Generalized Thévenin/ Helmholtz and Norton/ Mayer Theorems of Electric Circuits With Variable Resistances

PENIN ALEXANDR
"D. Ghitu" Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova. Academiei str. 3/3, MD-2028, Chisinau, Republica Moldova
http://nano.asm.md/main.php?lang=ru

Abstract

The generalized equivalent circuits, which develop the known theorems, are formulated. It appears that the load straight line at various values of a changeable element (resistor) of an active twopole passes into a bunch of these lines. The bunch centre coordinates do not depend on this changeable element. It is proposed to use as the parameters of the generalized equivalent generator such a load current and voltage, which proved the current across this element equal to zero. The application of projective coordinates instead of resistance values allows obtaining suitable formulas of the recalculation of the load current, to define the scales for the load and variable element.

Key-Words: - equivalent circuit, active two-pole, load straight line, projective geometry, geometric circuit theory.

1 Introduction

In the theory of the electric circuits, in case of variable parameter of elements, one of the analysis problems is the establishment of the dependence of the regime parameter changes on the respective change of the element parameter. In practice, it can be DC power supply systems with a variable load. To simplify the calculation of such networks, Thévenin/ Helmholtz and Norton/ Mayer theorems are used [1, 2-4]. According to these theorems, the fixed part of a circuit, concerning the terminals of the dedicated load, is replaced by an equivalent circuit or equivalent generator. The open circuit voltage, internal resistance or short circuit current is the parameters of this equivalent generator. Considering importance of ideas of the equivalent generator, the attention is given to the respective theorems in education [5, 6]. Also, these theorems attract the attention of researchers $[7,8,9]$.

The parameters of the equivalent generator can be used as scales for normalized values of the load parameters or regimes. Such a definition of regimes (hereinafter referred as relative regimes) allows comparing or setting the regimes of the different systems.

However, this known equivalent generator does not completely disclose the property of a circuit.

For example, power supply systems with the basic (priority) load and the variable auxiliary (buffer) load or voltage regulator. In this case, the change of such an element leads to change of the open circuit voltage and short circuit current, as the parameters of the equivalent generator. Thus, the problem of calculation of this circuit and finding of the equivalent generator parameters arises again.

In a number of previous papers of the author, the generalized equivalent generator, which develops Thévenin/ Helmholtz and Norton/ Mayer theorems, is proposed. It appears that the load straight line at various values of a changeable element passes into a bunch of these lines. Since the bunch centre coordinates do not depend on this changeable element, they can be accepted as the parameters of the generalized equivalent generator $[10,11,12]$. Also, the approach based on projective geometry for interpretation of changes (kinematics) of regimes is developed [13]. It allows revealing the invariant properties of a circuit, i.e. such expressions, which turn out identical to the load and element changes. Such invariant expressions allow obtaining convenient formulas of recalculation of the load current.
The methodically simpler and reasonable statement of the basic obtained results is offered further.

2 Equivalent Generator of an Active Two-Pole with Variable Elements

Let us consider an electric circuit with a conductivity $Y_{L 1}$ of the basic load and a conductivity $Y_{L 2}$ of the auxiliary load (variable element) in Fig.1.

Fig. 1 Active two-pole with a load $Y_{L 1}$ and a variable element $Y_{L 2}$

This circuit can be considered as an active two-port A network relatively to the specified loads in Fig.2.

Fig. 2 Active two-port A network with the specified loads

Taking into account the specified directions of currents, this network is described by the following system of the equations

$$
\left[\begin{array}{l}
I_{1} \tag{1}\\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
-Y_{11} & Y_{12} \\
Y_{12} & -Y_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{l}
I_{1}^{S C, S C} \\
I_{2}^{S C, S C}
\end{array}\right] .
$$

where the Y parameters are

$$
\begin{gathered}
Y_{11}=y_{1}+y_{1 N}-\frac{Y_{1 N}^{2}}{y_{\Sigma}}, \quad y_{\Sigma}=y_{0 N}+y_{N}+y_{1 N}+y_{2 N}, \\
Y_{12}=y_{2 N} \frac{y_{1 N}}{y_{\Sigma}}, Y_{22}=y_{2}+y_{2 N}-\frac{y_{2 N}^{2}}{y_{\Sigma}} .
\end{gathered}
$$

The short circuit $S C$ current of all the loads are

$$
\begin{aligned}
& I_{1}^{S C, S C}=Y_{10} V_{0}=y_{0 N} \frac{y_{1 N}}{y_{\Sigma}} V_{0} \\
& I_{2}^{S C, S C}=Y_{20} V_{0}=y_{0 N} \frac{y_{2 N}}{y_{\Sigma}} V_{0}
\end{aligned}
$$

2.1 Disadvantages of the known equivalent generator

Taking into account the current

$$
\begin{equation*}
I_{2}=Y_{L 2} V_{2} \tag{2}
\end{equation*}
$$

and system of equation (1), we obtain the expression of a load straight line

$$
\begin{align*}
& I_{1}=-\left[Y_{11}-\frac{Y_{12}^{2}}{Y_{L 2}+Y_{22}}\right] \cdot V_{1}+ \\
& +\left[Y_{10}+\frac{Y_{12} Y_{20}}{Y_{L 2}+Y_{22}}\right] \cdot V_{0} \tag{3}
\end{align*}
$$

The operating point with variable coordinate $\left(V_{1}, I_{1}\right)$ moves on the load straight line with the parameter $Y_{L 2}$ at the expense of change of the load conductivity $Y_{L 1}$ as shown in Fig.3.

