A new type of sequence space of non-absolute type and matrix transformation

Neyaz Ahmad Sheik
NIT Srinagar
Department of Mathematics
Hazratbal Srinagar-190006, Kashmir INDIA
neyaznit@yahoo.co.in

Ab. Hamid Ganie*
NIT Srinagar
Department of Mathematics
Hazratbal Srinagar-190006, Kashmir
INDIA
ashamidg@rediffmail.com

Abstract: In this paper, we introduce the space $r^{q}\left(\triangle_{u}^{p}\right)$, where

$$
r^{q}\left(\triangle_{u}^{p}\right)=\left\{x=\left(x_{k}\right) \in \omega:\left(\triangle x_{k}\right) \in r^{q}(u, p)\right\} ;
$$

where $r^{q}(u, p)$ has recently been introduced and studied by Neyaz and Hamid (Acta Math. Acad. Paeda. Nyreg., 28,2012 , pp. 47-58). We show its completeness property, prove that the space $r^{q}\left(\triangle_{u}^{p}\right)$ and $l(p)$ are linearly isomorphic and compute α-, β - and γ-duals of $r^{q}\left(\triangle_{u}^{p}\right)$. Moreover, we construct the basis of $r^{q}\left(\triangle_{u}^{p}\right)$. Finally, we characterize some matrix class.

Key-Words : Sequence space of non-absolute type; paranormed sequence space; α-, β - and γ-duals ; matrix transformations.

1 Introduction

We denote the set of all sequences with complex terms by ω. It is a routine verification that ω is a linear space with respect to the co-ordinatewise addition and scalar multiplication of sequences which are defined, as usual, by

$$
x+y=\left(x_{k}\right)+\left(y_{k}\right)=\left(x_{k}+y_{k}\right)
$$

and

$$
\alpha x=\alpha\left(x_{k}\right)=\left(\alpha x_{k}\right),
$$

respectively; where $x=\left(x_{k}\right), y=\left(y_{k}\right) \in \omega$ and $\alpha \in$ C. By sequence space we understand a linear subspace of ω i.e. the sequence space is the set of scalar sequences (real or complex) which is closed under co-ordinate wise addition and scalar multiplication. Throughout the paper N, R and C denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let l_{∞}, c and c_{0}, respectively, denotes the space of all bounded sequences, the space of all convergent sequences and the sequences converging to zero. Also, by $l_{1}, l(p)$, cs and $b s$ we denote the spaces of all absolutely convergent, p-absolutely convergent, convergent and bounded series, respectively.

The classical summability theory deals with a generalization of convergence of sequences and series. One original idea was to assign a limit to diver-
gent sequences or series. Toeplitz [1] was the first to study summability methods as a class of transformations of complex sequences by complex infinite matrices. The theory of matrix transformations is a wide field in summability; it deals with the characterizations of classes of matrix mappings between sequence spaces by giving necessary and sufficient conditions on the entries of the infinite matrices.

Let X, Y be two sequence spaces and let $A=$ $\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in N$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=$ $\left\{(A x)_{n}\right\}$, the A-transform of x exists and is in Y; where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $A \in(X: Y)$ we mean the characterizations of matrices from X to Y i.e., $A: X \rightarrow Y$. A sequence x is said to be A-summable to l if $A x$ converges to l which is called as the A-limit of x.

We denote by (A) the set of all sequences which are summable A. The set (A) is called summability field of the matrix A. Thus, if $A x=$ $\left\{(A x)_{n}\right\}$, then $(A)=\{x: A x \in c\}$, where c is the set of convergent sequences. For example, $(I)=c$.

For a sequence space X, the matrix domain X_{A}
of an infinite matrix A is defined as

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right): A x \in X\right\} . \tag{1}
\end{equation*}
$$

A infinite matrix $A=\left(a_{n k}\right)$ is said to be regular $[2,3]$ if and only if the following conditions hold:
(i) $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=1$,
(ii) $\lim _{n \rightarrow \infty} a_{n k}=0, \quad(k=0,1,2, \ldots)$,
(iii) $\sum_{k=0}^{\infty}\left|a_{n k}\right|<M, \quad(M>0, n=0,1,2, \ldots)$.

Let $\left(q_{k}\right)$ be a sequence of positive numbers and let us write, $Q_{n}=\sum_{k=0}^{n} q_{k}$ for $n \in N$. Then the matrix $R^{q}=\left(r_{n k}^{q}\right)$ of the Riesz mean $\left(R, q_{n}\right)$ is given by

$$
r_{n k}^{q}= \begin{cases}\frac{q_{k}}{Q_{n}}, & \text { if } 0 \leq k \leq n \\ 0, & \text { if } k>n\end{cases}
$$

The Riesz mean $\left(R, q_{n}\right)$ is regular if and only if $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$ [3].

