y  in series of 

slices 

 1

( , ) ( , )

L

i

i

f x y f x y




 (24) 

where L is the number of slices and 
if  the intensity 

function of the ith slice  

After the decomposition of gray scale image into 

several slices of two levels, we can apply the 

algorithm ISR [19]. The gray-scale image ( , )f x y can 

be redefined in terms of blocks of different 

intensities. 
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where ijb is the block of the edge i and 
iK  is the 

number of image blocks with intensity. 

The fast computation of Charlier moments for gray-

scale image ( , )f x y is given by 
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 (26) 

where ( )nmM i  are the (n+m) order Charlier moments 

of the i
th
 binary slice. 
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4 Images Reconstruction Using 

Charlier Moments 
In this section, the image representation capability 

of Charlier moments is shown. The Charlier 

moments of the image are first calculated and 

subsequently its image representation power is 

verified by reconstructing the image from the 

moments. An objective measure based on mean 

squared error (MSE) is used to characterize the error 

between the original image and the reconstructed 

image. Indeed, The Charlier moments of order 

(n+m) in terms of Charlier normalized discrete 

orthogonal polynomials, for an image with intensity 

function, ( , )f x y , is defined as 

 

1 1

1 1

0 0

( ) ( ) ( , )
M N

a a

nm n m

x y

CM C x C y f x y
 

 

  

 (27) 

By solving the equatios Eq (6) and Eq (19) the 

image intensity function ( , )f x y  can be written 

completely in terms of the Charlier moments as 

 

1 1

1 1

0 0

( , ) ( ) ( )
N N

a a

nm n m

n m

f x y CM C x C y
 

 

  

 (28) 

The image intensity function can be represented as a 

series of normalized Charlier polynomials weighted 

by the Charlier moments. If the moments are limited 

to order max, the series is truncated to 

 

1 1
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,

0 0

ˆ( , ) ( ) ( )
n

a a
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n m

f x y CM C x C y

 

  

 (29) 

The difference between the original image ( , )f x y  

and the reconstructed images ˆ( , )f x y  is measured 

using the mean squared error (MSE) defined as 

follows 

 

2

1 1

1 ˆ( ( , ) ( , ))
M N

i j i j

i j

MSE f x y f x y
MN  

 
 (30) 

5 Charlier’s Invariant Moments  
To use the Charlier moments for the object 

classification, it is indispensable that Charlier 

invariant moments be under rotation, scaling, and 

translation of the image. Therefore to obtain the 

translation, scale and rotation invariants of Charlier 

moments, we adopt the same strategy used by 

Papakostas et al. for Krawtchouk moments [28]. 

That is, we derive the Charlier‟s invariant moments 

through the geometric moments using the 

conventional method and the fast method based on 

image block representation. 

 

 

5.1 Computation of Charlier’s invariant 

moments 
Given a digital image ( , )f x y with size N×N, the 

geometric moments ( , )f x y  is defined using discrete 

sum approximation as: 

 

1 1
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 (31) 

The set of geometric moment invariant by rotation, 

scaling and translation can be written as [1] 
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with 
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The (n+m)th central geometric moments is defined 

in [1] by 

 
( ) ( ) ( , )n m

nm x x y y f x y dxdy
 

 
     (34) 

This formula can be approximated by 
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 (35) 

The Charlier moment invariants can be expanded in 

terms of GMI Eq. (2) as follows 

 

1 1
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0 0
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a a

nm i n j m i j
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 (36) 

where 1

,

a

i ja  are the coefficients relative to Eq. (1) and 

,i jV are the parameters defined as 

 

(( )/2) 1

0 0 2 2 2

p q n p m pn m

nm pq
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n m N M N M
V GMI

p q

   

 

        
        

       


 (37) 

5.2 Fast computation of Charlier’s invariant 

moments 
In order to accelerate the time computation of 

Charlier‟s invariants moments, we will applied the 

algorithms of image block representation described 

previously. 

By using the binomial theorem, the GMI defined in 

Eq. (32) can be calculated as follows: 
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where 
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By applying the algorithm IBR, the normalized 

central moment defined in Eq. (35) can be 

calculated as follows 
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where 
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and   ; k=1,2,.....Skf  is the slices intensity functions, 

S is the number of slices in image f ,    ; j=1,2,....kjb is 

the block in each slice. 
1, 1,( , )

i ib bx y  and 2, 2,( , )
i ib bx y  are 

respectively the coordinates in the upper left and 

lower right block jb  Using the previous equations 

Eq. (38) and Eq. (40), the GMI of Eq. (32) can be 

rewritten as: 
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  (42) 

Therefore the Charlier moments invariant under 

translation, scaling and rotation can be obtained 

from the equations Eq. (36), Eq. (37) and Eq. (42). 

