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Abstract: - In this paper, a new direction of arrival (DOA) estimation method based on minimum redundancy 
linear array (MRLA) from the sparse signal reconstruction perspective is proposed. According to the structure 
feature of MRLA which is obtaining larger antenna aperture through a smaller number of array sensors, MRLA 
is combined with 1 SVD− method to estimate signal DOAs. Simulations demonstrate that the proposed 
method is effective and compared with 1 SVD− method it could estimate more DOAs of signal source, and it 
is capable of estimating more DOAs with fewer antenna elements.  
 
 
Key-Words: - Direction of arrival, minimum redundancy linear array, 1 -singular value decomposition, sparse 
signal reconstruction 
 
1 Introduction 

Source location has been a major objective 
in the signal processing applications. With 
sensor arrays, this objective may be translated 
to the Direction-Of-Arrival (DOA) estimation. 
Among the existing DOA estimation methods, 
the signal subspace idea has been a dominant 
technique according to its superresolution 
performance (e.g., MUSIC [1]). In recent years, 
there has been an increasing interest in 
developing CS theory and its applications [2] [3] 
[4]. CS has provided many methods to solve the 
sparse recovery problem. There are two major 
algorithmic approaches to this problem. Basis 
pursuit (BP) algorithm [5] relies on an 
optimization problem which can be solved 
using linear programming, and it is stable and 
could reconstruct signal accurately, but it needs 
large number computation, while the greedy 

algorithm[6][7]takes advantage of the speed, so 
it has lower complexity and faster speed. By 
exploiting sparsity, a number of methods have 
emerged, which can provide even better 
resolution performance than MUSIC [8] [9] 
[10]. Among these, the 1 SVD− method [10] is 
of particular relevance to this work, which 
formulates the DOA estimation problem into 
sparse signal reconstruction one and utilizes the 
Compressive Sensing (CS) approach for its 
solution. And the 1 SVD− method has 
increased resolution and improved robustness to 
noise.  

The linear array is one of the most 
important types of multi-element antennas, and 
as such it has played an important role both in 
communications and in radio astronomy. 
ALAN T. MOFFET proposed minimum 
redundancy linear array (MRLA) from [11] 
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in1968, which achieve  maximum  resolution  
for  a  given  number  of  elements by  reducing 
the  number of  redundant spacing present in  
the  array. Many scholars have been making 
further research for MRLA [12]. These 
researches make full use of structure features of 
MRLA to obtain larger antenna aperture 
through a smaller number of array sensors. 
Uniform linear array (ULA) is redundant 
because its covariance matrix is a Toeplitz 
matrix which is redundant. Also different array 
sensor distribution could obtain the same 
function value of conjugate cyclic correlation. 
The redundancy degree is increased with the 
number of array sensors. Therefore, we could 
combine MRLA with 1 SVD−  method to 
estimate signal DOAs based on the structure 
features. 

The paper is organized as follows. In 
Section 2, the signal model is introduced. This 
section also reviews the 1 SVD− method and 
of the MRLA. Section 3 presents the proposed 
method. To verify the validity of the proposed 
algorithm, computer simulation results are 
given in Section 4. Finally, some concluding 
remarks for this method are given in Section 5. 
 
 
2 Problem Formulation 
2.1 Signal Model 

Consider N  narrow-band signals with the 
same center frequency and independent from 
distinct directions ( )1,...,i i Nθ =  impinge on an 
ULA including M  isotropic antennae, and 
array element gap is 2d λ= . The 1M ×  array 
output vector ( )ty  is given by 

                          
( ) ( ) ( ), 1, 2,...,t t t t T= + =y As n                       (1) 

where, 0 1 1( ) [ ( ) ( ) ( )]T
Mt y t y t y t−=y        , ( )ts  is 

1N ×  signal vector, which is the t th snapshot 
of the arriving signals which are assumed to be 
zero-mean stationary stochastic processes; 

1 2[ ( ) ( ) ( )]Nθ θ θ=A a   a   a  is M N×  array 
manifold matrix, where 

2 sin 2 ( 1) sin( ) [1 ]i ij d j M d T
i e eπ θ λ π θ λθ − − −=a        is 

the steering vector at direction ),...,2,1( Nii =θ , 

and 1
0 1 1( ) [ ( ) ( ) ( )]T M

Mt n t n t n t ×
−= ∈n          is 

the 1M ×  vector of Additive White Gaussian 
Noise (AWGN), which, without a loss in 
generality, is assumed to be of unit variance and 
uncorrelated with ( )ts , where λ is the carrier 

wavelength of the signal, and ( )T⋅ denotes the 
transpose operator. 

