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Abstract- In this work, the approach we suggest for the linear filtering consists in considering any linear filter as a 
geometric hyper plane space to which the output signal vector belongs. Any signal orthogonal component to this 
space vanishes. So removing a non desired component from a signal is to look for a flat space to which this 
component is orthogonal; in other words, this non desired component will not be observed by orthogonal projection 
in this geometric space or it does not belong to it and hence, it is eliminated according to Gram-Schmidt 
orthogonalization concept. To clarify this point view, we compare this geometric filtering procedure to that of an 
ideal low pass filter in Fourier space and show that it is simple, more efficient and general than the traditional 
filtering. As an application, we extend this geometric filtering to the linear modelling by eliminating the modelling 
error, considered as a non-desired output signal component, in order to determine the model coefficients in the case 
of a linear modelling, linear model identification, and auto-regressive modelling. In addition, using Pythagoras 
theorem, we calculate the modelling error variance which can be used for testing the linear model approximation 
quality.  
.  
Keywords:-Geometric linear filtering; Gram-Schmidt orthogonalization; orthogonal component; geometric hyper 
plane; linear model; auto-regressive model. 
 
 
1 Introduction 
A filter is, usually, defined as a procedure that 
transforms a given signal into a second one that has 
some more desirable properties or information such as 
those that are less noisy or distorted [1, …, 3]. The 
desired features in the filter output depend, mostly, on 
the practical applications. If the input is generated by a 
sensing device, such as a microphone, for example, the 
filter may attempt to produce an output signal having 
less background noise or interference. Filter 
specifications are commonly expressed in the frequency 
domain, known as the Fourier space [12], characterized 
by the fundamental stationary sinusoidal osculation as 
its base vector. This is the space in which the input 
signal is projected by Fourier transform. The base 
vectors of the Fourier space represent stationary 
oscillations. Their localisation in time is, however, not 
taken into consideration or is not, in other words, 
observed and hence orthogonal to the Fourier space. 
This very useful information can be brought by breaking 
the signal in a space having both stationary and non 
stationary oscillations as its base vectors, giving more 
chance to any information to be, well, generated by this 

base. We need to break the signal vector y at each 
instant hence we obtain localised co and contra variant 
components in time. The latter are what we need to see 
in this oscillations space. The wavelet space is an 
example of such spaces. In the latter, instead of the 
contra variant, we look usually, for the co variant 
components of a signal given by projection of this 
signal y in the wavelet space; 
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are the base vectors of the wavelet space for the 
oscillation a  (scale) at the instant b . This allows the 
observation of all different distortions a for a given 
wavelet shape at this instant. An alternate and more 
general technique is proposed in this work. This method 
is geometric and consists in considering any linear filter 

dtC baba ,, .ψ∫= y
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as a flat geometric space (hyper plane) [14] with any 
desired fundamental information as its base vector. We 
will show how to eliminate any non desired signal 
component by orthogonal projection in this geometric 
hyper plane space according to Gram-Schmidt 
orthogonalization. We further show that our proposed 
method of filtering can be easily extended to the linear 
modeling by assuming the modeling error as the non-
desired output signal component to be eliminated. This 
indicates, therefore, the generalized applicability which 
is a good advantage of our suggested way of filtering 
over the traditional filtering    
 
2. Discussion 
Using relativity terms, a geometric space in which a non 
desired component projection of a signal vanishes, could 
be interpreted as that if an observer is in this space 
(using only this space tools), cannot see this component 
and, thus, it is exactly eliminated, but only relatively in 
this space. A relative geometric space behaves, 
therefore, as a filter. So a linear filtering procedure 
corresponds geometrically to searching a geometric 
hyper-plane to which a non-desired component of a 
signal is orthogonal or equivalently to which a desired 
component belongs. The choice of the base vectors 
depends on the desired information; it should represent 
fundamental information that generates linearly the 
desired one. For example if we are looking for stationary 
sinusoidal oscillations, then the Fourier 
factor fnje π2=ψ  , as the fundamental base, is known to 
be the more appropriate. To construct a geometric filter 
from this space, we reduce its dimension by eliminating 
the base vector that generates the non desired 
component. For example if the non-desired component 

is at f0, then the base vector 
nfj

e 02 π
=ψ must be 

omitted to obtain a hyper plane representing the 
corresponding filter [8, ..., 11].   
According to Charles’ vectors relation we can break any 
signal vector y  into as many components as we wish. In 
our case, we are interested to decompose the output 
signal into two main components only; the desired 
component dy (the linear output) and the non desired 
component dy n  (to be eliminated)    
 