 

6 Results and Simulations 
In this section, we give experimental results to 

validate the theoretical results developed in the 

previous sections. This section is divided into 

foursub-sections. In the first sub-section, we will 

compare the time computation of Charlier‟s 

moments by direct method and proposed method for 

binary and gray-scale images. In the second one, we 

will test the ability of Charlier‟s moments for the 

reconstruction of binary and gray-scale images with 

and without noise. In sub-section three, the 

invariability of Charlier moments under the three 

transformations translation, scaling and rotation is 

shown. In the last sub-section, the recognition 

accuracy of Charlier‟s invariant moments is tested a 

compared to that of Hu‟s and Legendre‟s invariant 

moment in object recognition.  

6.1 The computational time of Charlier’s 

moments 
In this sub-section, we will compare the 

computational time of Charlier‟s moments by two 

methods: the direct method based on Eq. (11) and 

Eq. (19) and the proposed fast method based on the 

use of recurrence relation with respect to the 

variable x defined by Eq. (17) and the application of 

image block representation methodology defined 

previously by Eq. (22) and Eq. (26). 

In the first example, a set of five binary images with 

size 200x200 pixels (Fig.1) selected from craft 

patterns handwritten were used as test images. The 

number of blocks of these images is NB=1450 for 

image (a), NB=1428 for image (b), NB=2107 for 

image (c), NB=2324 for image (d), and NB=2854 

for image (e). The computational processes are 

performed 20 times for each of the five images 

where the average times are plotted (Fig.2) against 

the moment order for the images above using the 

proposed method and the direct method. Fig.2 

shows that our proposed method is faster than the 

direct method. Note that the computation time for 

extracting the blocks of each image is about 1ms, 

this time is much less than the computation time 

required in the calculation of moments. 

 

     

(a) (b) (c) (d) (e) 

 Fig.1. Set of test binary images  
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In the second example, a set of five gray-scale 

images with a size of 128x128 pixels, shown in 

Fig.3, are used. The number of blocks and slices of 

these images are NB=14106, NS=200 for Lena, 

NB= 14384; NS=251 for Highway, NB=12491; 

NS= 243 for Lake, NB=14016; NS=223 for Pepper 

and NB=15359; NS=194 for Mandrill. The 

computation time to extract the blocks of each 

image is about 1ms. The computational processes 

are performed 19 times for each of the five images. 

The average times are plotted against the moment 

order in Fig. 4. The result indicates again that our 

method has a better performance than the direct 

method. Note that the algorithm was implemented 

on a PC Dual Core 2.10 GHz, 2GB of RAM. 

The two figures show that the proposed method is 

faster than the direct method because the 

computation of Charlier‟s moments by fast method 

depends only on the number of blocks than the 

image‟s size. 

6.2 Image Reconstruction using Charlier’s 

Moment 
In this section we will discuss the ability of 

Charlier‟s moments for the reconstruction of the 

binary and gray-scale images using the proposed 

method. To evaluate this method, we will calculate 

the mean squared error (MSE) defined by Eq. (30) 

between the original and the reconstructed image. 

MSE is largely used in the domain of image analysis 

as a quantitative measure of accuracy. 

Two numerical experiments have been carried out to 

verify the image reconstruction capability of the 

proposed method when they are used for gray-level 

image or binary image. The test of both binary 

image “Zewaka: image (a)” of size 200x200 (Fig. 1) 

is used with a maximum moment order ranging 

from 0 to 200 and the gray-scale image "Highway" 

of size 128×128 (Fig. 2) is used with a maximum 

moment order ranging from 0 to 100. Fig. 6 and Fig. 

7 show the MSE of the proposed method. It is 

obvious that the MSE decreases as the moment of 

order increases where the MSE gets near to zero 

with increasing moment order. When the maximum 

moment order gets to a certain value, the 

reconstructed images will be very close to the 

original ones. 

To show the robustness of the proposed Charlier‟s 

moments against the negative effects of different 

types of noise, two numerical experiments are 

performed for the two previous images using two 

types of noises. The images contaminated with a 

first type of noise “salt and pepper” and with the 

second type of noise “white Gaussian” noise‟‟ are 

shown in Fig. 5. The four contaminated images are 

reconstructed using the proposed Charlier moments. 

The plotted curves of MSE for the noise 

contaminated images are displayed in Fig.6 and 

Fig.7. For easier comparison, the two curves of 

MSE are plotted in the same figure. Generally, the 

MSE of noisy images is greater than the 

corresponding values of MSE without image noise. 