Fig.3. Family of load straight lines with the parameters $Y_{L 2}$ and load $Y_{L 1}$

The voltage $V_{1}=0$ in the short circuit regime. In this case, the short circuit current or coordinate of the intersection point of load straight line (3) with the axis I_{1} is

$$
\begin{equation*}
I_{1}^{S C}=\left[Y_{10}+\frac{Y_{12} Y_{20}}{Y_{L 2}+Y_{22}}\right] \cdot V_{0} \tag{4}
\end{equation*}
$$

Similarly, the current $I_{1}=0$ in the open circuit regime.
Then, the open circuit voltage is

$$
\begin{equation*}
V_{1}^{O C}=\frac{I_{1}^{S C}}{Y_{i}} \tag{5}
\end{equation*}
$$

where the value

$$
\begin{equation*}
Y_{i}=Y_{11}-\frac{Y_{12}^{2}}{Y_{L 2}+Y_{22}}=\frac{Y_{L 2} Y_{11}+\Delta_{Y}}{Y_{L 2}+Y_{22}} \tag{6}
\end{equation*}
$$

is the internal conductivity of circuit relatively to the load $Y_{L 1}$; the Δ_{Y} is the determinate of the matrix Y parameters.
Taking into account the entered parameters, equation (3) becomes as

$$
\begin{equation*}
I_{1}=-Y_{i} V_{1}+I_{1}^{S C} \tag{7}
\end{equation*}
$$

This expression we present as

$$
\begin{equation*}
I_{1}-I_{1}^{S C}=-Y_{i} V_{1} \tag{8}
\end{equation*}
$$

Thus, we obtain the equation of the straight line passing through the point $I_{1}^{S C}$. In turn, the internal conductivity Y_{i} defines a slope angle of this line. So, the values $I_{1}^{S C}, Y_{i}$ are the parameters of Norton/ Mayer equivalent generator.

By analogy to (8) and taking into account (5), we obtain the equation of the straight line passing through the point $V_{1}^{O C}$

$$
\begin{equation*}
I_{1}=\left(V_{1}^{O C}-V_{1}\right) Y_{i} \tag{9}
\end{equation*}
$$

So, the values $V_{1}^{O C}, Y_{i}$ are the parameters of known Thévenin/ Helmholtz equivalent generator. We note that the parameters $I_{1}^{S C}, V_{1}^{O C}$ depend on the conductivity $Y_{L 2}$ of a changeable element.

2.2 Generalized Norton/ Mayer equivalent generator

Let us study features of load straight line (3). This expression (3) represents a bunch of straight lines with the parameter $Y_{L 2}$.To find the coordinates V_{1}^{G}, I_{1}^{G} of the bunch centre G of these lines, it is convenient to use the extreme values of parameters, i.e. $Y_{L 2}=0, Y_{L 2}=\infty$.

These lines are shown in Fig.3. In this case, expression (3) gives the following system of equations

$$
\left\{\begin{align*}
I_{1}(0)= & -\left[Y_{11}-\frac{Y_{12}^{2}}{Y_{22}}\right] \cdot V_{1}+ \tag{10}\\
& +\left[Y_{10}+\frac{Y_{12} Y_{20}}{Y_{22}}\right] \cdot V_{0} \\
I_{1}(\infty)= & -Y_{11} V_{1}+Y_{10} V_{0}
\end{align*}\right.
$$

For the point of intersection we have that

$$
I_{1}^{G}=I_{1}(0)=I_{1}(\infty)
$$

The solving of system (10) gives the values of voltage

$$
\begin{equation*}
V_{1}^{G}=-\frac{Y_{20}}{Y_{12}} V_{0}=-\frac{y_{0 N}}{y_{1 N}} V_{0} \tag{11}
\end{equation*}
$$

and current

$$
\begin{equation*}
I_{1}^{G}=\left[Y_{10}+\frac{Y_{11} Y_{20}}{Y_{12}}\right] \cdot V_{0}=y_{0 N}\left[1+\frac{y_{1}}{y_{1 N}}\right] \cdot V_{0} \tag{12}
\end{equation*}
$$

The obtained values V_{1}^{G}, I_{1}^{G}, and internal conductivity Y_{i} allow to present equations (3) or (8) in another form

$$
\begin{equation*}
I_{1}-I_{1}^{G}=-Y_{i}\left(V_{1}^{G}+V_{1}\right) \tag{13}
\end{equation*}
$$

Thus, we obtain the equation of the straight line, passing through the point I_{1}^{G}, V_{1}^{G}. The internal conductivity Y_{i} defines a slope angle of this line. So, the values I_{1}^{G}, V_{1}^{G} and Y_{i} are the parameters of the generalized Norton/ Mayer equivalent generator in Fig. 4.

Fig.4. Generalized Norton/ Mayer equivalent generator

We note that
besides the basic energy source of one kind (a current source I_{1}^{G}) there is an additional energy source of another kind (a voltage source V_{1}^{G}) that it is possible to consider as a corresponding theorem.

It is natural, when the value $V_{1}^{G}=0$, we obtain the known Norton/ Mayer equivalent generator. In this case $I_{1}^{G}=I_{1}^{S C}$.

Let us note that physically the centre G of the bunch corresponds to such a voltage V_{1}^{G} and current I_{1}^{G} of the load $Y_{L 1}=Y_{L 1}^{G}$, when the current of the element $Y_{L 2}$ is equal to zero. According to this condition, from (1) it is also possible to find values (11), (12) of the parameters V_{1}^{G}, I_{1}^{G}. Then, the corresponding load conductivity

$$
\begin{equation*}
Y_{L 1}^{G}=\frac{I_{1}^{G}}{V_{1}^{G}}=-\frac{Y_{11} Y_{20}+Y_{10} Y_{21}}{Y_{20}}=-\left(y_{1 N}+y_{1}\right) \tag{14}
\end{equation*}
$$

The load is a power source because of a negative value of the conductivity.

2.3 Generalized Thévenin/ Helmholtz equivalent generator

In the above case, the centre G of the bunch is in the second quadrant of coordinate system and so $V_{1}^{G}<0, I_{1}^{G}>0$. It is natural to consider a case that the centre G is in the fourth quadrant as shown in Fig.5.

Fig.5. Centre of a bunch is in the fourth quadrant

To do this, we consider an electric circuit with the basic load $R_{L 1}$ and variable element (voltage regulator) $r_{0 N}$ in Fig.6.