Kizmaz [4] defined the difference sequence spaces $Z(\triangle)$ as follows

$$
Z(\triangle)=\left\{x=\left(x_{k}\right) \in \omega:\left(\triangle x_{k}\right) \in Z\right\}
$$

where, $Z \in\left\{l_{\infty}, c, c_{0}\right\}$ and $\triangle x_{k}=x_{k}-x_{k+1}$.
Başar and Altay [5] has studied the sequence space as

$$
b v_{p}=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|x_{k}-x_{k-1}\right|^{p}<\infty\right\}
$$

where $1 \leq p<\infty$. With the notation of (1), the space $b v_{p}$ can be redefined as

$$
b v_{p}=\left(l_{p}\right)_{\Delta}, 1 \leq p<\infty
$$

where, \triangle denotes the matrix $\triangle=\left(\triangle_{n k}\right)$ defined as

$$
\triangle_{n k}= \begin{cases}(-1)^{n-k}, & \text { if } n-1 \leq k \leq n \\ 0, & \text { if } k<n-1 \text { or } k>n\end{cases}
$$

This space was further studied by Başar, Altay and Mursaleen [6] and have introduced $b v(u, p)$ and $b v_{\infty}(u, p)$ which are defined as follows:

$$
b v(u, p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|u_{k} \Delta x_{k}\right|^{p_{k}}<\infty\right\}
$$

where $0 \leq p_{k}<\infty$ and
$b v_{\infty}(u, p)=\left\{x=\left(x_{k}\right) \in \omega: \sup _{k}\left|u_{k} \Delta x_{k}\right|^{p_{k}}<\infty\right\}$.

With the notation of (1), the space $b v(u, p)$ and $b v_{\infty}(u, p)$ can be redefined as

$$
b v(u, p)=[l(p)]_{\triangle^{u}} \text { and } b v_{\infty}(u, p)=\left[l_{\infty}(p)\right]_{\triangle^{u}}
$$

where, \triangle^{u} denotes the matrix $\triangle=\left(\triangle_{n k}^{u}\right)$ defined as:

$$
\triangle_{n k}^{u}= \begin{cases}(-1)^{n-k} u_{k}, & \text { if } n-1 \leq k \leq n \\ 0, & \text { if } k<n-1 \text { or } k>n\end{cases}
$$

for all $n, k \in N$.
The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors [530]. They introduced the sequence spaces

$$
\begin{aligned}
& \left(l_{p}\right)_{\Delta}=b v_{p}[5], \\
& \left(l_{p}\right)_{E^{r}}=e_{p}^{r} \text { and }\left(l_{\infty}\right)_{E^{r}}=e_{\infty}^{r}[7], \\
& \left(l_{\infty}\right)_{N_{q}} \text { and } c_{N_{q}}[8], \\
& \left(l_{p}\right)_{C_{1}}=X_{p} \text { and }\left(l_{\infty}\right)_{C_{1}}=X_{\infty}[9], \\
& \left(l_{\infty}\right)_{R^{t}}=r_{\infty}^{t},(c)_{R^{t}}=r_{c}^{t} \text { and }\left(c_{o}\right)_{R^{t}}=r_{0}^{t}[10], \\
& \left(c_{0}\right)_{A^{r}}=a_{0}^{r} \text { and } c_{A^{r}}=a_{c}^{r}[11], \\
& \left(l_{p}\right)_{R^{t}}=r_{p}^{t}[12], \\
& {\left[c_{0}(u, p)\right]_{A^{r}}=a_{0}^{r}(u, p) \text { and }[c(u, p)]_{A^{r}}=} \\
& a_{c}^{r}(u, p)[13], \\
& \mu_{G}=Z(u, v, \mu)[14], \\
& \left(l_{p}\right)_{A^{r}}=a_{p}^{r} \text { and }\left(l_{\infty}\right)_{A^{r}}=a_{\infty}^{r}[15], \\
& \left(c_{0}\right)_{C_{1}}=\widehat{c}_{0}, c_{C_{1}}=\widehat{c}[16], \\
& c_{0}^{\lambda}(\triangle)=\left(c_{0}^{\lambda}\right)_{\triangle} \text { and } c^{\lambda}(\triangle)=\left(c^{\lambda}\right)_{\triangle}[17], \\
& r^{q}(u, p)=\{l(p)\}_{R^{q}}[18], \\
& c\left(\triangle{ }_{u}^{\lambda}\right)=(c)_{\widehat{\wedge}} \text { and } c_{0}\left(\triangle_{u}^{\lambda}\right)=\left(c_{0}\right)_{\widehat{\wedge}}[19] ;
\end{aligned}
$$

where N_{q}, C_{1}, R^{t} and E^{r} denotes the Nörland, Cesäro, Riesz and Eular means, respectively, A^{r} and C are respectively defined in $[6,8,9], \mu=\left\{c_{0}, c, l_{p}\right\}$ and $1 \leq p<\infty, c_{0}(u, p)$ and $c(u, p)$ also denote the sequence spaces generated from the Maddox's spaces $c_{0}(p)$ and $c(p)$ by Başarir [20].

2 The Riesz Sequence space $r^{q}\left(\triangle_{u}^{p}\right)$ of non-absolute type

In this section, we define the Riesz sequence space $r^{q}\left(\triangle_{u}^{p}\right)$, prove that the space $r^{q}\left(\triangle_{u}^{p}\right)$ is a complete paranormed linear space and it is shown to be linearly isomorphic to the space $l(p)$.

A linear Topological space X over the field of real numbers R is said to be a paranormed space if there is a sub-additive function $h: X \rightarrow R$ such that $h(\theta)=0, h(-x)=h(x)$ and scalar multiplication is continuous, that is, $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $h\left(x_{n}-x\right) \rightarrow 0$ imply $h\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all $\alpha^{\prime} s$ in R and $x^{\prime} s$ in X, where θ is a zero vector in the linear space X. Assume here and after that $\left(p_{k}\right)$ be
a bounded sequence of strictly positive real numbers with $\sup _{k} p_{k}=H$ and $M=\max \{1, H\}$. Then, the linear spaces $l(p)$ and $l_{\infty}(p)$ were defined by Maddox [2] (see also, $[25,26]$) as follows :

$$
l(p)=\left\{x=\left(x_{k}\right): \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$

and

$$
l_{\infty}(p)=\left\{x=\left(x_{k}\right): \sup _{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$

which are complete spaces paranormed by

$$
h_{1}(x)=\left[\sum_{k}\left|x_{k}\right|^{p_{k}}\right]^{1 / M}
$$

and

$$
h_{2}(x)=\sup _{k}\left|x_{k}\right|^{p_{k} / M}
$$

iff $\inf p_{k}>0$.
We shall assume throughout the text that $p_{k}^{-1}+$ $\left\{p_{k}^{\prime}\right\}^{-1}=1$ provided $1<\inf p_{k} \leq H<\infty$ and we denote the collection of all finite subsets of N by F, where $N=\{0,1,2, \ldots\}$.