)1(dd yyy n+=              
.  
The aim of this filtering is to eliminate dy n by orthogonal 
projection either entirely or partially depending on how 
both the desired and the non-desired components are 
related. When there is any interaction between them, 

some of the desired information is, unfortunately, 
eliminated if the desired hyper plane ψ representing the 
filter is orthogonal to dyn . A compromise, depending on 
practical purposes, between the two components is, 
therefore, needed and it can be made by adjusting 
geometrically the hyper plane. We will make this point 
clearer in the following by discussing step by step the 
possible cases of the geometric linear filtering that may 
take place and illustrating them by their corresponding 
to the traditional low pass filtering in Fourier space.   
In the following we will be using the contra-variant and 
the covariant components of a vector which are, 
basically, different. These are defined as follows: 
The contra-variant jh (or the filter coefficients) of a 
vector Ly , in a linear space iψ , is obtained by 
decomposing the vector in this space such that 
 

jψy j
L h=  

 
Whereas its covariant ih is obtained by projecting the 
vector in this space using the following dot product  
  

)2(,,, ijiji ψψψψψy jj
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From this equation we can deduce that the contra-variant 
and the covariant components are equal only if the base 
is ortho-normal that is if we have  
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2.1 The desired and the non desired components 
are independent 

In the simplest case, we can suppose that the desired 
and the non-desired components are independent. In 
this case it is well known that any set of linearly 
independent vectors can be converted into a set of 
orthogonal vectors by the Gram-Schmidt process 
[15]. These two components are, therefore, 
geometrically orthogonal and hence their dot product 
vanishes: 

 
)3(0, =dd yy n  

 
Where ,  represents the dot product. In this case we 
can, easily, eliminate, entirely, the non desired 
component dyn  without affecting the desired one by 
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choosing the hyper plane, representing the filter, to be 
orthogonal to this component. This can be performed by 
adjusting the hyper plane ψi such that all the signal 
desired components belong to it and hence the non 
desired component dyn  will be orthogonal as indicated 
in fig. (1), for the hyper plane space and in fig. (2), in 
the case of Fourier space.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case the desired component is given by 
 

)4(
1

jjd ψψy j
P

j
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We have used Einstein convention in (4) for 
simplification, and by substituting this expression in 
equation (1), we obtain 
 

)5(dj yψy n
jh +=                     

jh represents, geometrically, the jth contra variant 
component or the filter coefficients in this hyper plane 
space. So, as we mentioned previously, filtering 
corresponds to eliminating dy n  by projecting 
orthogonally equation (5) on the space iψ  representing 
the geometric filter, we obtain, thus, the fundamental 
equation [5, 6] to determine the filter coefficients 

jh (the output y contra-variant) with respect to the 
output y covariant component ih  
 

)6(,, j
i hh iji ψψψy == , 

 
We represent in figure (2) the role of an ideal low pass 
filter in Fourier space similar to the geometric filter in 
figure (1). It can be noticed that orthogonal components 
in geometry, are independent algebraically in Fourier 
space since there is no band overlapping. They can be, 
therefore, well separated from each other in the 
frequency space. As a consequence, the non-desired 
component can be entirely removed by a low pass 
without affecting the desired component fig (2). In this 
example, the aim of using a low pass filter is to reduce 
the Fourier dimensions in order to obtain a reduced 
observation space corresponding to the frequency range 
[0 to fc]. Any component that is not within this space is, 
obviously, not observed (orthogonal) or in other word 
eliminated. 
The modeling error in Wiener filter and the prediction 
error in autoregressive model are a good example of the 
non-desired components to be eliminated by projection 
in the linear input space [4, …, 7].   
 
2.2 The desired and the non desired components 
are dependent 
We have, here, three possible cases of filtering 
depending on practical reasons; 1) filtering entirely the 
desired component, 2) eliminating entirely the non-
desired component and finally 3) a compromise between 
these two cases. 
 