Fig.6. Circuit with a variable element $r_{0 N}$
Similarly, there is a bunch of the straight lines with the parameter $r_{0 N}$. Let us define the centre of this bunch. At once it is visible that the current across the resistance $r_{0 N}$ will be equal to zero if the voltage $V_{N}=V_{0}$. Then, the load voltage and current are

$$
\begin{align*}
& V_{1}^{G}=\frac{r_{1 N}+r_{N}}{r_{N}} V_{0}>V_{0}, \tag{15}\\
& I_{1}^{G}=-\frac{V_{0}}{r_{N}} . \tag{16}
\end{align*}
$$

The load resistance

$$
\begin{equation*}
R_{L}^{G}=\frac{V_{1}^{G}}{I_{1}^{G}}=-\left(r_{1 N}+r_{N}\right) \tag{17}
\end{equation*}
$$

In turn, the internal resistance

$$
\begin{equation*}
R_{i}=r_{1 N}+\frac{r_{0 N} \cdot r_{N}}{r_{0 N}+r_{N}} \tag{18}
\end{equation*}
$$

Thus, the equation of the straight line passing through the point I_{1}^{G}, V_{1}^{G} has the form

$$
\begin{equation*}
I_{1}+I_{1}^{G}=-\frac{V_{1}-V_{1}^{G}}{R_{i}} . \tag{19}
\end{equation*}
$$

So, the values I_{1}^{G}, V_{1}^{G} and R_{i} are the parameters of the generalized Thévenin/ Helmholtz equivalent generator in Fig.7.
We note that
besides the basic energy source of one kind (a voltage source V_{1}^{G}) there is an additional energy source of another kind (a current source I_{1}^{G}) that it is possible to consider as the corresponding theorem.

Fig. 7 Generalized Thévenin/ Helmholtz equivalent generator

It is natural when the value $I_{1}^{G}=0$, we obtain the known Thévenin/ Helmholtz equivalent generator. In this case $V_{1}^{G}=V_{1}{ }^{O C}$.

3 Analysis of Operating Regimes of the Generalized Equivalent Generator

The centre G position (the second or fourth quadrant) is defined by the kind of an active twopole as an energy source. If the active two-pole shows more properties of a current source, the case of Fig. 3 takes place. If it shows more properties of a voltage source, we have the case of Fig. 7.

Let us demonstrate how the internal conductivity Y_{i} and respectively conductivity $Y_{L 2}$ influence on the kind or type of the generalized equivalent generator in Fig.4. The corresponding family of the load straight lines is shown in Fig.8.
We use further the inverse expression to (6)

$$
\begin{equation*}
Y_{L 2}=\frac{Y_{22} Y_{i}-\Delta_{Y}}{Y_{11}-Y_{i}} . \tag{20}
\end{equation*}
$$

The conductivities have the following characteristic value:

$$
\begin{equation*}
\text { a) } \quad Y_{i}=0, Y_{L 2}^{I}=-\frac{\Delta_{Y}}{Y_{11}} \tag{21}
\end{equation*}
$$

which defines the generalized equivalent generator as an ideal current source;

$$
\begin{equation*}
\text { b) } \quad Y_{i}=\infty, Y_{L 2}^{V}=-Y_{22} \tag{22}
\end{equation*}
$$

which defines the generalized equivalent generator as an ideal voltage source;

$$
\begin{gather*}
\text { c) } \quad Y_{i}^{0}=-Y_{L 1}^{G}=\frac{Y_{11} Y_{20}+Y_{10} Y_{21}}{Y_{20}} \\
Y_{L 2}^{0}=-Y_{22}+\frac{Y_{20} Y_{12}}{Y_{10}}=-\left(y_{2 N}+y_{2}\right) \tag{23}
\end{gather*}
$$

which corresponds to the beam $G 0$ and defines a "zero- order" source, when the current and voltage of the load are always equal to zero for all its values.

Fig. 8 Family of the load straight lines with characteristic values of Y_{i} and $Y_{L 2}$

The Fig. 9 presents this case of generalized equivalent generator that demonstrates the "zeroorder" generator. The load voltage $V_{1}=0$ because $V_{i}^{0}=-V_{1}^{G}$.

Fig. 9 "Zero- order" generator

So, the variable element can have these three specified characteristic values. These characteristic values are defined at a qualitative level. This brings up the problem of determination in the relative or normalized form of conductance value $Y_{L 2}$ regarding of these characteristic values. In this case, it is possibly to define the kind of an active two-pole as an energy source. Therefore, as though obvious values $Y_{L 2}=0, Y_{L 2}=\infty$ are not characteristic ones concerning load.

Let us view possible load characteristic values. The traditional values, as $Y_{L 1}=0, \quad Y_{L 1}=\infty$ and too $Y_{L 1}^{G}$ will be characteristic values according to Fig.8. The physical sense of these values is clear.

Let us show how the internal resistance R_{i} and respectively the changeable element $r_{0 N}$ influence on the type of the generalized equivalent generator in Fig.7. The corresponding family of the load straight lines is shown in Fig.10.
We use further the inverse expression to (18)

$$
\begin{equation*}
r_{0 N}=\frac{r_{N} \cdot\left(R_{i}-r_{1 N}\right)}{r_{N}-\left(R_{i}-r_{1 N}\right)} \tag{24}
\end{equation*}
$$

Fig. 10 Family of the load straight lines with characteristic values R_{i} and $r_{0 N}$

The resistances have the following characteristic value:

$$
\begin{equation*}
\text { a) } \quad R_{i}=0, r_{0 N}^{V}=-\frac{r_{N} \cdot r_{1 N}}{r_{N}+r_{1 N}} \tag{25}
\end{equation*}
$$

which defines the generalized equivalent generator as an ideal voltage source;
b) $\quad R_{i}=\infty, r_{0 N}^{I}=-r_{N}$,
which defines the generalized equivalent generator as an ideal current source;

$$
\begin{equation*}
\text { c) } \quad R_{i}^{0}=-R_{L 1}^{G}=r_{1 N}+r_{N}, r_{0 N}^{0}=\infty \tag{27}
\end{equation*}
$$

which corresponds to the beam $G 0$ and defines the "zero- order" source. The Fig. 11 presents the generalized equivalent generator that demonstrates the "zero- order" generator. The load voltage $V_{1}=0$ because $V_{i}^{0}=-V_{1}^{G}$.

Fig.11. "Zero- order" generator

So, the variable element and load can have these three specified characteristic values.

4 Invariant Characteristics of Operating Regime Changes

Let us consider a common change of the load and variable element of a circuit in Fig.1. The corresponding load straight lines are shown in Fig. 12.