Neyaz and Hamid [18] have recently introduced $r^{q}(u, p)$ which is defined as:

$$
\begin{aligned}
r^{q}(u, p)= & \left\{x=\left(x_{k}\right) \in \omega:\right. \\
& \left.\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{k} q_{j} x_{j}\right|^{p_{k}}<\infty\right\}
\end{aligned}
$$

where, $0<p_{k} \leq H<\infty$.
With the notation of (1) we redefine $r^{q}(u, p)$ as:

$$
r^{q}(u, p)=\{l(p)\}_{R_{u}^{q}}
$$

Following Başar and Altay [5], Mursaleen et al [17, 23], Hamid et al [18, 23, 24], Basarir [27], Choudhary and Mishra [28], Gross Erdmann [30], Tripathy [31], we define the Reisz sequence space $r^{q}\left(\triangle_{u}^{p}\right)$ as the set of all sequences such that $R^{q} \triangle$-transform of it is in the space $l(p)$, that is,

$$
\begin{aligned}
r^{q}\left(\triangle_{u}^{p}\right)= & \left\{x=\left(x_{k}\right) \in \omega:\right. \\
& \left.\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{k} q_{j} \triangle x_{j}\right|^{p_{k}}<\infty\right\}
\end{aligned}
$$

where, $0<p_{k} \leq H<\infty$.
Remark 1 If we take $\left(u_{k}\right)=e=(1,1, \ldots)$ in $r^{q}\left(\triangle_{u}^{p}\right)$, we get the results obtained in [27].

With the notation of (1) we redefine $r^{q}\left(\triangle_{u}^{p}\right)$ as

$$
r^{q}\left(\triangle_{u}^{p}\right)=\{l(p)\}_{R^{q} \triangle} .
$$

Define the sequence $y=\left(y_{k}\right)$, which will be used, by the $R^{q} \triangle$-transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}=\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{k} q_{j} \triangle x_{j} \tag{2}
\end{equation*}
$$

Now, we begin with the following theorem which is essential in the text.

Theorem $2 r^{q}\left(\triangle_{u}^{p}\right)$ is a complete linear metric space paranormed by h_{\triangle}, defined as

$$
\begin{aligned}
& h_{\triangle}(x)= \\
& {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j}-q_{j+1}\right) x_{j}+\frac{q_{k} u_{k}}{Q_{k}} x_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}}
\end{aligned}
$$

with $0<p_{k} \leq H<\infty$.

Proof: The linearity of $r^{q}\left(\triangle_{u}^{p}\right)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for $z, x \in r^{q}\left(\triangle_{u}^{p}\right)$ [2]

$$
\begin{align*}
& {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j}-q_{j+1}\right)\left(x_{j}+z_{j}\right)+\frac{q_{k} u_{k}}{Q_{k}}\left(x_{k}+z_{k}\right)\right|^{p_{k}}\right]^{\frac{1}{M}}} \\
& \leq\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j}-q_{j+1}\right) x_{j}+\frac{q_{k} u_{k}}{Q_{k}} x_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \\
& +\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j}-q_{j+1}\right) z_{j}+\frac{q_{k} u_{k}}{Q_{k}} z_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \tag{3}
\end{align*}
$$

and for any $\alpha \in \mathbf{R}$ [32]

$$
\begin{equation*}
|\alpha|^{p_{k}} \leq \max \left(1,|\alpha|^{M}\right) \tag{4}
\end{equation*}
$$

It is clear that, $h_{\triangle}(\theta)=0$ and $h_{\triangle}(x)=h_{\triangle}(-x)$ for all $x \in r^{q}\left(\triangle_{u}^{p}\right)$. Again the inequality (3) and (4), yield the subadditivity of h_{\triangle} and

$$
h_{\triangle}(\alpha x) \leq \max (1,|\alpha|) h_{\triangle}(x)
$$

Let $\left\{x^{n}\right\}$ be any sequence of points of the space $r^{q}\left(\triangle_{u}^{p}\right)$ such that $h_{\triangle}\left(x^{n}-x\right) \rightarrow 0$ and $\left(\alpha_{n}\right)$ is a sequence of scalars such that $\alpha_{n} \rightarrow \alpha$. Then, since the inequality,

$$
h_{\triangle}\left(x^{n}\right) \leq h_{\triangle}(x)+h_{\triangle}\left(x^{n}-x\right)
$$

holds by subadditivity of $h_{\triangle},\left\{h_{\triangle}\left(x^{n}\right)\right\}$ is bounded and we thus have

$$
\begin{aligned}
& h_{\triangle}\left(\alpha_{n} x^{n}-\alpha x\right)= \\
& {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{k}\left(q_{j}-q_{j+1}\right)\left(\alpha_{n} x_{j}^{n}-\alpha x_{j}\right)\right|^{p_{k}}\right]^{\frac{1}{M}}} \\
& \leq\left|\alpha_{n}-\alpha\right|^{\frac{1}{M}} h_{\triangle}\left(x^{n}\right)+|\alpha|^{\frac{1}{M}} h_{\triangle}\left(x^{n}-x\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. That is to say that the scalar multiplication is continuous. Hence, h_{\triangle} is paranorm on the space $r^{q}\left(\triangle_{u}^{p}\right)$.