We could formulate the problem of 
recovering ( )ts from the under-determined 
linear equation system (1) into a sparse 
reconstruction problem similar to many treated 
in the CS application. ( )ts  can be almost surely 
recovered through 1 minimization: 
                 

1( )
min ( )   . .  (t)= (t)

t
t s t

s
s y As               (2) 

With multiple snapshots the model (1) can 
be rewritten as: 
                        = +Y AS N                               (3) 
where M T× matrix [ (1),..., ( )]T=Y y y  and 
M T× matrix [ ( ),..., ( )]t T=N n n , T is the 
number of snapshots and N T×  signal 
snapshots [ (1),..., ( )]T=S s s , which is the 
expanded snapshots of the arriving signals. 
 
2.2 1 SVD−  method    

For narrowband signal source, when the 
uncorrelated and coherent signals coexist, 
multiple measurement vectors: 

( ) ( ) ( ) ( ),    1,...,y t A x t n t t Tθ= + =           (4) 
Where 1( ) [ ( ),..., ( )]NA a aθ θ θ=  is unknown, and 
under the assumption of sparsity, that is, N is 
small, Reference [10] has formulated the DOA 
estimation problem into a sparse signal 
reconstruction one. For this formulation one 
defines 1[ ( ),..., ( )]Kθ θ=A a a   where 

max( , )K N M  is the number of DOAs at the 
resolution of interest represented by 
angles 1,..., Kθ θ  . Assuming { } { }1 1,..., ,...,N Kθ θ θ θ⊂   , 

and let ( ),   
( )

0,         
k i k

i
x t

s t
otherwise
θ θ == 





, = +Y AS N , 

[ (1),..., ( )]y y T=Y .   
      Do the singular value decomposition (SVD) 
on H=Y UΛV , and let SV K K= =Y UΛD YVD , 
where [ ]'K K=D I  0 , and KI  is a K K× unit 
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Table 1 Some MRLA Configurations 

matrix, and 0  is a ( - )K T K× zero matrix. 
Let SV K KSVS = SVD , N = NVD , in order to 
get SV SV SV= +Y AS N , consider this equation 
column by column, there is  

                                      
( ) ( ) ( ),   1,...,SV SV SVk k k k K= + =y As n       (5) 

define 2( ) 2
1
( ( )) ,K SV

i ik
s s k i

=
= ∀∑

 , so the 

sparsity of 1Nθ ×  vector 2( )s 

 is corresponding  
to the sparsity of spatial spectrum, and get the 
spatial spectrum by the minimized formula (6) 
          2( )2

1| || || ||SV SV f sλ− +Y AS 

                  (6) 
where  Frobenius is defined as 

2 2

2
vec( )SV SV SV SVf

− = −Y AS Y AS . 

Therefore, the 1 SVD−  method is 
summarized as three steps: 1st do the SVD 
on H=Y UΛV ; 2nd take the first N  columns of 
YV , which is denoted by SVY , M N× ; 3rd solve 
the following optimization problem: 

2 2
1

min   s.t.  
SV

C SV SV f
β− ≤

S
S YΦS                (7) 

where SVS , K N× ,is the first N columns of SV ; 
CS , 1K × , is the estimated spatial spectrum 

whose entries are defined to be the 2-norm of 
the corresponding rows of SVS  and β  is a given 
regulatory parameter. 

The merits of the 1 SVD−  method lie in 
its superior resolution performance and 
robustness to correlation of the signals. The 
main drawbacks of 1 SVD−  are that it requires 
information about the number of sources N , 
and its complexity grows proportionally with 
N . When the distance of the signal source is 
not too close, 1 SVD− method could resolute 

1M −  signal sources at most, where M is the 
number of array element. 
 