Let the initial value of variable element be $Y_{L 2}^{1}$ and subsequent value be $Y_{L 2}^{2}$. Similarly, the initial value of load equal $Y_{L 1}^{1}$ and subsequent one is $Y_{L 1}^{2}$. Let us consider the straight line of the initial load $Y_{L 1}^{1}$. The three straight lines (with characteristic
values $Y_{L 2}^{I}, Y_{L 2}^{0}, Y_{L 2}^{V}$ of element $Y_{L 2}$ as a parameter of these lines) and the two lines with parameters $Y_{L 2}^{1}, Y_{L 2}^{1}$ intersect this line $Y_{L 1}^{1}$. The points $A_{1}, 0, B_{1}, C_{1}, F_{1}$ are points of this intersection. In turn, the point $A_{2}, 0, B_{2}, C_{2}, F_{2}$ are points of intersection of the line $Y_{L 1}^{2}$.

Fig. 12 Common change of the load and variable element

Therefore, a projective map (conformity) of points of one line $Y_{L 1}^{1}$ into points of other line $Y_{L 1}^{2}$ takes place. This conformity is set by a projection centre G.
Similarly, we consider the straight line $Y_{L 2}^{1}$. The three straight lines (with the characteristic values of load $Y_{L 1}$ and two lines with parameters $Y_{L 1}^{1}, Y_{L 1}^{2}$) intersect this line $Y_{L 2}^{1}$. The points $C_{V}, C_{1}, C_{2}, C_{I}, G$ are points of this intersection. In turn, the point $B_{V}, B_{1}, B_{2}, B_{I}, G$ are points of intersection of the line $\quad Y_{L 2}^{2}$. Therefore, the projective map (conformity) of points of one line $Y_{L 2}^{1}$ into points of other line $Y_{L 2}^{2}$ takes place. This conformity is set by the projection centre 0 .The presented conformities
of points of straight lines present transformations of projective geometry.

As shown in a number of papers, it is convenient to use projective geometry for the analysis of circuits with variable elements $[14,15,16]$. The projective transformation is also set by three pairs of respective points. As pairs of these points, it is convenient to use the points corresponding to the characteristic values of a load and variable element. The projective transformations preserve a cross ratio of four points, or otherwise, the cross ratio is an invariant of the projective transformations. Further, we will show application of such invariants.

4.1 Definition of relative operating regime at load change

The cross ratio $m_{L 1}^{1}$ of four points (three of these are the characteristic ones C_{V}, C_{I}, G of the line $Y_{L 2}^{1}$, and the fourth C_{1} is a point of the initial regime $Y_{L 1}^{1}$) has the view

$$
\begin{align*}
& m_{L 1}^{1}=\left(C_{V} C_{1} C_{I} G\right)= \\
& =\frac{C_{1}-C_{V}}{C_{1}-G} \div \frac{C_{I}-C_{V}}{C_{I}-G} \tag{28}
\end{align*}
$$

The same value of the cross ratio will be for the points B_{V}, B_{1}, B_{I}, G of the line $Y_{L 2}^{2}$

$$
\begin{align*}
& m_{L 1}^{1}=\left(B_{V} B_{1} B_{I} G\right)= \\
& =\frac{B_{1}-B_{V}}{B_{1}-G} \div \frac{B_{I}-B_{V}}{B_{I}-G} \tag{29}
\end{align*}
$$

For finding the value of this cross ratio, it is necessary to define coordinates of these points. To do this, we map the line $Y_{L 2}^{1}$ into the axis of current. There is also the projective transformation, which is set by an infinitely remote centre. Then, the cross ratio is expressed by the components of current

$$
\begin{align*}
& m_{L 1}^{1}=\left(\begin{array}{ll}
0 & I_{1}^{C 1} \\
I_{1}^{C I} & I_{1}^{G}
\end{array}\right)= \\
& =\frac{I_{1}^{C 1}-0}{I_{1}^{C 1}-I_{1}^{G}} \div \frac{I_{1}^{C I}-0}{I_{1}^{C I}-I_{1}^{G}} \tag{30}
\end{align*}
$$

The corresponding values of this cross ratio are shown in Fig.13. The cross ratio in geometry underlies the definition of a "distance" between the points $C_{1}, \quad C_{I}$ concerning the extreme or base
points C_{V}, G. In turn, the point C_{I} is a scale or unit point.

Fig. 13 Mutual corresponds of the load current, conductivity, and cross ratio

Similarly, the cross ratio of the subsequent regime points

$$
\begin{align*}
& m_{L 1}^{2}=\left(\begin{array}{l}
0 \\
I_{1}^{C 2} \\
I_{1}^{C I} \\
I_{1}^{G}
\end{array}\right)= \\
& =\frac{I_{1}^{C 2}-0}{I_{1}^{C 2}-I_{1}^{G}} \div \frac{I_{1}^{C I}-0}{I_{1}^{C I}-I_{1}^{G}} . \tag{31}
\end{align*}
$$

The view or structure of expressions (30) and (31) shows that it is possible to use the division of these cross ratios, i.e.

$$
\begin{align*}
& m_{L 1}^{12}=m_{L 1}^{1} \div m_{L 1}^{2}=\frac{I_{1}^{C 1}-0}{I_{1}^{C 1}-I_{1}^{G}} \div \frac{I_{1}^{C 2}-0}{I_{1}^{C 2}-I_{1}^{G}}= \\
& =\left(\begin{array}{lll}
0 & I_{1}^{C 1} & I_{1}^{C 2} \\
I_{1}^{G}
\end{array}\right)=\frac{\frac{I_{1}^{C 1}}{I_{1}^{G}}-0}{\frac{I_{1}^{C 1}}{I_{1}^{G}}-1} \div \frac{\frac{I_{1}^{C 2}}{I_{1}^{G}}-0}{\frac{I_{1}^{C 2}}{I_{1}^{G}}-1} . \tag{32}
\end{align*}
$$

This cross ratio is the "distance" between the points of the initial and subsequent regimes of the line $Y_{L 2}^{1}$. The same "distance" will be between the points of the initial and subsequent regimes of the line $Y_{L 2}^{2}$

$$
\begin{equation*}
m_{L 1}^{12}=\left(0 I_{1}^{B 1} I_{1}^{B 2} I_{1}^{G}\right) . \tag{33}
\end{equation*}
$$

Physically, it is evidently because the initial and subsequent regime is set by the change of the
common load $Y_{L 1}^{1} \rightarrow Y_{L 1}^{2}$. The equality of cross ratios (28), (29) is also explained.