2.2.1 Filtering entirely the desired component. 
To filter entirely the desired component we need to 
adjust the hyper plane ψ representing the filter in order 
to have dy completely within this space. This 
corresponds to the location of the entire dy band in the 
filter pass band in Fourier space as it is shown in fig.(4). 
Since there is, however, an interaction between the 
desired and the non-desired components, some of the 
non-desired information will be, unfortunately, not 

Fig.1.The non-desired ynd is orthogonal and the 
desired dy  is in the space ψ 

 

ψ Hyper plane (linear filter)  

y 

ynd 

yd 

Y(f) 

f fc 

ynd 

yd 

Fig.2.The non-desired ynd and the desired yd are 
independent in Fourier space  
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING B. Yagoubi

E-ISSN: 2224-3488 77 Volume 10, 2014



eliminated as it is shown, geometrically, in fig.(3) and 
correspondingly in Fourier space in fig.(4). Figure (3) 
shows that the projection of dyn  does not vanish in the 

hyper plane ψ  and hence some of it dy n
' , is filtered. 

Similarly, figure (4) shows an overlapping between the 
two bands and thus it is not possible to filter dy entirely 
without filtering some of the non-desired information.  
This filtering can be expressed geometrically by the two 
following relations  
 

)7(jd ψy jh=  
 
And 
 

)8(0, ≠dd yy n  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.2 Eliminating entirely the non-desired component 
In this case we adjust the hyper plane to be exactly 
orthogonal to the non-desired component dy n . But as 

previously, some of the desired information dy '  will be, 

also, orthogonal and thus eliminated since the 
components are dependent (fig. 5). Similarly in Fourier 
space the non-desired component is entirely eliminated 
but, however, due to the band overlapping, some of the 
desired band still within the cutting band and hence 
eliminated (fig. 6). This geometric filtering can be 
described by 
 

)9(0, =id ψy n  
 
And 
 

)10(0, ≠dn yy d  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.3 A compromise between desired and non-desired 
components 
Since the two components are dependent, a compromise 
depending on practical purposes corresponds to a 
situation in which neither of the components is 

ψ Hyper plane (linear filter)  

y 

ynd 

yd 

y’
nd 

 

Fig.3. Some of the non-desired information 
dy n

' is filtered 

Fig.6. Some of the desired information d
'y is in 

the cutting band (eliminated). 
 

Y(f) 

f fc 

ynd 

yd 

         y’
d 

 

Fig.5. The non-desired and Some of the desired 
information d

'y are eliminated. 
 

ψ Hyper plane (linear filter)  

y 

ynd 

yd 

Filtered 

Fig.4. Some of the non-desired information  
dy n

' is in the pass band (filtered). 

Y(f) 

f fc 

ynd 

yd 

Fig.6. Some of the desired information d
'y is in 

the cutting band (eliminated). 
 

Y(f) 

f fc 

ynd 

yd 
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orthogonal to the hyper planeψ . So, in addition to 
equation (8) we have 
 

)11(0, ≠iψy d  
And 
 

)12(0, ≠in ψy d  
 
By moving this plane either towards the desired or non-
desired component, we obtain either more or less 
desired information respectively.  We can use, therefore, 
the dot product in ψdy , to select the right geometric 

filter for the desired compromise according to the 
practical reasons. As this dot product goes to zero, we 
obtain more desired information. This is illustrated, 
geometrically, in fig.(7) and in Fourier space in fig.(8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In all the above cases of filtering, we can notice that  

adjusting, geometrically, the hyper plane corresponds to 
varying the cutting frequency or the pass band of the 
low pass filter in Fourier space. 
 
2.3. Applications 
2.3.1 Linear modelling  
The aim of our suggested method of filtering is to 
extend it, particularly, to the linear modelling by 
considering the linear modelling error as the non-desired 
component to be removed from the real model output 
signal. The real model output y  is, therefore, 
decomposed according to equation (1) into a linear 
component as a desired component, and a modelling 
error 

mod
e  as a non desired component, as follows 
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i
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Note that any error is made because it is not observed in 
our desired space of observation (linear model) or not 
generated by its base vectors. So, since our desired 
component is generated by this space, then this 
component and the modelling error (non-desired) are 
always independent. This can be also interpreted, 
geometrically, according to Gram-Schmidt 
orthogonalization, as that the error is, always, 
orthogonal to our space of observation to which the 
desired component (linear) belongs, hence it vanishes by 
orthogonal projection. The aim, in a linear modelling, is, 
therefore, simply to choose a geometric hyper plane 
space to represent a linear filter and to which the desired 
component (linear) belongs. The modelling error is, 
automatically, orthogonal to this hyper plane as 
indicated in figure (9).  Since the modelling error (non-
desired) and the linear component (desired) are, 
geometrically, orthogonal, equation (6), in which we 
have substituted ii xψ = , allows the determination of 
the linear model coefficients, hence; 
 

)16(,, j
iji hxxxy =  

Fig.7. neither of the components are orthogonal 
to the hyper planeψ .  