It remains to prove the completeness of the space $r^{q}\left(\triangle_{u}^{p}\right)$. Let $\left\{x^{i}\right\}$ be any Cauchy sequence in the space $r^{q}\left(\triangle_{u}^{p}\right)$, where $x^{i}=\left\{x_{0}^{i}, x_{1}^{i}, \ldots\right\}$, then for a given $\epsilon>0$ there exists a positive integer $n_{0}(\epsilon)$ such that

$$
\begin{equation*}
h_{\triangle}\left(x^{i}-x^{j}\right)<\epsilon \tag{5}
\end{equation*}
$$

for all $i, j \geq n_{0}(\epsilon)$. Using definition of h_{\triangle} and for each fixed $k \in N$ that

$$
\begin{aligned}
& \left|\left(R^{q} \triangle x^{i}\right)_{k}-\left(R^{q} \triangle x^{j}\right)_{k}\right| \\
& \leq\left[\sum_{k}\left|\left(R^{q} \triangle x^{i}\right)_{k}-\left(R^{q} \triangle x^{j}\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \\
& <\epsilon
\end{aligned}
$$

for $i, j \geq n_{0}(\epsilon)$, which leads us to the fact that $\left\{\left(R^{q} \triangle x^{0}\right)_{k},\left(R^{q} \triangle x^{1}\right)_{k}, \ldots\right\}$ is a Cauchy sequence of real numbers for every fixed $k \in N$. Since R is complete, it converges, say, $\left(R^{q} \triangle x^{i}\right)_{k} \rightarrow\left(\left(R^{q} \triangle x\right)_{k}\right.$ as $i \rightarrow \infty$. Using these infinitely many limits $\left(R^{q} \triangle x\right)_{0},\left(R^{q} \triangle x\right)_{1}, \ldots$, we define the sequence $\left\{\left(R^{q} \triangle x\right)_{0},\left(R^{q} \triangle x\right)_{1}, \ldots\right\}$. From (5) for each $m \in N$ and $i, j \geq n_{0}(\epsilon)$,

$$
\begin{align*}
& \sum_{k=0}^{m}\left|\left(R^{q} \triangle x^{i}\right)_{k}-\left(R^{q} \triangle x^{j}\right)_{k}\right|^{p_{k}} \tag{6}\\
& \leq h_{\triangle}\left(x^{i}-x^{j}\right)^{M}<\epsilon^{M}
\end{align*}
$$

Take any $i, j \geq n_{0}(\epsilon)$. First, let $j \rightarrow \infty$ in (6) and then $m \rightarrow \infty$, we obtain

$$
h_{\triangle}\left(x^{i}-x\right) \leq \epsilon
$$

Finally, taking $\epsilon=1$ in (6) and letting $i \geq n_{0}(1)$, we have by Minkowski's inequality for each $m \in N$ that

$$
\begin{aligned}
& {\left[\sum_{k=0}^{m}\left|\left(R^{q} x\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}} \\
& \leq h_{\triangle}\left(x^{i}-x\right)+h_{\triangle}\left(x^{i}\right) \leq 1+h_{\triangle}\left(x^{i}\right)
\end{aligned}
$$

which implies that $x \in r^{q}\left(\triangle_{u}^{p}\right)$. Since $h_{\triangle}\left(x-x^{i}\right) \leq \epsilon$ for all $i \geq n_{0}(\epsilon)$, it follows that $x^{i} \rightarrow x$ as $i \rightarrow \infty$, hence we have shown that $r^{q}\left(\triangle_{u}^{p}\right)$ is complete, hence the proof .

Note that one can easily see the absolute property does not hold on the spaces $r^{q}\left(\triangle_{u}^{p}\right)$, that is $h_{\triangle}(x) \neq$ $h_{\triangle}(|x|)$ for atleast one sequence in the space $r^{q}\left(\triangle_{u}^{p}\right)$ and this says that $r^{q}\left(\triangle_{u}^{p}\right)$ is a sequence space of nonabsolute type.

Theorem 3 The Riesz sequence space $r^{q}\left(\triangle_{u}^{p}\right)$ of non-absolute type is linearly isomorphic to the space $l(p)$, where $0<p_{k} \leq H<\infty$.

Proof: To prove the theorem, we will show the existence of a linear bijection between the spaces $r^{q}\left(\triangle_{u}^{p}\right)$ and $l(p)$, where $0<p_{k} \leq H<\infty$. With the notation of (3), define the transformation T from $r^{q}\left(\triangle_{u}^{p}\right)$ to $l(p)$ by $x \rightarrow y=T x$. The linearity of T is trivial. Further, it is obvious that $x=\theta$ whenever $T x=\theta$ and hence T is injective.

