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Abstract: - Power Line Communication (PLC) has received much attention due to the wide connectivity and 
availability of power lines. Effective PLC must overcome the harsh and noisy environments inherent in PLC 
channels. Noise in power lines is modeled as a cyclostationary Gaussian process. In order to achieve reliable 
communication using power lines, effective measures including error control techniques need to be taken 
against this particular noise. Low-Density Parity-Check (LDPC) codes have excellent performance in power 
lines. This paper presents two new iterative algorithms for noise estimation on power lines based on Higher-
order statistics and the Maximum-Likelihood (ML) estimation principle, respectively. The algorithm based on 
Higher-order statistics uses second, fourth, and sixth moments of the received noisy signal to provide a signal-
to-noise ratio (SNR) estimate. For the ML estimation algorithm, a derivation of the ML estimate of the 
amplitude of a Binary Phase-Shift Keying (BPSK) modulated signal is presented. Then, the proposed iterative 
search algorithm is developed. The proposed algorithms are especially favorable in cases of low SNR values, 
e.g., the ML estimation algorithm can achieve as large as 7.5 dB and 11.7 dB gains over conventional 
estimators at an SNR of -5 dB and -10 dB, respectively. Furthermore, since accurate SNR estimation is required 
for “good” (in terms of bit-error rate (BER)) decoding performance of LDPC codes, the performance of the 
proposed schemes is compared to some of the previously suggested SNR estimation algorithms. Finally, 
simulation results show that the proposed estimators perform close-to-optimum at a significantly lower 
computational complexity. 
 
 
Key-Words: - Power Line Communications (PLC), Low-Density Parity-Check (LDPC) Codes, signal-
to-noise ratio (SNR) estimation. 
 

1 Introduction 
PLC [1−4] has recently been a subject for an 

important research work. The motivation behind 
exploiting the power grid for providing high speed 
multimedia communications reside in the vast 
infrastructure in place for power distribution, and 
the penetration of the service could be much higher 
than any other wireline alternative. Moreover, since 
devices that access the Internet are normally 
connected to an electrical outlet, the unification of 
the two networks seems a compelling option. Thus, 
PLC provides a convenient and cost-effective 
solution for data transmission. However, like many 
other technologies, PLC faces its own challenges. 

The power distribution network has not been 
designed for communication purposes and does not 
present a favorable transmission medium. Unlike 
many other communication channels, power-lines 
do not represent an additive white Gaussian noise 
(AWGN) environment. Noise in power-lines has the 

cyclic nature for power voltage [5, 6]. Such cyclic 
nature of power line noise is called “cyclo-
stationary” [6]. That is, a periodically time-varying 
behavior, where the frequency of the variation is 
typically twice the mains frequency (50 or 60 Hz). 
To cope with the impairments of such a horrible 
channel [7], PLC systems have to apply robust and 
efficient modulation and coding schemes. 

To achieve reliable communications using power 
lines, it is natural to consider adopting an error 
control technique. LDPC Codes [5−7] are capable of 
operating near Shannon capacity on an AWGN 
channel by iterative decoding and, therefore, have 
enough capability to be candidates. The authors of 
[8] have shown that LDPC codes can perform better 
than Reed-Solomon or convolutional codes on PLC 
channel. In [12], it was found that the performance 
of LDPC codes is superior to that of the Turbo 
codes [10] under a cyclostationary Gaussian noise 
environment. The iterative decoders utilize “channel 
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information” in their decoding process. The channel 
information is unchanged if the noise process is 
stationary, such as AWGN. However, the channel 
information on the power lines periodically changes 
because the noise process is modeled as 
cyclostationary process. Thus, one has to trace the 
change of the channel information and get accurate 
signal to noise ratio (SNR) estimates from the power 
lines in order to achieve a high decoding 
performance [11–13]. This paper shows an effect of 
LDPC codes on PLC in presence of noise. 

