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Abstract: In this paper, we discuss a deteriorating system with one repairman. In this system, it is assumed that
the component cannot be repaired ”as good as new” after failures and the repairman takes a delayed vacation, the
repair time is taken into account. Under these assumptions, we derive a model of partial differential equations by
using the geometric process and supplementary variable technique. We get some reliability indices by the Laplace
transform method. The working probability of the repairman, the delayed rate and the rate of occurrence of failures
of the steady state of the system are explicitly given. In particular, the rate of occurrence of failures in the steady
state satisfies mf 6= 0.
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1 Introduction
The reliability analysis of the system is an important
content at the planning,design and operational stages
of various system(see, [1], [2], [3], [4]), these pa-
pers study the availability of the system and the maxi-
mum reliability of the component. Many authors stud-
ied some problems about the reliability of the sys-
tems, especially the complex systems. For example:
the reliability of repairable system, queuing system,
electronic product and network (see,[5], [6], [7], [8]).
Much more attentions have been paid to the study of
repairable systems. Repairable system is not only a
kind of important system discussed in reliability the-
ory but also one of the main objects studied in relia-
bility mathematics. Many authors have worked in this
field, including system modeling and model analysis,
for example, see [9], [10], [11], [12], [13] and refer-
ences therein.

In recent years, there have been two hot topics
in reliability analysis, one is that the repairman can-
not repair in time, or the system after failures can-
not be repaired immediately because of the absence
of the repairman, the other is that the system cannot
be repaired as good as new after failures. This is true
particularly for the electronic products(see, [5], [13],
[14]). These problems have been considered in the pa-
pers mentioned above and studied under the assump-
tion on the deteriorating systems with constant repair
rate. Some papers considered the problem of repair-

man vacation. Obviously, if the repairman is on vaca-
tion and the system fails, then the system must be in
state of waiting for repair. It is well known that the
longer the time is, the more failure times the system
will have, even a system can be repaired as good as
new. If the repairman goes to vacation at once, then
the waiting time of the system to be repaired will be
much longer. Based on this reason, we consider a
strategy of delayed vacation for a repairable system
in the present paper. The delayed vacation means that
the repairman waits for certain time after the system
finished repairing and then goes to his vacation. If the
system fails during waiting vacation, the repairman
will begin repairing at once, otherwise the repairman
starts his vacation. Here we consider more general
case that the repair time satisfies the general distribu-
tion but has finite excepted value. This is different
from that in considered in [12] and [13]. Firstly we
establish mathematical model for such a system, and
then we study the reliability indices of the system.

This paper is organized as follows: in section 2,
we at first establish the governed equation of dynamic
behavior of the system under the geometric process
of deteriorating system. Due to the general distribu-
tion of repair time, we derive a model of partial dif-
ferential equations by the supplementary variable and
analysis probability; In section 3, we further discuss
the state model of the system; In section 4, we use
the Laplace transform method to investigate some re-
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liability indices of the system, including the working
probability of the repairman, the delayed rate and the
rate of occurrence of failures. Finally, in section 5, we
give a conclusion remark.

2 Mathematical modeling
In this section we shall model a deteriorating system
under the geometric process. Firstly we make the fol-
lowing assumptions:

1). A system consists of one machine and one
repairman, the machine is new and starts to work at
time t = 0;

2). The repairman takes delayed vacation. The
repairman will prepare his vacation when the system
begins working. If the system fails during this period,
the system will be repaired at once. Otherwise the
repairman will start his vacation; If the machine fails
during vacation of the repairman, the system is in the
state of waiting for repair;

3). When the repairman comes back after his va-
cation, there are two cases: one is that the system is
in the state of waiting for repair, in this case he be-
gins his repair immediately; the other is the machine
is running, he will continue his delayed vacation im-
mediately;

4). After completion of repair, the system returns
to the working state. The time interval between the
completion of the (k− 1)-th repair and the k-th repair
of the system is called the k-th cycle of the system,
k = 1, 2, · · · . When the system is in the k-th cycle,
let

ck−1λ0: is the constant failure rate of the system
during the repairman preparing vacation, and c ≥ 1 is
deteriorating ratio [12];

ak−1λ1: is the constant failure rate of the sys-
tem during the repairman on vacation, and a ≥ 1 is
deteriorating ratio [12];

bk−1γ: is the constant waiting repairing rate of
the system, and b ≥ 1 is deteriorating ratio [12];

ε0: is the constant rate of the repairman prepar-
ing vacation;

ε1: is the constant rate of the repairman returning
system;

µ(y): is the repaired rate, when the failed system
has an elapsed repairing time of y, the distribution is

G(t) =
∫ t

0
g(y)dy = 1− exp(−

∫ t

0
µ(y)dy)

with expected value
∫ ∞

0
tg(t)dt =

∫ ∞

0
tµ(t)e−

R t
0 µ(y)dydt =

1
µ

< ∞.