 

ψ Hyper plane (linear filter)  

y 

ynd 

yd 
y’

nd 
 

y’
d 

Fig.8. neither of the components is entirely 
filtered in Fourier space 
 

Y(f) 

f fc 

ynd 

yd 
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 Using the ordinary multiplication and applying the 
mathematical expectation to both sides of (16), we 
obtain the linear model coefficients in Hilbert space. 
 

)17(

][].[

),( j

j
iji

h

hEE

jixR=

= xxxy
 

 
This relation is known as Wiener filter[5, 6]. The 
quantity ),( jixR is the auto-covariance matrix element of 
the inputs. Note that the relation (17) expressing Wiener 
filter in Hilbert space is, just, a simple covariant and 
contra-variant components relation obtained, 
geometrically, by projecting and decomposing the 
output vector in the geometric input space represented 
by the inputs xi. 
So, since the desired (linear) 

d
y  and the non-desired 

(the modelling error) (
mod

ey =
nd

) are orthogonal, then 

according to equation (1) these two components and the 
output y form a rectangular triangle as shown in fig.(9). 
So, to test the linear model approximation, we can 
determine the modelling error variance from fig.(9)  
using Pythagoras theorem and the mathematical 
expectation E,  equivalent to Gram-Schmidt process, but 
simpler, as follows 
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Substituting the linear desired component by its 
expression (14) in this equation (18) we obtain the 
modelling error variance 
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 To obtain a final expression for the error variance, we 
can simplify this equation using the vector transposition 
and the Einstein convention mentioned earlier, hence; 
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where Th is vector transposition representing the linear 
model coefficients.  

Note: that equation (18) obtained geometrically can be, 
also, obtained algebraically in Hilbert space using the 
fact that for two independent processes the average of 
their product is zero, as follows; 
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2.3.1.1. Consequences of this proposed geometric 
method. 
 
Definition of the LMR and the LRR 
In the linear modelling, the aim is to represent the real 
model by an adequate linear model. According to figure 
(9), the real model is more linear if the linear component 

dy  (desired) is more important than the modelling error 

mode  (non-desired). The latter can be, therefore, 
considered as an additive noise to the linear component. 
It is, therefore, convenient to define a ratio (LMR) of the 
linear component to that of the modelling error, similar 
to the signal to noise ratio to see the linearity of the real 
model. This can also be done by calculating another 
ratio (LRR) of the linear component to that of the real 
model. These two important ratios, to study the linearity 
of the real model, are discussed in the following with an 
example illustrating their role in linear modelling. 
 
a)-The linear output to the modelling error ratio 
(LMR) 
We can calculate the ratio of the desired linear output 
power lP  to that of the modeling error eP  (non desired) 
using relation (18) and (19), or from its illustrated 
version in fig.(9) using the squared cotangent.  
 

Fig.9 ixdy ∑
=

=
=

pi

i
ih

1
is the linear model output in the 

hyper-plan space (linear filter) ii xψ =  
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i
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b)-The linear output to the real output ratio (LRR)  
An important consequence of this geometric method of 
filtering, is the cosine square calculated from fig.(9) 
using Hilbert space norm. It represents the ratio 

M
P

l
P

LRR =  of the desired linear output power to that of 

the real output. 
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Notice that the LRR given by equation (21) or (22) 
indicates, also, the gain or the fraction of the measured 
output that can be generated linearly with respect to the 
inputs.   
 
c) – Simulation 
In this section, we illustrate the role of the LMR or the 
LRR ratios given respectively by (20) and (22) in the 
case of an ideal digital low pass filter. 
If the LRR ratio is very low, then the non linear power 
which is, at the same time, the linear modeling error 
variance [ ]2)mod(eE , is very high. As a consequence, the 
linear model coefficients will be smeared out by the 
second term in the following LMS algorithm (23) if this 
is used to determine the linear model coefficients. 
 