The paper is organized as follows. Section 2 
below describes PLC channel noise and its 
classification. LDPC codes and the encoding 
process are presented in section 3, for which the 
Sum-Product Decoding algorithm is summarized in 
section 4. Sections 5 and 6 investigate in detail the 
two new SNR estimation algorithms. Section 7 
provides simulation results on the proposed 
methods. Finally, section 8 concludes the paper 
summarizing the main findings and results. 
 
 

2 PLC Channel Noise 
Noise in the PLC channel can be modeled as a 

cyclostationary process and its amplitude 
distribution at the same phase as the AC source can 
be modeled as Gaussian distribution. The variance is 
assumed to be the sum of three types of noise and it 
can be expressed as follows [12],          

𝜎𝑃𝐿2 = �𝐴𝑖|sin(2𝜋𝑓𝑡 + 𝜃𝑖)|𝑛𝑖
3

𝑖=1

,                  (1) 

where 𝑓 = 1/T is the frequency of the AC voltage, 
typically 50 or 60 Hz. 𝐴𝑖 is the parameter of 
amplitude, 𝜃𝑖 is the parameter of phase and 𝑛𝑖 is the 
parameter for degree of impulsiveness. Equation (1) 
comprises three types of noise; stationary noise 
(𝑖 = 1), cyclical continuous noise (𝑖 = 2), and 
cyclical impulsive noise (𝑖 = 3). The first category 
is a time invariant noise component and parameters 
𝜃1 and 𝑛1 have no meaning. The second and third 
categories are the periodic noise components. Table 
1 has two examples of these parameters and Fig. 1 
shows the behavior of these variances.  

In this paper, two simple algorithms for the 
estimation of the variances are presented in sections 
5 and 6 below. The authors of [11–13] asserted that 

accurate signal to noise ratio (SNR) estimates from 
the power lines are required in order to achieve a 
high decoding performance, however, they did not 
present any algorithm for such problem. The authors 
of [21] presented, among others, the SNV RXDA 
estimation method. But, it has a significant bias 
when the SNR is low. The author here develops 
iterative search algorithms to find an accurate SNR 
estimate in a few steps. Besides, a closed form 
solution based on statistical moments is also 
presented. 

 
 

 
(a) 

 
 (b) 

 
Fig. 1 (a) AC waveform and, (b) the variances of 
environments A and B given in Table 1. 
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 Parameter 𝐴1 𝐴2 𝑛2 𝜃2 𝐴3 𝑛3 𝜃3  
Environment A 0.13 2.8 9.3 128° 16 5.3 

 
 

161° 
Environment B 0.70 0.22 5.3 100° 30 1.5 

 
 

174° 
Table 1. Examples of set of the parameters identifying the 
power lines noise. 
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3 LDPC Codes and Encoding 
LDPC codes, discovered by Gallager in 1962 [5], 

were recently rediscovered and shown to form a 
class of Shannon-limit-approaching codes [6, 7], 
[14–16]. An LDPC code is specified by a sparse 
parity-check matrix 𝐇. In particular, an LDPC code 
is denoted (𝑛, 𝑡𝑐 , 𝑡𝑟), where 𝑛 denotes the block 
length, 𝑡𝑐 denotes column weight of matrix 𝐇, and 
𝑡𝑟  denotes row weight with 𝑡𝑟 > 𝑡𝑐. The rate of such 
code is (1 − 𝑡𝑐/𝑡𝑟).  

Further, if 𝑘 denotes the information sequence, 
and the dimension 𝑚 = 𝑛 − 𝑘, then, the generator 
matrix 𝐆𝑘×𝑛 of the code can be found by 
performing Gauss-Jordan elimination on 𝐇 to obtain 
it in the form, 

𝐇 = [𝐈𝑛−𝑘,𝐏T],                           (2)                      
where 𝐏 is a 𝑘 × (𝑛 − 𝑘)  binary matrix and 𝐈𝑛−𝑘 is 
the (𝑛 − 𝑘) × (𝑛 − 𝑘) identity matrix. The 
generator matrix is then, 

[ ].IP,G k=                               (3) 

The row space of G is orthogonal to H. Thus, if G is 
the generator matrix for a code with parity-check 
matrix H then, 

0.HG T =⋅                             (4) 
If 𝐇 is rank deficient, 𝑟 = rank(𝐇) < 𝑚, then the 
linear dependent rows of 𝐇 should be truncated and 
the corresponding code has rate, 𝑅 = 𝑘/𝑛 >
(𝑛–𝑚)/𝑛, so it is a higher rate code than the 
dimensions of 𝐇 would suggest. It should be noted 
here that the codes generated by our algorithm 
(described in section 4 below) have full-rank parity-
check matrices. 