It satisfies
∫ y
0 µ(τ) < ∞,

∫∞
0 µ(τ) = ∞;

5). All above random variables are independent;
6). Each switchover of the states is perfect and

each switchover time is instantaneous.
All above are the basic assumptions on the sys-

tem. Under these hypotheses we will establish a math-
ematical model. We begin with describing the process
and state of the system.

Let {I(t), t ≥ 0} be a stochastic process taken
value in state spaceN. I(t) = k means that the system
is in the k-th cycle at time t.

Let E = {0, 1, 2, 3} be the event space. The
events are defined as follows:

0: The system is working at time t, the repairman
is on preparing holiday;

1: The system is working at time t, the repairman
is on holiday;

2: The system fails at time t, the repairman is on
holiday;

3: The system fails at time t, the repairman is
repairing the failed component.

Clearly, the set of the working states of the system
is W = {0, 1} ⊂ E and the set of the failed states is
F = {2, 3} ⊂ E.

Again, let {N(t), t ≥ 0} be a stochastic process
value in the event space E = {0, 1, 2, 3}. N(t) = i ∈
E means that the system is in the event i at time t.
Thus Pi(t) = P{N(t) = i} denotes the probability
of the system at the event i at time t.

Denote by A0(t) = P{N(t) = 0} and A1(t) =
P{N(t) = 1}. Set A(t) = A0(t) + A1(t).Then A(t)
is the probability of the system in working state at t,
which is called the availability of the system at time t.

P2(t) = P{N(t) = 2} is the probability of
the system waiting for repair at time t and PW (t) =
P{N(t) = 3} is the probability of the repairman
working at time t.

Observe that the process {N(t), I(t); t ≥ 0} does
not constitute a Markov process. To describe the be-
havior of the system we introduce a new stochastic
variable. Let Y (t) be a stochastic process value in
R+. Y (t) = y means that the system has an elapsed
repair time at t. Then the equality

p(y, t)dy = P{y ≤ Y (t) < y + dy}

denotes the probability density that the failed system
has an elapse repair time of y. Obviously we have
PW (t) =

∫∞
0 p(y, t)dy. From above we see that

the three stochastic process {N(t), Y (t), I(t); t ≥ 0}
constitutes a generalized Markov process. This ap-
proach is said to be the supplement variable technique.

At first, let us define the event probability of the
system at time t as follows:
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For i = 0, 1, 2 and j ∈ N,

pi,j(t) = P{N(t) = i, I(t) = j}
and for i = 3 and j ∈ N,

p3,j(t, y)dy
= P{N(t) = 3, y ≤ Y (t) < y + dy, I(t) = j}.

In what follows, we will deduce the differential equa-
tions according to change of probability of the system
in time interval (t, t + ∆t] with small ∆t:

1). For i = 0, this means that the system is work-
ing,

p0,j(t + ∆t)
= P{N(t + ∆t) = 0, I(t + ∆t) = j}
=

3∑
i=0

P{N(t + ∆t) = 0, I(t + ∆t) = j, N(t) = i}

=
3∑

i=0
P{N(t + ∆t) = 0, I(t + ∆t) = j|N(t) = i}

×P{N(t) = i}.
For ∆t small enough, when N(t + ∆t) = 0, there are
only two cases: one is N(t) = 0 or N(t) = 1, which
means that the system is working at time t, the system
still working at time t+∆t; the other is N(t) = 3, the
system is failed at t but the system is working at time
t + ∆t. In this case, the system belongs to differential
cycle.

Observe that according to assumptions we have
the condition probabilities

P{N(t+∆t) = 0, I(t+∆t) = j|N(t) = 0, I(t) = j}
×P{N(t) = 0, I(t) = j}
= (1− (cj−1λ0 + ε0)∆t)p0,j(t) + o(∆t),

P{N(t+∆t) = 0, I(t+∆t) = j|N(t) = 1, I(t) = j}
×P{N(t) = 1, I(t) = j}
= ε1∆tp1,j(t) + o(∆t)

and

P{N(t+∆t)= 0,I(t+∆t)= j|N(t) = 3,I(t)= j−1}
×P{N(t) = 3, I(t) = j − 1}
=

∫∞
0 µ(y)p3,j−1(t, y)dy∆t + o(∆t).