Let $y \in l(p)$ and define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\sum_{n=0}^{k-1}\left(\frac{1}{q_{n}}-\frac{1}{q_{n+1}}\right) u_{k}^{-1} Q_{k} y_{k}+u_{k}^{-1} \frac{Q_{k}}{q_{k}} y_{k}
$$

for $k \in N$. Then,

$$
\begin{aligned}
h_{\Delta}(x)= & {\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k-1} u_{k}\left(q_{j}-q_{j+1}\right) x_{j}+\frac{q_{k} u_{k}}{Q_{k}} x_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} } \\
& =\left[\sum_{k}\left|\sum_{j=0}^{k} \delta_{k j} y_{j}\right|^{p_{k}}\right]^{\frac{1}{M}} \\
& =\left[\sum_{k}\left|y_{k}\right|^{p_{k}}\right]^{\frac{1}{M}} \\
& =h_{1}(y)<\infty
\end{aligned}
$$

where,

$$
\delta_{k j}= \begin{cases}1, & \text { if } k=j \\ 0, & \text { if } k \neq j\end{cases}
$$

Thus, we have $x \in r^{q}\left(\triangle_{u}^{p}\right)$. Consequently, T is surjective and is paranorm preserving. Hence, T is a linear bijection and this proves that the spaces $r^{q}\left(\triangle_{u}^{p}\right)$ and $l(p)$ are linearly isomorphic, hence the proof.

3 Basis and α-, β - and γ-duals of the space $r^{q}\left(\triangle_{u}^{p}\right)$

In this section, we compute α-, β - and γ - duals of the space $r^{q}\left(\triangle_{u}^{p}\right)$ and finally in this section we give the basis for the space $r^{q}\left(\triangle_{u}^{p}\right)$.

For the sequence space X and Y, define the set

$$
\begin{equation*}
S(X: Y)=\left\{z=\left(z_{k}\right): x z=\left(x_{k} z_{k}\right) \in Y\right\} . \tag{7}
\end{equation*}
$$

With the notation of (7), the α-, β - and γ - duals of a sequence space X , which are respectively denoted by X^{α}, X^{β} and X^{γ} and are defined by
$X^{\alpha}=S\left(X: l_{1}\right), X^{\beta}=S(X: c s)$ and $X^{\gamma}=$ $S(X: b s)$.

If a sequence space X paranormed by h contains a sequence $\left(b_{n}\right)$ with the property that for every $x \in$ X there is a unique sequence of scalars $\left(\alpha_{n}\right)$ such that

$$
\lim _{n} h\left(x-\sum_{k=0}^{n} \alpha_{k} b_{k}\right)=0
$$

then $\left(b_{n}\right)$ is called a Schauder basis (or briefly basis) for X. The series $\sum \alpha_{k} b_{k}$ which has the sum x is then called the expansion of x with respect to $\left(b_{n}\right)$ and written as $x=\sum \alpha_{k} b_{k}$.

First we first state some lemmas which are needed in proving our theorems.

Lemma 4 [33]
(i) Let $1<p_{k} \leq H<\infty$. Then $A \in\left(l(p): l_{1}\right)$ if and only if there exists an integer $B>1$ such that

$$
\sup _{K \in F} \sum_{k}\left|\sum_{n \in K} a_{n k} B^{-1}\right|^{p_{k}^{\prime}}<\infty
$$

(ii) Let $0<p_{k} \leq 1$.Then $A \in\left(l(p): l_{1}\right)$ if and only if

$$
\sup _{K \in F} \sup _{k}\left|\sum_{n \in K} a_{n k} B^{-1}\right|^{p_{k}}<\infty .
$$

Lemma 5 [33]
(i) Let $1<p_{k} \leq H<\infty$. Then $A \in\left(l(p): l_{\infty}\right)$ if and only if there exists an integer $B>1$ such that

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|a_{n k} B^{-1}\right|^{p_{k}^{\prime}}<\infty . \tag{8}
\end{equation*}
$$

(ii) Let $0<p_{k} \leq 1$ for every $k \in N$. Then $A \in\left(l(p): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k}\left|a_{n k}\right|^{p_{k}}<\infty . \tag{9}
\end{equation*}
$$

Lemma 6 [33] Let $0<p_{k} \leq H<\infty$ for every $k \in N$. Then $A \in(l(p): c)$ if and only if (8) and (9) hold along with

$$
\begin{equation*}
\lim _{n} a_{n k}=\beta_{k} \text { for } k \in N \tag{10}
\end{equation*}
$$

also holds.
Theorem 7 Let $1<p_{k} \leq H<\infty$ for every $k \in N$. Define the sets $D_{1}(u, p)$ and $D_{2}(u, p)$ as follows

$$
\begin{aligned}
& D_{1}(u, p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega:\right. \\
& \sup _{K \in F} \sum_{k} \left\lvert\, \sum_{n \in K}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) u_{k}^{-1} a_{n} Q_{k}\right. \\
& \left.\quad+\left.\frac{a_{n}}{q_{n}} u_{k}^{-1} Q_{n} B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{2}(u, p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega:\right. \\
& \sum_{k}\left|\left[\left(\frac{a_{k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{i}\right) u_{k}^{-1} Q_{k}\right] B^{-1}\right|^{p_{k}^{\prime}} \\
& \quad<\infty\} .
\end{aligned}
$$

Then,

$$
\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\alpha}=D_{1}(u, p)
$$

and

$$
\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\beta}=\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\gamma}=D_{2}(u, p) \cap c s
$$

Proof: Let us take any $a=\left(a_{k}\right) \in \omega$. We can easily derive with (2) that

$$
\begin{align*}
& a_{n} x_{n} \\
& =\sum_{k=0}^{n-1}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) u_{k}^{-1} a_{n} Q_{k} y_{k}+\frac{a_{n}}{q_{n}} u_{k}^{-1} Q_{n} y_{n} \\
& =(C y)_{n} \tag{11}
\end{align*}
$$

where, $C=\left(c_{n k}\right)$ is defined as
$c_{n k}= \begin{cases}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) u_{k}^{-1} a_{n} Q_{k}, & \text { if } 0 \leq k \leq n-1, \\ \frac{a_{n}}{q_{n}} u_{k}^{-1} Q_{n}, & \text { if } k=n, \\ 0, & \text { if } k>n,\end{cases}$
for all $n, k \in N$. Thus we observe by combining (11) with (i) of Lemma 4 that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x=\left(x_{n}\right) \in r^{q}\left(\triangle_{u}^{p}\right)$ if and only if $C y \in l_{1}$ whenever $y \in l(p)$. This shows that $\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\alpha}=D_{1}(u, p)$.