LDPC codes are well represented by bipartite 
graphs [6] in which a set of nodes, the variable 
nodes, corresponds to elements of the codeword and 
the other set of nodes, the check nodes, corresponds 
to the set of parity-check constraints, which define 
the code. Regular LDPC codes are those, for which 
all nodes of the same type have the same degree. 
Irregular LDPC codes were studied in [15], [17], 
and [18]. 
 
 

4 Sum-Product Decoding 
LDPC codes can be specified by a sparse M × N 

parity-check matrix (here M, N denote dimensions, 
but m, n denote indices) 𝐇 = [𝐇M×N]. Each row of 
𝐇 is referred to as a check. The set of bits 
participating in check 𝑚 is denoted by 𝐍(𝑚) =
{𝑛: 𝐇𝑚𝑛 = 1}. Similarly, the set of checks in which 
bit n participates is denoted by 𝐌(𝑛) = {𝑚: 𝐇𝑚𝑛 =
1}. The sum-product algorithm (SPA) with respect 
to Log-likelihood-Ratio (LLR) is used for the 

decoding of LDPC codes. The algorithm using LLR 
consists of the following steps [5] [19] [20]: 
Step 1) Initialization: For each ),( nm  satisfying

1=mnH , set 0=mnβ . 

Step 2) Processing in check nodes: For each 
),( nm  satisfying 1=mnH , calculate 

]|)(|[

)sgn(

\)(

\)(

∑

∏

∈′
′′

∈′
′′

+×

+=

nmNn
nmn

nmNn
nmnmn

ff βλ

βλα
          (5)                                                                          

where ))1/()1ln(()( −+= xx eexf . nλ  is 

the LLR of bit n , i.e., 

 ( )
( )1|

0|
ln

=
=

=
nn

nn
n xyP

xyPλ .              (6) 

Step 3) Processing in bit nodes: For each ),( nm  
satisfying 1=mnH , calculate 

∑
∈′

′=
mnMm

nmmn
\)(

αβ .                         (7) 

Step 4) Hard decision and stopping criterion test:  
1. Create [ ]ncc ˆˆ =   such that 









<+

≥+

=
∑

∑

∈

∈

)(

)(

0,0

0,1

ˆ

nMm
mnn

nMm
mnn

n λ

λ

α

α
c            (8) 

2. If ĉ 𝐇𝐓  =  𝟎,  then ĉ is considered as a 
valid decoded word and the decoding 
process ends; if the number of iterations 
exceeds some maximum number and ĉ 
is not a valid codeword, a failure is 
declared and the process ends; 
otherwise the decoding repeats from 
Step 2. 

 
 

5 Noise Estimation Based on Higher 
Order Statistics 
A novel SNR estimator is proposed which makes 
use of the second, fourth, and sixth moments of the 
observations. This scheme is especially helpful at 
low SNRs. It is assumed that time and phase 
synchronization have been carried out for a binary 
phase-shift keying (BPSK) modulated signal, so the 
received samples can be expressed as [21, 26], 

)9(,nnn NaSy ω+=  

where, na  is the transmitted signal taking values {–

1,+1}, nω  is a zero-mean real additive white 

Gaussian noise with unit variance, S  is a signal 
power scale factor, and N  is a noise power scale 
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factor, so SNR can be expressed as NS / . Let 2M  

denote the second moment of ny  as, 

}|{|

}{2}|{|}{
2

22
2

n

nnnn

EN

aENSaESyEM

ω

ω

+

+==
  (10)                         

and let 4M denote the fourth moment of yn as, 

(11)}.|{|

}|{|4}|||{|6
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222

242
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nnnn

n

EN

aENSNaENS

aaESNSaES

yEM

ω

ωωω

ω

+

++

+=

=

 
Assuming the signal and noise are zero-mean 
independent random processes, Equations (10) and 
(11) reduce to,  