When j = 1, it occurs only in the first case. So we
have

p0,1(t + ∆t)
= (1− (λ0 + ε0)∆t)p0,1(t) + ε1∆tp1,1(t) + o(∆t).

For j > 1, we have

p0,j(t + ∆t)
= (1− (cj−1λ0 + ε0)∆t)p0,j(t) + ε1∆tp1,j(t)
+

∫∞
0 µ(y)p3,j−1(t, y)dy∆t + o(∆t).

From above we can get a group of ordinary differential
equations

dp0,1(t)
dt

= −(λ0 + ε0)p0,1(t) + ε1p1,1(t)

and

dp0,j(t)
dt = −(cj−1λ0 + ε0)p0,1(t) + ε1p1,1(t)

+
∫∞
0 µ(y)p3,j−1(t, y)dy, ∀j > 1.

2). For i = 1 and j ∈ N,

p1,j(t + ∆t)
= P{N(t + ∆t) = 1, I(t + ∆t) = j}
=

3∑
i=0

P{N(t + ∆t) = 1, I(t + ∆t) = j, N(t) = i}

=
3∑

i=0
P{N(t + ∆t) = 1, I(t + ∆t) = j|N(t) = i}

×P{N(t) = i}.
For N(t + ∆t) = 1, the repairman starts vacation
and the system is running at time t + ∆t, it must be
N(t) = 0, the system is working with the repairman
waiting vacation at time t or N(t) = 1, the system is
working when the repairman is vacation at time t.

Since

P{N(t+∆t) = 1, I(t+∆t) = j|N(t) = 0, I(t) = j}
×P{N(t) = 0, I(t) = j}
= ε0∆tp0,j(t) + o(∆t)

and

P{N(t+∆t) = 1, I(t+∆t) = j|N(t) = 1, I(t) = j}
×P{N(t) = 1, I(t) = j}
= (1− (aj−1λ1 + ε1)∆t)p1,j(t) + o(∆t),

so for any j ∈ N, one has

p1,j(t + ∆t) = (1− (aj−1λ1 + ε1)∆t)p1,j(t)
+ε0∆tp0,j(t) + o(∆t).

Hence we have ordinary differential equations

dp1,j(t)
dt

= ε0p0,j(t)−(aj−1λ1+ε1)p1,j(t) ∀j ≥ 1.

3). For i = 2 and j ∈ N,

p2,j(t + ∆t)
= P{N(t + ∆t) = 2, I(t + ∆t) = j}
=

3∑
i=0

P{N(t + ∆t) = 2, I(t + ∆t) = j, N(t) = i}

=
3∑

i=0
P{N(t + ∆t) = 2, I(t + ∆t) = j|N(t) = i}

×P{N(t) = i}.
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For N(t + ∆t) = 2, the system fails during the va-
cation of the repairman at time t + ∆t, it must be
N(t) = 1, the system is working and the repairman
starts vacation at time t or N(t) = 2, the system fails
during the vacation of the repairman at time t. There-
fore, for any j ∈ N,

P{N(t+∆t) = 2, I(t+∆t) = j|N(t) = 1, I(t) = j}
×P{N(t) = 1, I(t) = j}
= aj−1λ1∆tp1,j(t) + o(∆t)

and

P{N(t+∆t) = 2, I(t+∆t) = j|N(t) = 2, I(t) = j}
×P{N(t) = 2, I(t) = j}
= (1− bj−1γ∆t)p2,j(t) + o(∆t),

it holds that

p2,j(t + ∆t)
= (1− bj−1γ∆t)p2,j(t) + aj−1λ1∆tp1,j(t) + o(∆t).

This leads to differential equations

dp2,j(t)
dt

= aj−1λ1p1,j(t)− bj−1γp2,j(t) ∀j ≥ 1.

4). If N(t + ∆t) = 3, the system fails. There
are two cases in this event: one is that the system is
in failure but the repair has not been conducted, the
other is that the system being under repair. Here we
consider only the first case. In this case, the system at
time t is probable in states N(t) = 0 or N(t) = 2,
so p3,j(t, 0) implies that the system has just failed and
has not started repairs in j-th cycles of the system at
time t. It has the expression

p3,j(t, 0) = cj−1λ0p0,j(t) + bj−1γp2,j(t), j ∈ N.