Further, consider the equation,

$$
\begin{align*}
& \sum_{k=0}^{n} a_{k} x_{k} \\
& =\sum_{k=0}^{n}\left[\left(\frac{a_{k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{i}\right) u_{k}^{-1} Q_{k}\right] y_{k} \\
& =(D y)_{n} \tag{12}
\end{align*}
$$

where, $D=\left(d_{n k}\right)$ is defined as

$$
d_{n k}=\left\{\begin{array}{c}
\left(\frac{a_{k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{i}\right) u_{k}^{-1} Q_{k} \\
0, \\
\text { if } 0 \leq k \leq n \\
\text { if } k>n
\end{array}\right.
$$

Thus we deduce from Lemma 6 with (12) that $a x=\left(a_{n} x_{n}\right) \in c s$ whenever $x=\left(x_{n}\right) \in r^{q}\left(\triangle_{u}^{p}\right)$ if and only if $D y \in c$ whenever $y \in l(p)$. Therefore, we derive from (8) that
$\sum_{k}\left|\left[\left(\frac{a_{k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{i}\right) u_{k}^{-1} Q_{k}\right] B^{-1}\right|^{p_{k}^{\prime}}$

$$
\begin{equation*}
<\infty \tag{13}
\end{equation*}
$$

and $\lim _{n} d_{n k}$ exists and hence shows that $\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\beta}=$ $D_{2}(u, p) \cap c s$. As proved above, from Lemma 5 together with (12) that $a x=\left(a_{k} x_{k}\right) \in b s$ whenever $x=\left(x_{n}\right) \in r^{q}\left(\triangle_{u}^{p}\right)$ if and only if $D y \in l_{\infty}$ whenever $y=\left(y_{k}\right) \in l(p)$. Therefore, we again obtain the condition (13) which means that $\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\gamma}=$ $D_{2}(u, p) \cap c s$ and the proof of the theorem is complete.

Theorem 8 Let $0<p_{k} \leq 1$ for every $k \in N$. Define the sets $D_{3}(u, p)$ and $D_{4}(u, p)$ as follows

$$
\begin{aligned}
& D_{3}(u, p)=\left\{a=\left(a_{k}\right) \in \omega:\right. \\
& \sup _{K \in F} \sup _{k} \left\lvert\, \sum_{n \in K}\left[\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) u_{k}^{-1} a_{n} Q_{k}\right.\right. \\
& \left.\left.\quad+\frac{a_{n}}{q_{n}} u_{k}^{-1} Q_{n}\right]\left.B^{-1}\right|^{p_{k}}<\infty\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{4}(u, p)=\left\{a=\left(a_{k}\right) \in \omega:\right. \\
& \left.\sup _{k} \|\left(\frac{a_{k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{i}\right) u_{k}^{-1} Q_{k}\right]\left.B^{-1}\right|^{p_{k}} \\
& <\infty\}
\end{aligned}
$$

Then, $\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\alpha}=D_{3}(u, p)$ and

$$
\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\beta}=\left[r^{q}\left(\triangle_{u}^{p}\right)\right]^{\gamma}=D_{4}(u, p) \cap c s
$$

Proof: The proof follows easily from Theorem 7 (above) by using second parts of Lemmas 4,5 and 6 instead of the first parts.

Theorem 9 Define the sequence $b^{(k)}(q)=\left\{b_{n}^{(k)}(q)\right\}$ of the elements of the space $r^{q}\left(\triangle_{u}^{p}\right)$ for every fixed $k \in N$ by

$$
\begin{aligned}
& b_{n}^{(k)}(q)= \\
& \begin{cases}\left(\frac{1}{q_{n}}-\frac{1}{q_{n+1}}\right) u_{k}^{-1} Q_{n}+u_{k}^{-1} \frac{Q_{k}}{q_{k}} \\
& \text { if } 0 \leq n \leq k-1, \\
0, & \text { if } n>k-1\end{cases}
\end{aligned}
$$

Then, the sequence $\left\{b^{(k)}(q)\right\}$ is a basis for the space $r^{q}\left(\triangle_{u}^{p}\right)$ and any $x \in r^{q}\left(\triangle_{u}^{p}\right)$ has a unique representation of

$$
\begin{equation*}
x=\sum_{k} \lambda_{k}(q) b^{(k)}(q) \tag{14}
\end{equation*}
$$

where, $\lambda_{k}(q)=\left(R^{q} \triangle x\right)_{k}$ for all $k \in N$ and $0<$ $p_{k} \leq H<\infty$.

Proof: It is clear that $b^{(k)}(q) \subset r^{q}\left(\triangle_{u}^{p}\right)$, since

$$
\begin{equation*}
R^{q} \triangle b^{(k)}(q)=e^{(k)} \in l(p) \text { for } k \in N \tag{15}
\end{equation*}
$$

and $0<p_{k} \leq H<\infty$, where $e^{(k)}$ is the sequence whose only non-zero term is 1 in $k^{t h}$ place for each $k \in N$.