)23(.mod.)1()( xehh µ+−= i
e

i
e

 

 
Where mode is the linear modeling error given by 
equation (4). µ  is the gradient step. So, if the non linear 
component, present in the output, is very dominant, the 
LMS algorithm should not be used to determine a linear 
model. This can be clarified by the following simulation. 
The linear model, in our simulation, is an ideal low pass 
whose impulse response (filter coefficients) is given by 
  

)24(
)2sin(

i
cfi

ih
π

π
=  

Its corresponding finite impulse response (FIR) is 
obtained, in the literature using, generally, Hamming’s 
window. In our case, we limited its width to P=19 
samples corresponding to the number of the filter 
coefficients. The error measurement is assumed to be a 
Gaussian centered white noise with a 

variance [ ] 41022)( −== σ
m

E e , and the non linear model 

is of an exponential form. Figure (10) shows the 
theoretical model coefficients h  eq.(24) in solid curve 
and the estimated 

e
h in dotted curve. It can be seen in  

        
 
 
 
 

    
 
 
 
 
this figure that when the linear component is dominant, 
the best linear approximation, represented by the linear 
model, is well determined by the LMS algorithm.  But as 

Fig.10. Theoretical model coefficients h  (solid curve) 
and the estimated 

e
h (dotted curve). LRR  is high 

Fig.11.Theoretical model coefficients h  (solid curve) 
and the estimated 

e
h (dotted curve). LRR  is very low. 
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the non linear component becomes more dominant, by 
increasing its amplitude and keeping the measurement 
error variance constant, the estimated model coefficients 
do not fit the theoretical ones given by equation (24), as 
it is seen in fig. (11). 
 
2.3.2. Linear model identification.   
A linear model output corresponds, geometrically, to a 
linear geometric space generated linearly by the input 
base vectors ix , hence; 
 

ixY ∑
=

=
=

pi

i
ih

l 1
 

 
Or ixY ih

l
=  (according to Einstein convention [5]) 

)25(  
This relation expresses a linear model output 

l
Y or, 

simply, a vector in a linear geometric space [5] such that 
the contra variant components ih represent the linear 
model coefficients.  In the case of the linear model 
identification [13], the real model is supposed to be 
linear.  However, the measurement errors as well as 
other perturbations are, unfortunately, introduced in 
practice during the output observation. The measured 
output signal Y is, therefore, given by 
 

)26(idl eYY +=            
 
Where lY is the desired linear component given by (1) 

and ide is the non-desired component representing all 
the possible perturbations such as the measurement error 
and, eventually, other noises that can be observed at the 
output. These perturbations are not generated by the 
inputs ix , hence orthogonal to any space generated by 
these inputs. The desired and the non-desired 
components are, therefore, orthogonal and, as 
consequence, equation (17) or (6) can be used to 
determine the linear model coefficients for the linear 
identification.  
 
2.3.3. Application to Auto-regressive model 
In the autoregressive modelling, the vector to be 
predicted is given, in the literature [1,..., 4], by 
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i
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=
x is the linear prediction representing 

the desired component, and 
mod

e is the prediction error 

or the modelling error representing the non-desired 
component.  
This model is a particular case of a linear modelling 
with the input past values 

)( inii −== xxψ (with Pi ,...,1= ) as the base 
vectors, and )(nxy = is the real signal to be predicted.  
 
a)- AR-p Coefficients  
Substituting )( inii −== xxψ (with Pi ,...,1= ) and 

)(nxy =  in equation (17), we obtain the auto-
regressive model coefficients,  

 
 
b)-The predicted error variance for AR-p 
Substituting the same quantities in equation (19) we 
obtain the following expression for the prediction error 
variance 
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If, in addition, the input is a wide sense second order 
stationary process, this equation will be  
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Where we have set iaih =  ; the usual notation of the AR 
coefficients in the literature. 

[ ] jiinExR =∀−= 2)()0( x and
[ ])()()( jninEijxR −−=− xx depends only on the 

interval length )( ij − . Using the vector transposition and 
Einstein convention, the last expression (30) can be, 
further, simplified as follows 
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The LMR and LRR parameters can be calculated from 
figure (9).  
 
c) - Determination of the LRR for AR-p 
The cosine square calculated in Hilbert space norm, 

represents the ratio 
r

P
l

P
LRR =  of the linear prediction 

power to that of the real value to be predicted according 
to equation (20) , hence 
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Using the vector transposition and Einstein convention 
as previously, the last expression can be written as 
follows 
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d)-Determination of the LMR for AR-p 
We can calculate the ratio of the linear prediction power 
to that of the prediction error using (20) as follows  
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This parameter can be, also, deduced from equation (22) 
as follows  
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To see the application of our geometric method of a 
linear filtering, we review, in the following, two 

particular auto-regressive models that are, usually, used 
in practice; the AR-1 and AR-2. 
 