2.3    Minimum Redundancy Linear Array 

For ULA, correlation matrix of ( )tx  as follows 

{ }
(0) (1) ( 1)
*(1) (0) ( 2)

( ) ( )

*( 1) *( 2) (0)

H

r r r M
r r r M

E t t

r M r M r

−
 −= =


− −

                                
                             

R x x
                                                     

               





  








 


    (8) 

where ( )E ⋅ , ( )H⋅ and ( )*⋅ denote expect, transpose 
and conjugate operator respectively. 

( ),  0,..., 1r m m M= − , is correlation function of 
stochastic processes ( )x t . From (1) and (8), we have 

          
{ }

2

[ ( ) ( )][ ( ) ( )]H

H
M

E t t t t

σ

= + +

= +S

R As v As v

   AR A I
      

(9) 
where [ ( ) ( )]HE t t=SR s s , obviously, R  is Toeplitz 
matrix when the signal sources are mutually 
independent and uncorrelated. According to the 
structure feature of Toeplitz matrix, we could 
reconstruct the whole matrix exactly as long as 
obtain the first row of R . 

From (8) it is shown that for ULA with M  
array elements and its output correlation matrix 
there are only M  independent correlation functions 
in the 2M  correlation functions. Therefore, 
correlation matrix of ULA output is a redundant 
Toeplitz matrix. Using non-uniform linear array is 
the common method of reducing redundancy of 
linear array. In fact, different element pairs could 
obtain the same value of correlation function, which 
lead to the redundancy of ULA. The redundancy 
degree is increased with the number of array 
element M . The principle of designing MRLA is 
that equating the M  array elements of non-uniform 
linear array with the P  array elements of ULA 
where M P< . Table 1 show some optimal MRLA 
configurations, where { }id  represents the i th 
sensor locations with respect to a reference point 
[12]. 

 
 
 

M P {di} 

2 2 {0,1} 
3 4 {0,1,3} 

4 7 {0,1,4,6};{0,2,5,6} 

5 10 {0,1,4,7,9} 

6 14 {0,1,6,9,11,13} 
7 18 {0,1,4,10,12,15,17} 
8 24 {0,1,4,10,16,18,21,23} 

9 30 {0,1,4,10,16,22,24,27,29} 

10 37 {0,1,3,6,13,20,27,31,35,36} 
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3 The proposed method 

Consider a passive linear array consisting of 
M  isotropic sensors. Let 1 2 Md d d< < <       
represents the sensor locations with respect to a 
reference point. It is assumed, hereinafter, that the 
array belongs to the class of thinned arrays derived 
from a ULA by the removal of some of its elements. 
As a result, each sensor location id  is an integer 
multiple of a fixed spacing d , which, in the 
following, will be assumed unitary without loss of 
generality.  

Suppose a non-uniform linear array, for N  
independent narrow-band signal sources, and 
M elements non-uniform linear array, the number 
of sources N  is known. Here, we take 4M =  for 
example, so the sensor locations with respect to a 
reference point 1 2 3 4{ , , , } {0,2 ,5 ,6 }d d d d d d d= , 
where / 2d λ= and λ  is the carrier wavelength of 
the signal, the 4 1×  array output vector 

0 2 5 6( ) [ ( ) ( ) ( ) ( )]Tt x t x t x t x t=X        is then given by 
                   

[ ]

0 01

2 22
1 2

5 5

6 6

( ) ( )( )
( ) ( )( )

( ), ( ),..., ( )
( ) ( )

( )( ) ( )

N

N

x t v ts t
x t v ts t
x t v t

s tx t v t

θ θ θ

    
    
    = +
    
    

    

a a a
   

     

(10) 
where, 1, 2,...,t T= and 

12 sin 2 5 sin 2 6 sin2 2 sin( ) 1 i i i
Tj d j d j dj d

i e e e eπ θ λ π θ λ π θ λπ θ λθ − − −− =  a          
, we could get array output vector correlation matrix  

{ }
(0) (2) (5) (6)
*(2) (0) (3) (4)

( ) ( )
*(5) *(3) (0) (1)
*(6) *(4) *(1) (0)

H

r r r r
r r r r

E t t
r r r r
r r r r

 
 
 = =
 
 
 

                    
                 

R X X
               
            

 