All figure shows the curves of the noise 

contaminated image MSE approaches zero while 

increasing the moments order. The results of these 

experiments show the robustness of Charlier 

moments against different types of noise. 
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Fig. 2. Average computation time for binary images using 

direct method and our method. 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

moment order

 c
o
m

p
u
ta

ti
o
n
 t

im
e
 o

f 
C

h
a
rl
ie

r 
m

o
m

e
n
ts

 i
n
 (

s
)

 

 
direct method

proposed method

 
Fig. 4. Average computation time for gray-scale images 

using direct method and proposed method. 

     

(a) (b) (c) (d) (e) 
Fig. 3. Set of test gray-scale images (a) Lena, (b) Highway, 

(c) Lake, (d) Pepper and (e) Mandrill 
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Fig. 6. Comparative study of reconstruction error MSE 

for binary image of “Zewaka” with salt & peppers and 

white Gaussian noise versus order Charlier moments. 
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Fig. 7. Comparative study of reconstruction error MSE 

for gray-scale image of “Highway” with salt & peppers 

and white Gaussian noise versus order Charlier moments. 

6.3 Invariability 
The binary image “image (a)” whose size is 

128x128 pixels displayed in Fig.1 is used in order to 

evaluate the property of invariability of the 

proposed Charlier‟s invariant moments. This image 

is scaled by a factor varying from 0.1 to 2 with 

interval 0.05, rotated from 00 to 1800 with interval 

100 and translated by a vectors varying from (-5,-5) 

to (5,5). Each translation vector consists of two 

elements which represent a vertical and a horizontal 

image shift respectively. These three image 

transformations and a combination of them are 

applied on the dataset which is created by the 

transformed images (Fig. 8).  

All invariant moments of Charlier is calculated up to 

order two for each transformation. Finally, in order 

to measure the ability of the proposed moment 

invariants of Charlier to remain unchanged under 

different image transformations, We define the 

relative error between the two sets of moment 

invariants corresponding to the original image f(x,y) 

and the transformed image g(x,y) as 

 

( ) ( )
( , )

( )
CM

CMI f CMI g
E f g

CMI f




 (43) 

where .  denotes the Euclidean norm and 

( ) ;  ( )CMI f CMI g are the Charlier‟s invariant 

moments for the original image f and the 

transformed image g . The results are plotted in 

Figures (9, 10 and 11) for the case 1( 60)a  . 

Fig. 9 compares the relative errors between the 

proposed method and the Hu's invariant moments 

[1]. It can be seen from this figure that the Charlier's 

moment invariants shows better performance than 

the Hu's invariant moments, whatever the rotational 

angle. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5. Set of noisy images. (a) Highway gray-scale image, 

(b) noisy by Salt & Peppers and (c) noisy image by white 

Gaussian, (d) Zewaka binary image, (e) noisy by Salt & 

Peppers and (f) noisy image by white Gaussian, 

     
(a) (b) (c) (d) (e) 

Fig. 8. Set of mixed transformed binary image Zewaka  
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Fig. 9. Performance of the Charlier and Hu invariant 

moments to rotation. Horizontal axis: rotational angle; 

vertical axis: relative error between the rotated image and 

the original image. 

Fig. 10 shows the relative error of the charlier‟s 

invariant moments and the geometric invariant of 

Hu. Plots show that, in most cases, the relative 

errors of Charlier invariant moments is lower than 

the geometric invariant moments, whatever the 

scaling factor. 
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Fig. 10. Performance of the Charlier and Hu invariant 

moments to scale. Horizontal axis: scaled factor; vertical 

axis: relative error between the rotated image and the 

original image. 

Fig. 11 shows the relative error of the charlier‟s 

invariant moments and the geometric invariant of 

Hu. Plots show that, in most cases, the relative 

errors of Charlier invariant moments is lower than 

the geometric invariant moments, whatever the 

translation vectors. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

-3

Translated Vector

R
e
la

ti
v
e
 E

rr
o
r

 

 

CMI

HMI

 
Fig. 11. Performance of the Charlier and Hu invariant 

moments to translation. Horizontal axis: scaled factor; 

vertical axis: relative error between the rotated image and 

the original image. 

To test the robustness to noise, we have respectively 

added a white Gaussian noise (with mean 0   and 

different variances) and salt-and-pepper noise (with 

different noise densities). Results are respectively 

depicted in Figs. 12 and 13. It can be seen that, if 

the relative error increases with the noise level, the 

proposed descriptors are more robust to noise than 

the geometric invariants of Hu. 
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Fig. 12. Performance of the Charlier and hu invariant 

moments with respect to additive Gaussian zero-mean 

random noise. Horizontal axis: standard deviation of 

noise; vertical axis: relative error between the corrupted 

image and original image. 
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Fig. 13. Performance of the Chrlier and Hu invariant 

moments with respect to additive salt-and-pepper noise. 