Then, it is possible to express cross ratio (30) or (32) by load conductivities. Let us present equation (13) of the generalized equivalent generator by the following view

$$
\begin{equation*}
I_{1}=\left(I_{1}^{G}-Y_{i} V_{1}^{G}\right) \frac{Y_{L 1}}{Y_{L 1}+Y_{i}} . \tag{34}
\end{equation*}
$$

This fractionally linear expression is a projective transformation, which maps the values of the load conductivity into the values of the load current. The corresponding points of these values are shown in Fig.13. Therefore, it is possible, by formalized method, to express, at once, cross ratio (30) by the load conductivities

$$
\begin{align*}
& m_{L 1}^{1}=\left(\begin{array}{ll}
\left(0 I_{1}^{C 1} I_{1}^{C 1} I_{1}^{G}\right.
\end{array}\right)=\binom{\left(\begin{array}{r}
L 1
\end{array} 1\right.}{Y_{L 1}^{G}}= \\
& =\frac{Y_{L 1}^{1}-0}{Y_{L 1}^{1}-Y_{L 1}^{G}} \div \frac{\infty-0}{\infty-Y_{L 1}^{G}}=\frac{Y_{L 1}^{1}-0}{Y_{L 1}^{1}-Y_{L 1}^{G}} . \tag{35}
\end{align*}
$$

So, we consider cross ratio (35) as the projective coordinate of the initial or running regime points $I_{1}^{C 1}, Y_{L 1}^{1}$. This coordinate is expressed by invariant (identical) manner by various regime parameters.

Too, it is possible, by formalized method, to express cross ratio (32) by load conductivities
$m_{L 1}^{12}=\left(\begin{array}{lll}0 & I_{1}^{C 1} & I_{1}^{C 2} \\ I_{1}^{G}\end{array}\right)=\left(\begin{array}{ll}0 & Y_{L 1}^{1} Y_{L 1}^{2} Y_{L 1}^{G}\end{array}\right)=$
$=\frac{Y_{L 1}^{1}-0}{Y_{L 1}^{1}-Y_{L 1}^{G}} \div \frac{Y_{L 1}^{2}-0}{Y_{L 1}^{2}-Y_{L 1}^{G}}=\frac{\frac{Y_{L 1}^{1}}{Y_{L 1}^{G}}-0}{\frac{Y_{L 1}^{1}}{Y_{L 1}^{G}}-1} \div \frac{\frac{Y_{L 1}^{2}}{Y_{L 1}^{G}}-0}{\frac{Y_{L 1}^{2}}{Y_{L 1}^{G}}-1}$.
So, we consider the cross ratio of type (32), (36) as the change of running regime. This change is expressed by invariant manner through various regime parameters. Therefore,
usually used regime changes by increments (as formal) are eliminated.

In turn, the values $I_{1}^{G}, Y_{L 1}^{G}$ are the scales for normalizing of values of current and conductivity. Then, expressions (32), (36) present the relative regimes. It permits to compare or set the regime of the different circuits with various parameters.

Let us note the properties of a cross ratio. If to interchange the components $I_{1}^{C 1}, I_{1}^{C 2}$ of expression (32), then we get

$$
\begin{equation*}
m_{L 1}^{12}=1 / m_{L 1}^{21} . \tag{37}
\end{equation*}
$$

Also, the group property takes place

$$
\begin{equation*}
m_{L 1}^{3}=m_{L 1}^{32} \cdot m_{L 1}^{2}=m_{L 1}^{32} \cdot m_{L 1}^{21} \cdot m_{L 1}^{1}=m_{L 1}^{31} \cdot m_{L 1}^{1} . \tag{38}
\end{equation*}
$$

Let us obtain the subsequent value of current from expression (32); we have

$$
\begin{equation*}
I_{1}^{C 2}=\frac{I_{1}^{G} I_{1}^{C 1}}{\left(1-m_{L 1}^{12}\right) I_{1}^{C 1}+m_{L 1}^{12} I_{1}^{G}} . \tag{39}
\end{equation*}
$$

The obtained transformation with the parameter $m_{L 1}^{12}$ allows realizing the direct recalculation of the current at load change. This expression is especially convenient in case of group or set of load changes on account of performance of group property (38).

4.2 Definition of relative operating regime at change of element $Y_{L 2}$.

The cross ratio $m_{L 2}^{1}$ of the four point (three of these are the characteristic ones $0, A_{1}, F_{1}$ of line $Y_{L 1}^{1}$, and the fourth point C_{1} of initial regime $Y_{L 2}^{1}$) has the view

$$
\begin{equation*}
m_{L 2}^{1}=\left(0 C_{1} A_{1} F_{1}\right)=\frac{C_{1}-0}{C_{1}-F_{1}} \div \frac{A_{1}-0}{A_{1}-F_{1}} . \tag{40}
\end{equation*}
$$

The points $0, F_{1}$ are chosen as base ones. That will be explained later.
The same value of the cross ratio will be for the points $0, C_{2}, A_{2}, F_{2}$ of the line $Y_{L 1}^{2}$

$$
\begin{equation*}
m_{L 2}^{1}=\left(0 \quad C_{2} A_{2} F_{2}\right)=\frac{C_{2}-0}{C_{2}-F_{2}} \div \frac{A_{2}-0}{A_{2}-F_{2}} . \tag{41}
\end{equation*}
$$

Cross ratio (40) is expressed by the components of current

$$
m_{L 2}^{1}=\left(\begin{array}{lll}
0 & I_{1}^{C 1} & I_{1}^{A 1} \tag{42}\\
I_{1}^{G}
\end{array}\right)=\frac{I_{1}^{C 1}-0}{I_{1}^{C 1}-I_{1}^{G}} \div \frac{I_{1}^{A 1}-0}{I_{1}^{A 1}-I_{1}^{G}} .
$$

So, the cross ratio is the "distance" between the points C_{1}, A_{1} concerning the base points. In turn, the point C_{I} is a unit point.