Let $x \in r^{q}\left(\triangle_{u}^{p}\right)$ be given. For every non-negative integer m, we put

$$
\begin{equation*}
x^{[m]}=\sum_{k=0}^{m} \lambda_{k}(q) b^{(k)}(q) . \tag{16}
\end{equation*}
$$

Then, we obtain by applying $R^{q} \triangle$ to (16) with (15) that

$$
\begin{aligned}
R^{q} \triangle x^{[m]} & =\sum_{k=0}^{m} \lambda_{k}(q) R^{q} \triangle b^{(k)}(q) \\
& =\sum_{k=0}^{m}\left(R^{q} \triangle x\right)_{k} e^{(k)}
\end{aligned}
$$

and
$\left(R^{q} \triangle\left(x-x^{[m]}\right)\right)_{i}= \begin{cases}0, & \text { if } 0 \leq i \leq m \\ \left(R^{q} \triangle x\right)_{i}, & \text { if } i>m\end{cases}$
where $i, m \in N$. Given $\varepsilon>0$, there exists an integer m_{0} such that

$$
\left(\sum_{i=m}^{\infty}\left|\left(R^{q} \triangle x\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{M}}<\frac{\varepsilon}{2}
$$

for all $m \geq m_{0}$. Hence,

$$
\begin{aligned}
h_{\triangle}\left(x-x^{[m]}\right) & =\left(\sum_{i=m}^{\infty}\left|\left(R^{q} \triangle x\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{M}} \\
\leq & \left(\sum_{i=m_{0}}^{\infty}\left|\left(R^{q} \triangle x\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{M}} \\
& <\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

for all $m \geq m_{0}$, which proves that $x \in r^{q}\left(\triangle_{u}^{p}\right)$ is represented as (14).

Let us show the uniqueness of the representation for $x \in r^{q}\left(\triangle_{u}^{p}\right)$ given by (13). Suppose, on the contrary; that there exists a representation $x=$ $\sum_{k} \mu_{k}(q) b^{k}(q)$. Since the linear transformation T from $r^{q}\left(\triangle_{u}^{p}\right)$ to $l(p)$ used in the Theorem 3 is continuous we have

$$
\begin{aligned}
\left(R^{q} \triangle x\right)_{n} & =\sum_{k} \mu_{k}(q)\left(R^{q} \triangle b^{k}(q)\right)_{n} \\
& =\sum_{k} \mu_{k}(q) e_{n}^{(k)}=\mu_{n}(q)
\end{aligned}
$$

for $n \in N$, which contradicts the fact that $\left(R^{q} \triangle x\right)_{n}=\lambda_{n}(q)$ for all $n \in N$. Hence, the representation (14) is unique. This completes the proof.

4 Matrix Mappings on the Space $r^{q}\left(\triangle_{u}^{p}\right)$

In this section, we characterize the matrix mappings from the space $r^{q}\left(\triangle_{u}^{p}\right)$ to the space l_{∞}.
Theorem 10 (i): Let $1<p_{k} \leq H<\infty$ for every $k \in N$. Then $A \in\left(r^{q}\left(\triangle_{u}^{p}\right): l_{\infty}\right)$ if and only if there exists an integer $B>1$ such that

$$
\begin{aligned}
& C(B)=\sup _{n} \sum_{k} \\
& \left|\left[\frac{a_{n k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{n i}\right] u_{k}^{-1} B^{-1} Q_{k}\right|^{p_{k}^{\prime}}
\end{aligned}
$$

$$
\begin{equation*}
<\infty \tag{17}
\end{equation*}
$$

and $\left\{a_{n k}\right\}_{k \in N} \in c s$ for each $n \in N$.
(ii) : Let $0<p_{k} \leq 1$ for every $k \in N$. Then $A \in\left(r^{q}\left(\triangle_{u}^{p}\right): l_{\infty}\right)$ if and only if

$$
\begin{align*}
& \sup _{n, k}\left|\left[\frac{a_{n k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{n} a_{n i}\right] u_{k}^{-1} Q_{k}\right|^{p_{k}} \\
& <\infty, \tag{18}
\end{align*}
$$

and $\left\{a_{n k}\right\}_{k \in N} \in$ cs for each $n \in N$.

Proof: We only prove the part (i) and (ii) follows in a similar fashion. So, let $A \in\left(r^{q}\left(\triangle_{u}^{p}\right): l_{\infty}\right)$ and $1<p_{k} \leq H<\infty$ for every $k \in N$. Then $A x$ exists for $x \in r^{q}\left(\triangle_{u}^{p}\right)$ and implies that $\left\{a_{n k}\right\}_{k \in N} \in$ $\left\{r^{q}\left(\triangle_{u}^{p}\right)\right\}^{\beta}$ for each $n \in N$. Hence necessity of (17) holds.