Horizontal axis: noise density; vertical axis: relative error 

between the corrupted image and original image 

It is clear from the figures that the relative error is 

very low, indicating that the Charlier‟s invariant 

moments are very stable under different types of 

image transformations and different types of noises 

which give excellent results with Charlier‟s 

invariants moment. Therefore, the invariants 

moments derived in this paper could be a useful tool 

in pattern recognition tasks that require the 

translation, scaling and rotation invariance. 

6.4 Classification  
In this section we will provide experiences to 

validate the precision of recognition and the 

classification of objects using the proposed 

Charlier‟s invariants moments. For this, we will put 

in place the characteristic vectors defined by: 

 
[ ]     ;   0 i,j 2ijV CMI  

 (44) 

where [ ]     ;   0 i,j 2ijV CMI    are the Charlier 

moment invariants defined in Section 5. 

To perform the classification of the objects to their 

appropriate classes we will use simple classifiers 

based on plain distances. The Euclidean distance is 

utilized as the classification measure [34]. 

 

( ) ( ) 2

1

( , ) ( )
n

k k

s t sj tj

j

d x x x x


 
 (45) 

The above formulas measure the distance between 

two vectors where 
sx  is the n -dimensional feature 

vector of unknown sample, and ( )k

tx the training 

vector of class k. If the two vectors x and y are 

equals, then d tend to 0. Therefore to classify the 

images, one takes the minimum values of the 

distance.  

We define the recognition accuracy as: 

Number of  correctly classified images
100%

The total of  images used in  the test
  

 (46) 

In order, to validate the precision of recognition and 

the classification of objects using the proposed 

Charlier‟s invariant moments, we well use two 

image databases. The first database is the Columbia 

Object Image Library (COIL-20) database [35]. The 

reason for choosing such a set is that the objects 

(three toy cars, three blocks, ANACIN and 

TYLENOL packs) can be easily misclassified due to 

their similarity. Each image is resized in 128x128. 

This base has the characteristic of being widely used 

in image classification. An overview of this 

database is presented in Fig.14. The total number of 

images is 1440 distributed as 72 images for each 

object. This is followed by adding salt-and-pepper 

noise with different noise densities. 

The second image database is formed by a set of 

craft patterns handwritten whose size is 100x100 

pixels shown in Fig1. The images are transformed 

by translating; scaling and rotating the original set 

with translation 
{( 5, 5);( 5,0);( 5,5);(0,0);(0, 5);(0,5);(5, 5);(5,0);(5,5)}TV       

in horizontal and vertical directions, scale factor 

{1.2,  1.1,1,0.9,  0.8}SF and rotation angle 

 0 0 0 0 0 0 0 00 ,45 ,90 ,135 ,180 ,225 ,270 ,315   forming a 

set of 1800 images. A salt-and pepper noise with 

different noise densities has been added. The feature 

vector based on Charlier's moment invariants cited 

in Eq. (42) are used to classify these images and its 

recognition accuracy is compared with that of Hu's 

moment invariants [1] and Legendre moment 

invariants [31] for the two databases. The 

classification results of two databases are presented 

in Tables (1.1 and 1.2) respectively. The results 

show the efficiency of the proposed Charlier‟s 

 
Fig. 14. Collection of the COIL-20 object. 
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invariant moments in terms of recognition accuracy 

of noisy images, compared to those of Hu and 

Legendre. Note that the recognition of non-noisy 

image by our method is 100% and the accuracy of 

the recognition decreases with increasing noise. 

Finally, the proposed Charlier‟s moment invariants 

are robust to image transformations under noisy 

conditions, and the recognition accuracy of which 

are better than that of Hu‟s and Legendre‟s moment 

invariants. 

 

7 Conclusion 

In this paper, we have proposed a new fast method 

for the computation of a new set of Charlier‟s 

discrete orthogonal moments for binary and gray-

scale images. This new fast method is performed 

using some properties of Charlier‟s discrete 

orthogonal polynomials and the image block 

representation. The computation of Charlier‟s 

moments, using this method, eliminates the 

propagation of numerical error and depends only on 

the number of blocks, which can significantly 

reduce the time computation of Charlier‟s moments. 

The effectiveness of the proposed Charlier‟s 

moments for the reconstruction of binary and gray-

scale images with noise and without noise has been 

showed by experimental results. Furthermore, we 

have proposed a new set of Charlier‟s invariant 

moments. The accuracy of recognition of the 

proposed Charlier‟s invariant moments in the object 

classification related to Hu‟s and Legendre‟s 

invariant moments is carried out. 
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