(11) 
Do the SVD on R , retain its signal 

subspace SU , and construct the dictionary  
4 Nθ×∈A  , where Nθ  is the number of angular 

samples, the sparsity of the 1Nθ ×  vector S  is 
corresponding to the sparsity of the spatial 
spectrum, estimate the DOA by minimizing the 
formula (12)  

           
2

1S f
λ− +U AS S                           

(12) 
According to the correlation matrix of 

independent signals with Toeplitz structure and 

matrix R includes the 
(0)r , (1)r , (2)r , (3)r , (4)r , (5)r , (6)r , we 

could obtain an extended correlation matrix R  of 
some array elements in the ULA by R . So we 
construct 7 7× matrix 

(0) (1) (2) (3) (4) (5) (6)
( 1) (0) (1) (2) (3) (4) (5)
( 2) ( 1) (0) (1) (2) (3) (4)
( 3) ( 2) ( 1) (0) (1) (2) (3

r r r r r r r
r r r r r r r
r r r r r r r
r r r r r r r

−
− −

= − − −

                       
                     
                   

R                   )
( 4) ( 3) ( 2) ( 1) (0) (1) (2)
( 5) ( 4) ( 3) ( 2) ( 1) (0) (1)
( 6) ( 5) ( 4) ( 3) ( 2) ( 1) (0)

r r r r r r r
r r r r r r r
r r r r r r r

 
 
 
 
 
 
 − − − −
 

− − − − − 
 − − − − − − 

              
            
          

 

(13) 
According to the correlation matrix R of 

independent signals with Toeplitz matrix structure 
and (- ) *( ), ( 0,1,...,6)r m r m m= = , we could 
obtain correlation matrix R of ULA with seven 
array elements by R .  

(0) (1) (2) (3) (4) (5) (6)
(1) (0) (1) (2) (3) (4) (5)
(2) (1) (0) (1) (2) (3) (4)
(3) (2) (1) (0) (

r r r r r r r
r r r r r r r
r r r r r r r
r r r r r

∗

∗ ∗

∗ ∗ ∗=

                          
                         
                       

R                 1) (2) (3)
(4) (3) (2) (1) (0) (1) (2)
(5) (4) (3) (2) (1) (0) (1)
(6) (5) (4) (3) (2) (1) (0)

r r
r r r r r r r
r r r r r r r
r r r r r r r

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

 
 
 
 
 
 
 
 
 
 
  

       
                    
                   
                 

  

(14) 
Do the singular value decomposition (SVD) 

on R , and keep signal subspace SU . Then use 

1 SVD−  method to estimate signal DOAs by 
solving the following optimization problem: 

                          
2

2( ) 2min S f
subject to β− ≤

S
s      U AS



 

   

(15) 
where, DOA estimation problem is regarded as 
subspace block sparse reconstruction, construct an 
M K×   overcomplete dictionary 

1 2[ ( ), ( ), , ( )]Kθ θ θ= …A a a a , K  is the number of 
angular samples and K N>> , 1 2,...,[ , ]Kθ θ θ  is a 
sampling grid of all interested signal directions. 

 2 2( ) ( )

1
1

K

i
i=

=∑s s 

  , 2( ) 2

1
( ( )) ,

N

i i
k

s k i
=

= ∀∑s  

  , ( )is k  

is the element of the i th  row of K N×  matrix S , 
which is the solution of this optimization problem. 
Frobenius norm is defined as 
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2 2

2
 vec( )S Sf

− = −U AS U AS     ， and β  is 

regularization parameter. We choose β  high 

enough so that the probability that 2 2
2

β≥sv  is 

small and vec( )=s Sv N , S = + SU AS N   , SN  is a 
M N×  matrix. The sparsity of the resulting 1K ×  
vector 2( )s 

  corresponds to the sparsity of the spatial 
spectrum. We can find the spatial spectrum of S  by 
the formula (15). Our method also requires 
information about the number of signal sources N . 