Similarly, the cross ratio of the points of subsequent regime

$$
m_{L 2}^{2}=\left(\begin{array}{lll}
0 & I_{1}^{B 1} & I_{1}^{A 1} \tag{43}\\
I_{1}^{G}
\end{array}\right)=\frac{I_{1}^{B 1}-0}{I_{1}^{B 1}-I_{1}^{G}} \div \frac{I_{1}^{A 1}-0}{I_{1}^{A 1}-I_{1}^{G}} .
$$

The "distance" between the points of initial and subsequent regimes of line $Y_{L 1}^{1}$ has the view

$$
\begin{align*}
& m_{L 2}^{12}=m_{L 2}^{1} \div m_{L 2}^{2}= \\
& =\frac{I_{1}^{C 1}-0}{I_{1}^{C 1}-I_{1}^{G}} \div \frac{I_{1}^{B 1}-0}{I_{1}^{B 1}-I_{1}^{G}}=\left(\begin{array}{llll}
0 & I_{1}^{C 1} & I_{1}^{B 1} & I_{1}^{G}
\end{array}\right) . \tag{44}
\end{align*}
$$

The same "distance" is between the points of initial and subsequent regimes of line $Y_{L 1}^{2}$

$$
\begin{align*}
& m_{L 2}^{12}=\left(0 I_{1}^{C 2} I_{1}^{B 2} I_{1}^{G}\right)= \\
& =\frac{I_{1}^{C 2}-0}{I_{1}^{C 2}-I_{1}^{G}} \div \frac{I_{1}^{B 2}-0}{I_{1}^{B 2}-I_{1}^{G}} . \tag{45}
\end{align*}
$$

Let us express cross ratio (42) or (44) by the load conductivities $Y_{L 2}$. Expression $I_{1}\left(Y_{i}\right)=I_{1}\left(Y_{L 2}\right)$ for the given load is the projective transformation, which maps the points $Y_{i}, Y_{L 2}$ into the points of current. Therefore, it is possible, by formalized method, to express, at once, cross ratio $(42), 944)$ by the conductivities $Y_{L 2}, Y_{i}$

$$
\begin{align*}
& m_{L 2}^{1}=\left(0 I_{1}^{C 1} I_{1}^{A 1} I_{1}^{G}\right)=\left(Y_{i}^{0} Y_{i}^{1} \infty 0\right)= \\
& =\left(Y_{L 2}^{0} Y_{L 2}^{1} Y_{L 2}^{V} Y_{L 2}^{I}\right)= \\
& =\frac{Y_{L 2}^{1}-Y_{L 2}^{0}}{Y_{L 2}^{1}-Y_{L 2}^{I}} \div \frac{Y_{L 2}^{V}-Y_{L 2}^{0}}{Y_{L 2}^{V}-Y_{L 2}^{I}}= \tag{46}\\
& =\frac{Y_{i}^{1}-Y_{i}^{0}}{Y_{i}^{1}-0} \div \frac{\infty-Y_{i}^{0}}{\infty-Y_{L 2}^{I}}=\frac{Y_{i}^{1}-Y_{i}^{0}}{Y_{i}^{1}} .
\end{align*}
$$

$$
\begin{align*}
& m_{L 2}^{12}=\left(\begin{array}{ll}
0 & I_{1}^{C 1} \\
I_{1}^{B 1} & I_{1}^{G}
\end{array}\right)=\left(\begin{array}{l}
Y_{i}^{0}
\end{array} Y_{i}^{1} Y_{i}^{2} 0\right)= \\
& =\left(Y_{L 2}^{0} Y_{L 2}^{1} Y_{L 2}^{2} Y_{L 2}^{I}\right)= \\
& =\frac{Y_{L 2}^{1}-Y_{L 2}^{0}}{Y_{L 2}^{1}-Y_{L 2}^{I}} \div \frac{Y_{L 2}^{2}-Y_{L 2}^{0}}{Y_{L 2}^{2}-Y_{L 2}^{I}}= \tag{47}\\
& =\frac{Y_{i}^{1}-Y_{i}^{0}}{Y_{i}^{1}-0} \div \frac{Y_{i}^{2}-Y_{i}^{0}}{Y_{i}^{2}-Y_{L 2}^{I}} .
\end{align*}
$$

Also, the group property takes place

$$
\begin{align*}
& m_{L 2}^{3}=m_{L 2}^{32} \cdot m_{L 2}^{2}= \tag{48}\\
& =m_{L 2}^{32} \cdot m_{L 2}^{21} \cdot m_{L 2}^{1}=m_{L 2}^{31} \cdot m_{L 2}^{1} .
\end{align*}
$$

Let us obtain the subsequent value of current from expression (44). Then

$$
\begin{equation*}
I_{1}^{B 1}=\frac{I_{1}^{G} I_{1}^{C 1}}{\left(1-m_{L 2}^{12}\right) I_{1}^{C 1}+m_{L 2}^{12} I_{1}^{G}} . \tag{49}
\end{equation*}
$$

The obtained transformation with the parameter $m_{L 2}^{12}$ allows realizing the direct recalculation of current.

4.3 Definition of relative operating regime at

 common change of load $Y_{L 1}$ and element $Y_{L 2}$Let the common or composite change of regime be given as $C_{1} \rightarrow C_{2} \rightarrow B_{2}$. Then, the view of expressions (45) and (32) shows that it is possible to use the multiplication of these cross ratios as a compound change of regime

$$
\begin{align*}
& m^{12}=m_{L 2}^{12} \cdot m_{L 1}^{12}= \\
& =\frac{I_{1}^{C 1}-0}{I_{1}^{C 1}-I_{1}^{G}} \div \frac{I_{1}^{B 2}-0}{I_{1}^{B 2}-I_{1}^{G}}=\left(\begin{array}{llll}
0 & I_{1}^{C 1} & I_{1}^{B 2} & I_{1}^{G}
\end{array}\right) . \tag{50}
\end{align*}
$$

In this resultant expression the intermediate components are reduced at the expense of the choice of identical basic points. Therefore, we obtain the resultant value of current for the point B_{2}

$$
\begin{equation*}
I_{1}^{B 2}=\frac{I_{1}^{G} I_{1}^{C 1}}{\left(1-m^{12}\right) I_{1}^{C 1}+m^{12} I_{1}^{G}} . \tag{51}
\end{equation*}
$$

5 Example

Let the elements of a circuit in Fig. 1 be given as follows

$$
\begin{aligned}
& V_{0}=5, \quad y_{0 N}=1.25, \quad y_{N}=0.5, \quad y_{1 N}=1.25, \\
& y_{2 N}=5, \quad y_{1}=0.25, \quad y_{2}=0.1 .
\end{aligned}
$$

The value dimensions are not indicated.