5). Here we consider N(t + ∆t) = 3 and the system
is under repair. For the repair time y > 0, let ∆t < y

p3,j(t + ∆t, y + ∆t)dy
= P{N(t + ∆t) = 3,
y + ∆t ≤ Y (t+∆t) ≤ y +∆t + dy, I(t+∆t) = j}
=

3∑
i=0

P{N(t + ∆t) = 3, y + ∆t ≤ Y (t + ∆t)

≤ y + ∆t + dy, I(t + ∆t) = j, N(t) = i}

Since the repair time y > 0 and ∆t < y, in event
of i = 0, 1, 2, the repair time of the system is always
less than y + ∆t, so the event probabilities of N(t) =
0, N(t) = 1 and N(t) = 2 are zero. Therefore, at
time t, the system is only in state N(t) = 3. The
term P{N(t + ∆t) = 3, y + ∆t ≤ Y (t + ∆t) ≤

y + ∆t + dy, I(t + ∆t) = j, N(t) = 3} shows that
the system is in maintenance and elapse time in y +
∆t ≤ Y (t + ∆t) ≤ y + ∆t + dy at time t + ∆t.
Obviously, it holds only if the system is in j-th cycle
and has elapsed time in y ≤ Y (t) < y + ∆t, the
probability density of the repairing is

p3,j(t + ∆t, y + ∆t)
= (1− µ(y)∆t)p3,j(t, y) + o(∆t), j ∈ N.

This leads to partial differential equations

∂p3,j(t, y)
∂t

+
∂p3,j(t, y)

∂y
= −µ(y)p3,j(t, y), j ∈ N.

Secondly, given the following system state transition
diagram:

0

1

0

1k
c

1k
b

1

1k
a

0

1 2 3

)(y

By the analysis above, we see that the dynamic behav-
ior of the system is governed by the partial differential
equations:
When j = 1





{ d
dt + ε0 + λ0}p0,1(t) = ε1p1,1(t),
{ d

dt + ε1 + λ1}p1,1(t) = ε0p0,1(t),
{ d

dt + γ}p2,1(t) = λ1p1,1(t),
{ ∂

∂t + ∂
∂y + µ(y)}p3,1(t, y) = 0,

p3,1(t, 0) = λ0p0,1(t) + γp2,1(t).

(1)

And when j ≥ 2,




{ d
dt + ε0 + cj−1λ0}p0,j(t) =

ε1p1,1(t) +
∫∞
0 µ(y)p3,j−1(t, y)dy,

{ d
dt + ε1 + aj−1λ1}p1,j(t) = ε0p0,j(t),
{ d

dt + bj−1γ}p2,j(t) = aj−1λ1p1,j(t),
{ ∂

∂t + ∂
∂y + µ(y)}p3,j(t, y) = 0,

p3,j(t, 0) = cj−1λ0p0,j(t) + bj−1γp2,j(t).

(2)

By the assumption 1) on the system, the initial condi-
tions are given by





p0,1(0) = 1, p0,j(0) = 0 (j ≥ 2),
p1,j(0) = p2,j(0) = 0
p3,j(0, y) = 0, y ∈ (0,∞) (j ≥ 1).

(3)
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Since all functions are the probability (or probability
density) of the system in some state, from practice
point of view, they satisfy the normal condition

∞∑

j=1

p0,j(t) +
∞∑

j=1

p1,j(t) +
∞∑

j=1

p2,j(t)

+
∞∑

j=1

∫ ∞

0
p3,j(t, y)dy = 1, ∀t ≥ 0. (4)

3 State model of the system
The model (1) and (2) mainly address the system at t
being in the j-th cycle. In this section we shall discuss
the state equation of the system.

Clearly, we have Pi(t) = P{N(t) = i}, i =
0, 1, 2, 3. P0(t) is the probability of the machine work-
ing at time t after the repairman repairs failures; P1(t)
is the probability of the machine working at time t
when the repairman is on vacation; P2(t) is the prob-
ability of the system waiting for repair; they have the
following expressions, respectively,

P0(t) =
∞∑

j=1

p0,j(t), P1(t) =
∞∑

j=1

p1,j(t)

and

P2(t) =
∞∑

j=1

p2,j(t).

Set

mf0(t) =
∞∑

j=1
cj−1λ0p0,j(t),

mf1(t) =
∞∑

j=1
aj−1λ1p1,j(t),

mf (t) = mf0(t) + mf1(t)

where mf0(t) is called the rate of occurrence of fail-
ures at time t when the repairman is in system, the
system is failures; mf1(t) is called the rate of occur-
rence of failures at time t when the repairman is on
vacation, the system is failures; mf (t) is the rate of
occurrence of failures at time t.

Denote

md(t) =
∞∑

j=1

bj−1γp2,j(t).