NSM +=2 , and                          (12) 
22

4 6 NkNSSkM a ω++=                  (13)   

respectively, where 224 }{}{ ||a/E||a = Ek nna  and 
224 }{}{ ||/E|| = Ek nn ωωω  are the kurtosis of the signal 

and the kurtosis of the noise, respectively. Further, 
let 6M  denote the sixth moment of ny  as, 

(14)}|{|

}|{|6

}|||{|15

}|||{|20

}|||{|15
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With the same assumptions as for 2M  and 4M  
stated above, this reduces to, 

3223
6 1515 NkNSkNSkSkM aa ωω +++=      (15) 

For BPSK signals ka = 1 and for real noise kω = 3, so 
Equations (13) and (15) can now read, 

22
4 36 NNSSM ++=                    (16) 

3223
6 34515 NNSNSSM +++=              (17) 

Multiplying Equations (12) and (16) results, 

3223
42 397 NSNSNSMM +++=             (18) 

Substituting  SMN −= 2  in Equations (17) and (18) 
and subtracting Eq. (18) from Eq. (17) gives, 

3
2

2
2

3
426 96362833 MSMSMMM −+=−       (19) 

So the terms in S2 cancel out. Further dividing Eq. 
(19) by 3

2M  yields, 

0)96(3628 3 =+−+ Dγγ                   (20) 

where γ = S / (S + N) is the signal-to-total ratio and 
3

2426 /)33( MMMMD −= . 

An estimated γ can be found by solving for the root 
in [0,1] of Eq. (20) by using Cardan's method, or 
alternatively, the following iterative formula will 
find such a root in a few steps: 

3/1)(
)1(

28

9636
ˆ 







 −+
=+ Dn

n γγ               (21) 

Either 1or0ˆ =γ  can be used as a starting point. 
Having obtained the estimated value for γ, the SNR 
estimate, ρ, can be calculated as follows: 

γ
γρ

ˆ1

ˆ
642 −
=MMM                          (22) 

And the noise power σ2 (equal to N) can be 
calculated by. 

γ
σ

ˆ1
22

−
=

M                               (23) 

In practice, the different moments are estimated by 
their respective time averages, i.e., the k-th moment 
of yn with K symbols is calculated as: 

∑
=

=
K

n

k
nk y

K
M

0

||
1                      (24) 

 
 
6 Noise Estimation Based on ML Estimation 
Principle 

In this method, a maximum-likelihood (ML) 
estimate of the amplitude of a BPSK modulated 
signal is first derived (see [21, 26]), and then an 
iterative SNR estimation algorithm is developed. 
For the sake of simplicity, the received samples will 
be expressed as kkk nsr += . sk is the transmitted 

signal taking values from {–A, A} with equal 
probability and kn  is real additive white Gaussian 

noise with variance 2σ . The probability density 
function (pdf) of kr  can be expressed as 

{ })()(
2

1
)( kkk rfrfrf −+ +=                  (25) 

where )2/()( 22

)2/(1)( σσπ Ar
k

kerf −−
+ =  and 

)2/()( 22

)2/(1)( σσπ Ar
k

kerf +−
− = .The pdf of a 

received vector (r1, r2,…, rN) can be expressed as: 

∏
=

=
N

k
kNN rfrrrf

1
21 )().,..,,( .              (26) 
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Letting ∂fN(r1,r2,…,rN)/∂A=0, one can implicitly 
obtain an ML estimate of A as the solution to the 
equation 

∑
=







=

N

k

k
k

rAr
N

A
1

2
tanh

1

σ
                     (27) 