The system of equation (1)

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1.3046 & 0.7812 \\
0.7812 & -1.975
\end{array}\right] \cdot\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{l}
0.9765 \\
3.9062
\end{array}\right]
$$

Let us consider the conductivity $Y_{L 2}^{1}=0.5$.
The parameters of the initial regime, point C_{1},

$$
Y_{L 1}^{1}=0.5, \quad I_{1}^{C 1}=0.7091 .
$$

The parameters of the subsequent regime, point C_{2},

$$
Y_{L 1}^{2}=1, \quad I_{1}^{C 2}=1.074 .
$$

Parameters (4), (5) of the known equivalent generator, points C_{I}, C_{V},

$$
I_{1}^{C I}=2.2095, V_{1}^{C V}=2.088
$$

Internal conductivity (6) of the circuit

$$
\begin{equation*}
Y_{i}=\frac{1.3046 \cdot Y_{L 2}+1.9664}{Y_{L 2}+1.975}=1.058 \tag{52}
\end{equation*}
$$

Parameters (11), (12) of the Norton/ Mayer equivalent generator, point G,

$$
V_{1}^{G}=-5, I_{1}^{G}=7.5 .
$$

Equation (13) of Norton/Mayer equivalent generator

$$
I_{1}-7.5=-Y_{i}\left(5+V_{1}\right) .
$$

Value (14) of the load conductivity, point G,

$$
Y_{L 1}^{G}=-1.5 .
$$

Let us now consider the conductivity $Y_{L 2}^{2}=2.5$.
The parameters of the initial regime, point B_{1},

$$
Y_{L 1}^{1}=0.5, \quad I_{1}^{B 1}=0.4971 .
$$

The parameters of the subsequent regime, point B_{2},

$$
Y_{L 1}^{2}=1, \quad I_{1}^{B 2}=0.7649 .
$$

The parameters of the points B_{I}, B_{V}

$$
I_{1}^{B I}=1.658, \quad V_{1}^{B V}=1.42 .
$$

Internal conductivity (6) of the circuit

$$
Y_{i}=1.1682 .
$$

Next, we are finding the characteristic values of internal conductivity Y_{i} and variable element $Y_{L 2}$. Expression (20)

$$
Y_{L 2}=\frac{1.975 \cdot Y_{i}-1.9664}{1.3046-Y_{i}}
$$

Value (21) of the ideal current source, $Y_{i}=0$,

$$
Y_{L 2}^{I}=-1.5071
$$

Value (22) of the ideal voltage source, $Y_{i}=\infty$,

$$
Y_{L 2}^{V}=-1.975
$$

Values (23) of the "zero-order" source

$$
Y_{i}^{0}=1.5, Y_{L 2}^{0}=-5.1
$$

5.1 Operating regime at load change.

Cross ratio (30) of the initial regime, point C_{1},

$$
\begin{aligned}
& m_{L 1}^{1}=\left(0 I_{1}^{C 1} I_{1}^{C I} I_{1}^{G}\right)= \\
& =\frac{0.7091-0}{0.7091-7.5} \div \frac{2.209-0}{2.209-7.5}=0.25
\end{aligned}
$$

Let us check the cross ratio value of the point B_{1}

$$
\begin{aligned}
& m_{L 1}^{1}=\left(0 I_{1}^{B 1} I_{1}^{B I} I_{1}^{G}\right)= \\
& =\frac{0.4971-0}{0.4971-7.5} \div \frac{1.658-0}{1.658-7.5}=0.25
\end{aligned}
$$

We are checking cross ratio value (35) by the load conductivity

$$
m_{L 1}^{1}==\frac{Y_{L 1}^{1}-0}{Y_{L 1}^{1}-Y_{L 1}^{G}}=\frac{0.5-0}{0.5+1.5}=0.25
$$

Cross ratio (31) of the subsequent regime, point C_{2},

$$
\begin{aligned}
& m_{L 1}^{2}=\left(0 I_{1}^{C 2} I_{1}^{C I} I_{1}^{G}\right)= \\
& =\frac{1.074-0}{1.074-7.5} \div \frac{2.209-0}{2.209-7.5}=0.4
\end{aligned}
$$

Let us check this value by the load conductivity

$$
m_{L 1}^{2}==\frac{Y_{L 1}^{2}-0}{Y_{L 1}^{2}-Y_{L 1}^{G}}=\frac{1-0}{1+1.5}=0.4
$$

Regime change (32) and (36)

$$
m_{L 1}^{12}=m_{L 1}^{1} \div m_{L 1}^{2}=0.25 \div 0.4=0.625
$$

The corresponded points of values are shown in Fig. 14.

The subsequent value of current (39)

$$
I_{1}^{C 2}=\frac{7.5 \cdot 0.7091}{(1-0.625) \cdot 0.7091+0.625 \cdot 7.5}=1.074
$$

Fig. 14 Example of mutual corresponds of regime parameters

Let the load once again be changed, $Y_{L 1}^{3}=1.5$. Then, regime change (36) or (38) in regard to the $\operatorname{load} Y_{L 1}^{2}=1$

$$
m_{L 1}^{23}=m_{L 1}^{2} \div m_{L 1}^{3}=0.4 \div 0.5=0.8
$$

Corresponding current value (39)

$$
I_{1}^{C 3}=\frac{7.5 \cdot 1.074}{(1-0.8) \cdot 1.074+0.8 \cdot 7.5}=1.296
$$

The common regime change relatively to the load $Y_{L 1}^{1}=0.5$

$$
m_{L 1}^{13}=m_{L 1}^{1} \div m_{L 1}^{3}=0.25 \div 0.5=0.5
$$

We have obtained the same value (39) of the current

$$
I_{1}^{C 3}=\frac{7.5 \cdot 0.7091}{(1-0.5) \cdot 0.7091+0.5 \cdot 7.5}=1.296
$$

5.2 Operating regime at change of element $Y_{L 2}$

"Distance" (44) between the initial point C_{1} and the subsequent point B_{1}

$$
\begin{aligned}
& m_{L 2}^{12}=\frac{I_{1}^{C 1}-0}{I_{1}^{C 1}-I_{1}^{G}} \div \frac{I_{1}^{B 1}-0}{I_{1}^{B 1}-I_{1}^{G}}= \\
& =\frac{0.7091-0}{0.7091-7.5} \div \frac{0.4971-0}{0.4971-7.5}=1.471
\end{aligned}
$$