Similarly, when we consider a 5M =  non-
uniform linear array, so the sensor locations with 
respect to a reference 
point 1 2 5 8 10{ , , , , } {0, , 4 ,7 ,9 }d d d d d d d d d= , 
where / 2d λ= and λ  is the carrier wavelength of 
the signal, the 5 1×  array output vector 

1 0 1 4 7 9( ) [ ( ) ( ) ( ) ( ) ( )]Tt x t x t x t x t x t=X          , we 
could get array output vector correlation matrix  
                            

{ }1 1 1

(0) (1) (4) (7) (9)
*(1) (0) (3) (6) (8)

( ) ( ) *(4) *(3) (0) (3) (5)
*(7) *(6) *(4) (0) (2)
*(9) *(8)

H

r r r r r
r r r r r

E t t r r r r r
r r r r r
r r

= =

                         
                       

R X X                     
                
    *(5) *(2) (0)r r r

 
 
 
 
 
 
            

(16) 

According to the correlation matrix of 
independent signals with Toeplitz structure and 

matrix 1R  includes the (0)r , (1)r , (2)r , (3)r , 
(4)r , (5)r , (6)r , (7)r , (8)r , (9)r , we could 

obtain an extended correlation matrix 1R  of some 
array elements in the ULA by 1R . So we construct 
10 10× matrix 

1

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
( 1) (0) (1) (2) (3) (4) (5) (6) (7) (8)
( 2) ( 1) (0) (1) (2)

r r r r r r r r r r
r r r r r r r r r r
r r r r r
−
− −

=

                                        
                                      
               

R

(3) (4) (5) (6) (7)
( 3) ( 2) ( 1) (0) (1) (2) (3) (4) (5) (6)
( 4) ( 3) ( 2) ( 1) (0) (1) (2) (3) (4) (5)
( 5) (

r r r r r
r r r r r r r r r r
r r r r r r r r r r
r r

− − −
− − − −
−

                     
                                 
                              
  4) ( 3) ( 2) ( 1) (0) (1) (2) (3) (4)

( 6) ( 5) ( 4) ( 3) ( 2) ( 1) (0) (1) (2) (3)
( 7) ( 6) ( 5) ( 4) ( 3) ( 2) ( 1) (0) (1)

r r r r r r r r
r r r r r r r r r r
r r r r r r r r r

− − − −
− − − − − −
− − − − − − −

                          
                          
                     (2)

( 8) ( 7) ( 6) ( 5) ( 4) ( 3) ( 2) ( 1) (0) (1)
( 9) ( 8) ( 7) ( 6) ( 5) ( 4) ( 3) ( 2) ( 1) (0)

r
r r r r r r r r r r
r r r r r r r r r r

 
 
 
 
 
 
 
 
 
 
 
 
 − − − − − − − − 
 − − − − − − − − − 

   
                     
                   

 

(17) 
According to the correlation matrix 1R of 

independent signals with Toeplitz matrix structure 
and (- ) *( ), ( 0,1,...,9)r m r m m= = , we could 
obtain correlation matrix 1R of ULA with seven 

array elements by 1R .  

1

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
(1) (0) (1) (2) (3) (4) (5) (6) (7) (8)
(2) (1) (0)

r r r r r r r r r r
r r r r r r r r r r
r r r

∗

∗ ∗

=

                                             
                                          
              

R

(1) (2) (3) (4) (5) (6) (7)
(3) (2) (1) (0) (1) (2) (3) (4) (5) (6)
(4) (3) (2) (1) (0) (1) (2) (3

r r r r r r r
r r r r r r r r r r
r r r r r r r r

∗ ∗ ∗

∗ ∗ ∗ ∗

                          
                                      
                              ) (4) (5)

(5) (4) (3) (2) (1) (0) (1) (2) (3) (4)
(6) (5) (4) (3) (2) (1) (0) (1) (2) (3)
(7) (6) (5)

r r
r r r r r r r r r r
r r r r r r r r r r
r r r

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

      
                                   
                                  
          (4) (3) (2) (1) (0) (1) (2)

(8) (7) (6) (5) (4) (3) (2) (1) (0) (1)
(9) (8) (7) (6) (5) (4) (3) (2)

r r r r r r r
r r r r r r r r r r
r r r r r r r r

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

                       
                              
                           (1) (0)r r∗

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

(18

) 
Do the singular value decomposition (SVD) 

on 1R , and keep signal subspace. Then use 

1 SVD−  method to estimate signal DOAs by 
solving the following optimization problem 
according to the (15). 
 
 
4 Simulation results and discussions  
 

In this section, to demonstrate the superiority 
of the proposed method, we compared with the 

1 SVD− method by plots of spectra and the root-
mean-square error (RMSE).  

Consider the direction of the overcomplete 
dictionary A  is from 1° to  180K = °  with 0.5° 
uniform sampling, and signal covariance matrix R  
can be estimated by these snapshots as 

  
1

1 ( ) ( )
T

H

t
t t

T =

= ∑R X X                 

(19) 
where T  is the total number of snapshots.  