Conversely, suppose that the necessities (17) hold and $x \in r^{q}\left(\triangle_{u}^{p}\right)$, since $\left\{a_{n k}\right\}_{k \in N} \in\left\{r^{q}\left(\triangle_{u}^{p}\right)\right\}^{\beta}$ for every fixed $n \in N$, so the A-transform of x exists. Consider the following equality obtained by using the relation (11) that

$$
\begin{align*}
& \sum_{k=0}^{m} a_{n k} x_{k} \\
& =\sum_{k=0}^{m}\left[\frac{a_{n k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{m} a_{n i}\right] u_{k}^{-1} Q_{k} y_{k} . \tag{19}
\end{align*}
$$

Taking into account the assumptions we derive from (19) as $m \rightarrow \infty$ that

$$
\begin{align*}
& \sum_{k} a_{n k} x_{k} \\
& =\sum_{k}\left[\frac{a_{n k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{\infty} a_{n i}\right] u_{k}^{-1} Q_{k} y_{k} \tag{20}
\end{align*}
$$

Now, by combining (20) and the inequality which holds for any $B>0$ and any complex numbers a, b

$$
|a b| \leq B\left(\left|a B^{-1}\right|^{p^{\prime}}+|b|^{p}\right)
$$

with $p^{-1}+p^{\prime-1}=1($ see $[10])$, one can easily see that

$$
\begin{aligned}
& \sup _{n \in N}\left|\sum_{k} a_{n k} x_{k}\right| \\
& \leq \sup _{n \in N} \sum_{k} \\
& \quad\left|\left[\frac{a_{n k}}{q_{k}}+\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \sum_{i=k+1}^{\infty} a_{n i}\right] u_{k}^{-1} Q_{k}\right|\left|y_{k}\right| \\
& \leq B\left[C(B)+h_{1}^{B}(y)\right]<\infty .
\end{aligned}
$$

This shows that $A x \in l_{\infty}$ whenever $x \in r^{q}\left(\triangle_{u}^{p}\right)$. This completes the proof.

Acknowledgement: We would like to express our gratitude to the reviewers for their careful reading, valuable suggestions which improved the presentation of the paper.

References:

[1] Ö. Toeplitz, Über allegemeine Lineare mittelbildungen, Prace Math. Fiz., 22, 1991, pp. 113119.
[2] I. J. Maddox, Elements of Functional Analysis, $2^{\text {nd }}$ ed., The University Press, Cambridge, 1988.
[3] G. M. Petersen, Regular matrix transformations, Mc Graw-Hill, London, 1966.
[4] H. Kizmaz, On certain sequence, Canad. Math. Bull., 24(2), 1981, pp. 169-176.
[5] B. Altay and F. Başar, On the space of sequences of p-bounded variation and related matrix mappings, Ukarnian Math. J., 1(1), 2003, pp. 136147.
[6] F. Başar, B. Altay and M. Mursaleen, Some generalizations of the space $b v_{p}$ of p-bounded variation sequences, Nonlinear Anal., 68, 2008, pp. 273-287.
[7] F. Başar, B. Altay and M. Mursaleen, On the Euler sequence spaces which include the spaces l_{p} and $l_{\infty}-\mathrm{I}$, Information Sci., 176, 2006, pp. 14501462.
[8] C. -S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 9, 1978, pp. 269-274.
[9] Ng, P. -N. and Lee, P.-Y., Cesáro sequences spaces of non-absolute type, Comment. Math. Prace Mat., 20(2), 1978, pp. 429-433.
[10] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik, 49, 1997, pp. 187-196.
[11] C. Aydin and F. Başar, On the new sequence spaces which include the spaces c_{o} and c, Hokkaido Math. J., 33, 2002, pp. 383-398.
[12] B. Altay and F. Başar, On the paranormed Riesz sequence space of non-absolute type, Southeast Asian Bull. Math., 26, 2002, pp. 701-715.
[13] C. Aydin and F. Başar, Some new paranormed sequence spaces, Inf. Sci., 160, 2004, pp. 27-40.
[14] E. Malkowsky, E. Savaş, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput., 147, 2004, pp. 333-345.
[15] C. Aydin and F. Başar, Some new sequence spaces which include the spaces l_{p} and l_{∞}, Demonst. Math., 30, 2005, pp. 641-656.
[16] M. Sengönül and F. Başar, Some new Cesáro sequences spaces of non-absolute type, which include the spaces c_{o} and c, Soochow J. Math., 1, 2005, pp. 107-119.
[17] M. Mursaleen, and A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Mod., 52, 2010, pp. 603-617.
[18] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paeda. Nyreg., 28, 2012, pp. 47-58.
[19] A. H. Ganie and N. A. Sheikh, On some new sequence spaces of non-absolute type and matrix transformations (to appear in Journal of the Egyptian Mathematical Society).
[20] M. Başarir, On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math., 26(10), 1995, pp. 1003-1010.
[21] E. Malkowsky and E. Savas, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math., Comput., 147, 2004, pp. 333-345.
[22] C. Aydin and F. Başar, Some new difference sequence spaces, Appl. Math. Comput., 157 (3), 2004, pp. 677-693.
[23] M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include the spaces l_{p} and $l_{\infty}-\mathrm{II}$, Nonlinear Anal., 65, 2006, pp. 707717.
[24] A. H. Ganie and N. A. Sheikh, Some new difference sequence spaces defined on orlicz function, Nonlin. Funct. Anal. Appl., 17(3), 2012, pp. 397404.
[25] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(2), 1967, pp. 345-355.
[26] S. Simmons, The sequence spaces $l\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc., 15(3), 1965, pp. 422-436.
[27] M. Başarir and M. Öztürk, On the Riesz difference sequence space, Rendiconti del Circolo Matematico di Palermo, 57, 2008, pp. 377-389.
[28] B. Choudhary and S. K. Mishra, On Köthe Toeplitz Duals of certain sequence spaces and matrix Transformations, Indian, J. Pure Appl. Math., 24(4), 1993, pp. 291-301.
[29] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl., 203(3), 1996, pp. 738-745.
[30] K. G. Gross Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180, 1993, pp. 223-238.
[31] B. C. Tripathy, Matrix transformations between some classes of sequences, J. Math. Anal. Appl., 206(2), 1997, pp. 448-450.
[32] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64, 1968, pp. 335-340.
[33] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68, 1970, pp. 99-104.