When the SNR is high, the following approximation 
can be made 





<−
>+

≅
0,1

0,1
)/(tanh 2

k

k
k r

r
rA σ .        (28) 

 

Then the amplitude estimate is, 

∑
=

=
N

k
krN

A
1

||
1ˆ .                          (29) 

This is the decision-directed estimate of A. The 
noise power can be estimated as total power minus 
the signal power and the SNR can, therefore, be 
estimated as: 

2

11

2

2

1

||
11

||
1









−










=

∑∑

∑

==

=

N

k
k

N

k
k

N

k
k

r
N

r
N

r
N

SNR .              (30) 

The above is essentially the same as the SNV 
RXDA estimation [21]. It has a significant bias 
when the SNR is low. The authors here develop an 
iterative search algorithm to find the amplitude that 
satisfies Eq. (27). Given a vector containing N 
samples of rk, define the function, 

∑
=







−=

N

k

k
k

rxr
N

xxF
1

2
tanh

1
)(

σ
.              (31) 

The root of this equation is the maximum-likelihood 
amplitude estimate, that is, F(x) = 0 at x = Ậ. Let 
also M2 denote the total power of the received vector 
calculated as:  

∑
=

=
N

k
krN

M
1

2
2

1                          (32) 

Now the iterative algorithm is summarized as 
follows: 

 

Step 1) Calculate the total power, M2 given by 
Eq. (32). Select the minimum and 
maximum amplitudes of interest, Amin, 
Amax, and the number of iterations I. 

Initialize A1 = Amin and A2 = Amax. 
Initialize i = 0. 

Step 2) Calculate Am = (A1 + A2) / 2 and 
2

2
2

mm AM −=σ . 

Step 3) Calculate 

∑
=

−=
N

k
mkmkmm rArNAAF

1

2 )/(tanh/1)( σ  

Step 4) If F(Am) > 0, then update A2 = Am. 
Otherwise update A1 = Am. 

Step 5) Increase i by one. If i = I, then output Am 
= (A1 + A2) / 2 as the estimated amplitude 
and )(/ 2

2
2

mm AMA − as the estimated 

SNR. Otherwise go to Step 2. 

 

Now, let ϕ  and ϕ̂  denote the true and estimated 
noise power respectively. To assess the performance 
of different estimation methods the Mean-Squared 
Error (MSE) of noise power estimation is defined as 

( )∑
=

−=
tN

i
i

tN 1

2ˆ
1

)ˆ(MSE ϕϕϕ ,                 (33) 

where Nt is a largely chosen number of trials. 
Further, define the normalized MSE (NMSE) as: 

2

)ˆMSE(
)ˆNMSE(

ϕ
ϕϕ =                        (34)  

 

 

Fig. 2 NMSE of the two proposed methods as 
compared to the conventional SNV RXDA method. 
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In Fig. 2, the NMSE of the two proposed methods is 
plotted against the SNV RXDA method [21]. A 
1024-bit long block is used with BPSK modulation 
and the modulated signal is corrupted with AWGN 
noise of the required level. The number of iterations 
for the ML estimator is set to 50.  As can be 
observed, the two algorithms work well especially at 
low SNR region when the SNR is less than 10 dB, 
the ML new estimator being better over a wider 
range of SNR values. 
 

 

7 Simulation Results 
 
7.1 Frequency-Domain Modeling of Power 
Line Channel 

The work of Zimmermann and Dostert [22] is 
the most cited in the literature adopting the 
multipath model as an empirical approach for the 
PLC channel modeling. The advantage of the 
multipath model is that, once the measurements 
have been made and the modeling parameters have 
been derived, simulating the PLC channel requires 
little computation, and the algorithm 
implementation is relatively easy. Based on the 
analysis of multipath propagation, the transfer 
function of PLC channel can be represented by: 

,),()(
1

2∑
=

−⋅⋅=
N

i

fj
ii

iedfAgfH τπ           (35) 

where, for N relevant paths, ig  represents the 

weighting factor that changes the amplitude due to 
the reflection and transmission, ),( idfA  is the 

attenuation term with dependence of the frequency 
and propagation length, and ifje τπ2−  refers to the 
phase difference due to the time delay of a path i. In 
turn, the time delay is defined by: 