For simplicity, we suppose that all sources are 
of equal power 2

sσ  and the input SNR is defined as 

)σ(σ ns
2210log10 , where 2

nσ  is the power of the 
noise. The RMSE of the DOA estimates from 500 
Monte Carlo trials is defined as  

  
500

2

1 1

ˆRMSE ( ( ) ) (500 )
sN

k k s
n k

n Nθ θ
= =

= −∑∑     (20) 

where ( )nθk
ˆ  is the estimate of kθ  for the n th 

Monte Carlo trial, and sN  is the number of signals. 
We select 1000T =  in the following simulations. 
In the simulation, when 4M = , consider 3 and 4 
independent signals 
from [ 22 ,3 ,  41 ]− ° ° ° , [ 22 ,3 ,  24 ,  41 ]− ° ° ° °  
respectively. Fig.1, Fig.2 show that the signal DOAs 
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Fig.1. The normalized amplitude spectrum of 3 signals 

 

Fig.2. The normalized amplitude spectrum of 4 signals 

Fig.3. RMSE of the 3 signal DOA estimates versus input SNR  

              Fig.4. RMSE of the 4 signal DOA estimates versus input SNR 

estimation based on 1 SVD−  method and the 
proposed method in the two conditions respectively. 
Obviously, we can’t estimate the 3 and 4 signal 
DOAs effectively by 1 SVD−  method. The 
RMSE of the 3 signals DOA estimates based on the 
proposed method is shown in Fig.3. In Fig.4 we plot 
the RMSE of the 4 signals DOA estimates based on 
the proposed method and Crame- Rao Lower bound 
(CRLB) under different input signal-to-noise ratio 
(SNR). Consider 5 independent signals 
from[ 45 , 22 ,3 ,  24 ,  41 ]− ° − ° ° ° ° , the Fig.5 and Fig.6 
show the signal DOAs estimation and its RMSE 
based on the proposed method. 

When 5M = , consider 6 independent signals 
from [ 45 , -22 ,  -12 ,  10 ,25 ,48 ]− ° ° ° ° ° °  and 7 
independent signals from 
[ 44 , -22 ,  -12 ,  12 ,26 ,48 ,63 ]− ° ° ° ° ° ° °  respectively. 
The Fig.7, Fig.8, Fig.9 and Fig.10 show the signal 
DOAs estimation and its RMSE based on the 
proposed method respectively. 

Simulation results show that for four-element 
non-uniform linear array we could estimate 5 
independent source DOAs at most using the 
proposed method, which is more than the number by 

1 SVD−  method, and for five-element non-
uniform linear array we could estimate 7 
independent source DOAs at most. Note that the 
proposed method is suitable for the independent 
signals. In the similar way, the number of element 
M could be other value, we could estimate more 
independent source DOAs by the proposed method. 
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              Fig.5. The normalized amplitude spectrum of 5 signals 

  

Fig.6. RMSE of the 5 signal DOA estimates versus input SNR 

  

              Fig.7. The normalized amplitude spectrum of 6 signals 

  

Fig.8. RMSE of the 6 signal DOA estimates versus input SNR 

  

              Fig.9. The normalized amplitude spectrum of 7 signals 

  

Fig.10. RMSE of the 7 signal DOA estimates versus input SNR 
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5 Conclusions 
In this paper, we propose a new DOA 

estimation method which combined MRLA with 
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1 SVD−  method. Simulation results validate the 
effectiveness of the proposed method and illustrate 

that it outperforms 1 SVD−  method in the aspect 
of estimating more signal sources with the same 
element, and it is capable of estimating more DOAs 
with fewer antenna elements.  
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