 
2.3.3.1-Application to AR-1 
In this case we have a mono-dimensional 
space )1(1 −= nxψ . The non desired component is the 
modelling error which is also called the prediction 
error modey d =n that should not be observed, hence 
orthogonal to )1(1 −= nxψ , to obtain the adequate 
auto-regressive model coefficients for the best linear 
prediction. The desired component is the linear 
prediction )1( −= naxyd , and )(nxy = is the vector 
(real signal) to be predicted. Equation (27) becomes  
 

)35()1()( modexx +−= nan  
 
a)- AR-1 Coefficient  
By applying equation (16), we obtain the AR-1 
coefficient a   
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R is the auto-covariance.  
 
b)-The predicted error variance for AR-1 
This is obtained either from the figure (9) through 
Pythagoras theorem or the relation (31).  
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c)- Determination of the LRR for AR-1 
Using equation (31), this parameter reduces to  
  

)38(12 ≤== aLRR Th.h  
 
Where we have used jiijRR =∀−= )()0(  ; the 
principal diagonal element of the wide sense second 
order stationary process (WSS) auto covariance matrix.  
This relation (38) indicates, clearly, that an AR-1 
modelling with a coefficient greater than one is, in 
practice, not possible or it leads, at least, to a non-causal 
situation.  
 
d)-Determination of the LMR for AR-1 
This parameter can be obtained by substituting (38) into 
(34) 
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3.3.3.2-Application to AR-2 
a)-Determination of the coefficients 1a and 2a for 
 AR-2 
In this case we have a two-dimensional observation 
space (i=1,2), where )1(1 −= nxx and )2(2 −= nxx ) 
are the base vectors. Equation (28) for the two model 
coefficients will be  
 
 For i=1: 
 

)1()0()1( 21 RaRaR +=             
 
And for i=2 
 

)0()1()2( 21 RaRaR +=             
 
The determinant of this equations system is  
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The model coefficients are, thus,  
  

Det
RRRRa )1()2()1()0(1 −

=
           

 

Det
RRRa

2
2 )1()2()0( −
=

              
 
b)-Determination of the prediction error variance for 
AR-2 
To determine the prediction error variance fig.(9), we 
apply the general relation (31), as previously, with the 
coefficients vector ][ 21 aa=h  ;   
 
[ ] )40()1(2]2(2(1)[0(2)( 2121 )) RRpE aaaa −−−=e      

 
 c) -Determination of the LRR for AR-2  
We can obtain a criterion for AR-2 by using (32); 
 

 )41(1)0(
)1(22)(2)( 2121 ≤++= R

RaaaaLRR             

 

This relation is a useful criterion that shows a good AR-
2 representation of the real model as the left expression 
gets closer to 1. 
 
d)-Determination of the LMR for AR-2 
By substituting (41) in (34) we obtain the LMR for the 
AR-2.  
 
Commentary 
The application of our geometric method to determine 
the model coefficients, particularly, for the 
autoregressive model is clearly much easier and more 
efficient than the algebraic method, usually, applied in 
the literature.  
 
4. Conclusion  
We have presented a geometric way of a linear filtering 
in which the fundamental information representing the 
base vectors should generate the desired component. To 
find a geometric linear filter in order to eliminate a non-
desired component of any signal is to look for a flat 
space in which it is orthogonal. Mathematically, this can 
be done by adjusting the hyper plane space to be 
orthogonal to this component according to Gram-
Schmidt orthogonalization concept. In order to clarify 
the geometric filtering, we compared it to that of a linear 
filtering in Fourier space, where the fundamental 
information is supposed to be a stationary sinusoidal 
osculation. When the desired information is non-
stationary, it is better to use non stationary fundamental 
information, such as a wavelet for the space base 
vectors. We have seen that   when the non desired 
component is much correlated with the others, it is 
difficult to isolate it using a flat space without losing 
useful information. But as the correlation gets lower, a 
relative flat space, to eliminate a non desired 
component, becomes a better approximation. We believe 
that this geometric filtering which is another alternative 
to traditional filtering is very simple and it can be 
extended, particularly, to the linear modelling, the linear 
identification and the linear estimation or prediction 
such as in the case of the auto-regressive model. The 
linear modelling was performed by eliminating the 
modelling error according to Gram-Schmidt 
orthogonalization, whereas the modelling error variance 
was calculated using, simply, Pythagoras theorem 
instead of Gram-Schmidt orthogonalization process.  
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