,
0c

dd ri

p

i
i

ε
ν

τ ==                       (36) 

where, εr is the dielectric constant, c0 is the speed of 
light in vacuum conditions, and di is the length of 
the path i. After making extensive measurements in 
the MHz range, Zimmermann and Dostert modeled 
the attenuation term by the following expression: 

,),( )( 10 i
k dfaa

i edfA +−=                    (37) 

where, a0, a1 are the attenuation parameters, and k is 
the exponent of the attenuation factor with usual 
values between 0.2 and 1. Finally, using Equations 
(36) and (37) into (35), results: 

( )∑
=











−

+− ⋅⋅=
N

i

d
fj

dfaa
i

p

i

i
k

eegfH
1

2
10)(

ν
π

         (38) 

Equation (38) gives the frequency response of the 
adopted PLC channel model. In our simulations, a 
PLC channel with the parameters given in Table 2 
and frequency response plotted in Fig. 3 is used. 
 
 
7.2 Linear Equalization 

Linear equalization is an efficient technique to 
suppress the ISI caused by the multipath 
environment and thereby improve the performance 
of the communication system. There are different 
kinds of linear equalization in frequency domain 
such as the linear minimum mean square (LMMSE) 
equalizer, the zero forcing (ZF) equalizer and the 
regularized zero forcing (RZF) equalizer. The ZF 
solution can be written as [23]: 

( ) HH
ZF HHHW

1−
=                       (39) 

where, H is the channel matrix.  

 

 
The drawbacks of the frequency domain ZF 
equalizer are that, it causes noise enhancement and 
the computations needed for matrix inversion are 
time consuming. However, its advantage is that the 
statistics of the additive noise and source data are 
not required. To solve the problem of noise 
enhancement in the ZF equalizer, a new 
regularization term is added into (39) to give [24, 
25]: 

attenuation parameters 

k = 1             a0 = 0           a1 = 2.5 × 10−9 

path-parameters 

i  ig  id
(m) 

i  ig  id
(m) 

1 0.029 90 9 0.071 411 

2 0.043 102 10 -0.035 490 

3 0.103 113 11 0.065 567 

4 -0.058 143 12 -0.055 740 

5 - 0 . 0 4 5 148 13 0.042 960 

6 -0.040 200 14 -0.059 1130 

7 0.038 260 15 0.049 1250 

8 -0.038 322    

Table 2. Parameters of the 15-path model. 
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Fig. 3 Frequency response of the 15-path reference 
model for PLC [22]. 

 
H1H

RZF HI)H(HW −+= α                (40) 

where α  is a regularization parameter. The 
resulting equalizer in (40) is called RZF equalizer. 
From this equation, it is clear that the statistics of 
the transmitted data and the additive noise are not 
required in the RZF equalizer. Given the statistics of 
the additive noise and the users’ data, a better 
equalizer is a one that can minimize the mean 
square error (MSE) and partially remove the ISI. 
This equalizer is called the LMMSE equalizer. This 
can be achieved when α=1/SNR. It is generally 
preferred to the ZF linear equalizer, because of its 
better treatment to noise. The LMMSE solution is 
given by [23]: 

H
1

H
LMMSE

1
HIHHW

−







 +=

SNR
          (41) 

 
 