Let us check the same value (45) of points C_{2}, B_{2}

$$
\begin{aligned}
& m_{L 2}^{12}=\frac{1.074-0}{1.074-7.5} \div \frac{0.7649-0}{0.7649-7.5}= \\
& =0.16713 \div 0.11356=1.471,
\end{aligned}
$$

and the same value (47) of conductivities $Y_{L 2}^{1}, Y_{L 2}^{2}$

$$
\begin{aligned}
& m_{L 2}^{12}=\frac{Y_{L 2}^{1}-Y_{L 2}^{0}}{Y_{L 2}^{1}-Y_{L 2}^{I}} \div \frac{Y_{L 2}^{2}-Y_{L 2}^{0}}{Y_{L 2}^{2}-Y_{L 2}^{I}}= \\
& =\frac{0.5+5.1}{0.5+1.5071} \div \frac{2.5+5.1}{2.5+1.5071}=1.471 .
\end{aligned}
$$

Subsequence current value (49)

$$
I_{1}^{B 1}=\frac{7.5 \cdot 0.7091}{(1-1.471) \cdot 0.7091+1.471 \cdot 7.5}=0.4971 .
$$

5.3 Common change of load $Y_{L 1}$ and $Y_{L 2}$

Common regime change (50)

$$
m^{12}=1.471 \cdot 0.625=0.1044 \div 0.1135=0.919 .
$$

The resultant current value, point B_{2}

$$
I_{1}^{B 2}=\frac{7.5 \cdot 0.7091}{(1-0.9196) \cdot 0.7091+0.919 \cdot 7.5}=0.764
$$

6 Development of the Obtained Results

The presented results are generalized for active twoport [17] and multiport [18]. The application of projective coordinates gives capability to obtain formulas of recalculation of load currents of active multiport for various cases [19, 20, 21].

7 Conclusion

-The generalized equivalent generator of active twopole with the variable parameters simplifies of circuit analysis, gives more profound idea about the interrelation of operating regimes and parameters of elements, can be useful in the education purposes.

- The application of the projective coordinates instead of conductivities or resistance allows obtaining the suitable formulas of the recalculation of load current, to define the scales for load and variable element.
-The obtained results can be applied in particular to AC linear circuits, to circuits with dependent sources of voltage and current.

References:

[1] K. A. Charles, N. O. Matthew Sadiku, Fundamentals of Electric Circuits. 4-th Edition, McGraw-Hill, 2007.
[2] J. D. Irwin, and R. M. Nelms, Basic engineering circuit analysis. 10-th edition, Wiley Publishing, 2008.
[3] S. T. Karris., Circuit Analysis I With MATLAB Applications, Orchard publications, 2004.
[4] D. Johnson, Origins of the equivalent circuit concept: the voltage-source equivalent, Proceedings of the IEEE 91.4, 2003, pp.636-640.
[5] J. Vandewalle, Shortcuts in circuits and systems education with a case study of the Thévenin/Helmholtz and Norton/Mayer equivalents, Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, IEEE 2012.
[6] G. Chatzarakis, A New Method for Finding the Thevenin and Norton Equivalent Circuits, Engineering 2.5 ,2010, p. 328.
[7] E. Gluskin, and A. Patlakh, An ideal independent source as an equivalent 1-port, arXiv preprint arXiv:1108.4592, 2011.
[8] M. Hosoya, Derivation of the Equivalent Circuit of a Multi-Terminal Network Given
by Generalization of Helmholtz-Thevenin's Theorem, BULLETIN-COLLEGE OF SCIENCE UNIVERSITY OF THE RYUKYUS 84, 2007.
[9] R. Hashemian, Hybrid equivalent circuit, and alternative to Thévenin and Norton equivalents, its properties and application, Proc. Midwest Symp. On Circuits and Systems, MWSCAS 2009, pp. 800-803.
[10] A. Penin, Utilization of the projective coordinates in the linear electrical network with the variable regimes, Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si tehnica, No. 2 ,1992, pp. 64-71 (Russian).
[11] A. Penin, Characteristics of modified equivalent generator of active twoterminal network with variable resistor, Electrichestvo, No. 4 , 1995, pp. 55- 59 (Russian).
[12] A. Penin, Linear- fractional relation in the problems of analysis of resistive circuits with variable parameters, Electrichestvo, No.11, 1999, pp. 32- 44 (Russian).
[13] A. Penin, Determination of regimes of the equivalent generator based on projective geometry: The generalized equivalent generator, International Journal of Electrical and Computer Engineering Vol.3, No.15, 2008, pp. 968976
http://www.waset.org/journals/ijece/v3/v3-15-146.pdf
[14] A. Penin, Projectively - affine properties of resistive two-ports with variable load, Tekhnicheskaia elektrodinamika 2, 1991, pp. 38-42 (Russian).
[15] R. E. Bryant, J. D. Tygar, and L. P. Huang. Geometric characterization of series-parallel variable resistor networks, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 41.11, 1994, pp. 686-698.
[16] A. Penin, Projective Geometry Method in the Theory of Electric Circuits with Variable Parameters of Elements, International Journal of Electronics Communications and Electrical Engineering Vol.3, No.2, 2013, pp. 18-34. http://www.ijecee.com/uploads/displayVolu meIssue/V-3-I-2-ID-2.pdf
[17] A. Penin, About the definition of parameters and regimes of active two- port networks with variable loads on the basis of projective geometry. WSEAS Transactions on Circuits and Systems, Vol.10, No.5, 2011, pp. 157-172. http://www.wseas.us/e-library/transactions/circuits/2011/53346.pdf.
[18] A. Penin, Parameters and Characteristics of the Modified Equivalent Generator in an Active Multiport Network, Electrichestvo, No.5, 2012, pp. 32-39 (Russian).
[19] A. Penin, Recalculation of the Loads Current of Active Multi-Port Networks on the Basis of Projective Geometry, Journal of Circuits, Systems and Computers Vol.22, No.5, 2013, pages 13.
http://www.worldscientific.com/worldscinet/jcs c.
[20] A. Penin, Recalculating the load currents of an active multi-pole with variable parameters on the basis of projective geometry, Electrichestvo, No.10, 2012, pp. 32-39 (Russian).
[21] A. Penin, Normalized representation of the equations of active multi- port networks on the basis of projective geometry, Moldavian Journal of the Physical Sciences Vol.10, No.3, 2011. http://sfm.asm.md/moldphys/2011/vol10/n3 -4/index.html