7.3 Impact of Noise Estimation 

LDPC decoder accepts as an input the parity-
check matrix of the code and the Log-Likelihood 
Ratio (LLR) of the received signal. As stated in 
previous sections, the power lines are modeled as a 
cyclo-stationary Gaussian noise environment. The 
Gaussian PDF (Probability Density Function) of the 
noise amplitude z assuming zero-mean and variance 
𝜎2 is given by 
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and the LLR assuming BPSK modulation is given 
by 
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(43) 
Therefore, the performance of LDPC decoders 

depends on the accuracy of estimation of noise 
variance 𝜎2. The authors have already introduced 
two new methods for SNR estimation or simply 
noise power estimation on PLC channel in sections 
5 and 6 above. This subsection provides the 
simulation results for the proposed methods. In all 
simulations that follow, BPSK modulation is used 
with rate-1/2 LDPC codes designed using Modified 
Shortest-Path (MSP) Algorithm [9]. For decoding, 
log-domain sum-product iterative decoding 
summarized in section 4 above is used with a 
maximum of 50 decoding iterations. For each SNR 
point, the simulation continues until at least 50 code 
words are in error. The simulations were executed 
on a 3.1 GHz PC running Matlab R2011B. Figure 4 
below shows the simulation system design blocks. 

 
 

 

 

 

 

  

 

 

 

Fig. 4 Simulation system arrangement 
 

As can be observed from Fig. 2 in section 4, the 
ML iterative estimation algorithm is superior to the 
algorithm based on higher-order signal statistics. In 
Fig. 5 below, the estimated SNR is plotted against 
the number of ML estimation algorithm iterations. A 
data block of 10,000 bits is used and exact SNR is 
fixed at 5dB and 0dB, respectively. It is observed 
that the ML algorithm is fast converging to the 
correct SNR value, indicating a lower complexity. 
For even lower SNRs the new ML algorithm 
performs better. Figure 6 shows a plot of the 
estimated SNR against number of ML estimation 
algorithm iterations for exact SNR values of -5dB 
and -10dB, respectively. In this case, a gain of about 
7.5dB and 11.7dB respectively has been achieved 
over the conventional method. 
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Fig. 5 Mean estimated SNR vs. no. of iterations for 
ML estimation algorithm as compared to 
conventional SNV RXDA estimation [21]. 

 

Fig. 6 Mean estimated SNR vs. no. of iterations for 
ML estimation algorithm as compared to 
conventional SNV RXDA estimation [21] for 
negative SNRs. 

 
Figure 7 shows the BER performance of a rate-

1/2 regular LDPC code with block length n = 1024, 
column weight tc=3, and maximum row weight tr=7 
in two cases in which 𝜎2 is perfectly known and 
calculated using Eq. (23). As can be seen from Fig. 
7, the proposed SNR estimation method is close to 
perfect estimation, for example, at a BER of 10–5 the 
proposed method is only about 0.14 dB away from 
perfect estimation and hence, the proposed 
algorithms are shown to perform well over PLC 

channel. Similarly, Fig. 8 shows the BER 
performance of a rate-1/2 regular LDPC code with 
block length n = 1024, column weight tc=3, and 
maximum row weight tr=7 in two cases in which σ2 
is perfectly known and calculated using the ML 
iterative algorithm. 

As can be seen from Fig. 8, the proposed SNR 
estimation method is close to perfect estimation, and 
hence, the proposed algorithms are shown to 
perform well over PLC channel. 

 

 

Fig. 7 BER and WER of a rate-1/2 regular LDPC 
code with SNR perfectly known and estimated using 
the Higher-order statistics method. 

 

 

Fig. 8 BER and WER of a rate-1/2 regular LDPC 
code with SNR perfectly known and estimated using 
ML estimation method. 
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8 Conclusions 
The paper focused its attention on the effect of 

LDPC codes on PLC. Two new SNR estimation 
algorithms have been developed to evaluate the 
effect in terms of BER performance. The proposed 
algorithms are best tuned for low or negative SNR 
values, indicating that they are efficient for PLC. 

 The first algorithm used higher-order statistics, 
viz., second, fourth, and sixth moment of received 
noisy signal to provide an SNR estimate. And the 
second is an iterative algorithm of lower complexity 
based on the ML estimation principle. Derivation of 
ML estimate of the amplitude of a Binary Phase-
Shift Keying (BPSK) modulated signal has been 
presented. Finally, using computer simulations, it 
has been found that the proposed algorithms 
perform close-to-optimum on PLC channel, the ML 
estimation algorithm being better on a wider range 
of SNR values. 
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