The md(t) is said to be the delayed rate of occurrence
at time t;

Set

p3(t, y) =
∞∑

j=1

p3,j(t, y),

p3(t, y) is said to be the repair density of the system.
Then we have

P3(t) =
∫ ∞

0
p3(t, y)dy

P3(t) is probability of the system under repair at t.
According to (1) and (2) we have the following

state equations





dP0(t)
dt + ε0P0(t) + mf0(t) =

ε1P1(t) +
∫∞
0 µ(y)p3(t, y)dy,

dP1(t)
dt + ε1P1(t) + mf1(t) = ε0P0(t),

dP2(t)
dt + md(t) = mf1(t),

{ ∂
∂t + ∂

∂y + µ(y)}p3(t, y) = 0,

p3(t, 0) = md(t) + mf0(t)
(P0(0), P1(0), P2(0), p3(0, y)) = (1, 0, 0, 0).

(5)
In the study of reliability of a system, the discus-

sion of the existence of the steady state of the system
is an important content. This is because some indices
of reliability will be deduced from it. If there exists a
steady state (P0, P1, P2, p3(y)) of the system, then it
must satisfy the following equations





ε0P0 + mf0 = ε1P1 +
∫∞
0 µ(y)p3(y)dy,

ε1P1 + mf1(t) = ε0P0,
md = mf1 ,

{ d
dy + µ(y)}p3(y) = 0,

p3(0) = md + mf0

(6)

Solving above equations we get

p3(y) = (md + mf0)e
− R y

0 µ(τ)dτ

and md = mf1 . So the steady state probability of
the system in repair (or the probability of repairman
working) is

P3 =
∫ ∞

0
(md + mf0)e

− R y
0 µ(τ)dτdy =

md + mf0

µ

where 1
µ =

∫∞
0 e−

R y
0 µ(τ)dτdy is the expected value.

Observe that if there is a steady state of the system, it
must satisfy the normal condition

P0 + P1 + P2 + P3 = 1

Although we have given P3, we cannot determine
from (6) the steady state probabilities P0, P1 and P2.

The state equations (5) might be a steady
state, but the system (1) and (2) cannot have a
steady state. In fact, if there exists a steady state
(p0,j , p1,j , p2,j , p3,j(y)) of the system, it must satisfy
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the following equations:
When j = 1





{ε0 + λ0}p0,1 = ε1p1,1,
{ε1 + λ1}p1,1 = ε0p0,1,
γp2,1 = λ1p1,1,

{ d
dy + µ(y)}p3,1(y) = 0,

p3,1(0) = λ0p0,1 + γp2,1.

(7)

When j ≥ 2





{ε0 + cj−1λ0}p0,j = ε1p1,j +
∫∞
0 µ(y)p3,j−1(y)dy,

{ε1 + aj−1λ1}p1,j = ε0p0,j ,
bj−1γp2,j = aj−1λ1p1,j ,

{ d
dy + µ(y)}p3,j(y) = 0,

p3,j(0) = cj−1λ0p0,j + bj−1γp2,j .
(8)

Clearly, the equations (7) have zero solution only, and
hence the equations (8) have also zero solution. Obvi-
ously it does not satisfy the normal condition.

4 Reliability indices
The reliability indices are measurement of the safety
and availability of the system[16]. To obtain reli-
ability indices of the system, including the reliabil-
ity indices of the steady state, is an important con-
tent in system analysis. In this section we focus
our attention on the discussion of some indices of
the system such as availability, rate of occurrence of
failures and the probability of the repairman work-
ing. Although we have established the state equa-
tions (5), we cannot determine these indices from
it. To get these indices, we return to equations
(1) and (2). In what follows we shall get the re-
liability indices via the Laplace transform method.
Since our model describes a practical problem, we
can assume that there exists a group nonnegative so-
lution (p0,j(t), p1,j(t), p2,j(t), p3,j(t, y)) to equations
(1) and (2).

Denote the Laplace transform of the functions by

p∗0,j(s) =
∫ ∞

0
p0,j(t)e−stdt,

p∗1,j(s) =
∫ ∞

0
p1,j(t)e−stdt,

p∗2,j(s) =
∫ ∞

0
p2,j(t)e−stdt,

p∗3,j(s, y) =
∫ ∞

0
p3,j(t, y)e−stdt

For equations (1) and (2), taking Laplace transform
and using the initial condition (3) we get the following

algebraic and differential equations with real parame-
ter s > 0:




sp∗0,1(s) + (ε0 + λ0)p∗0,1(s) = ε1p
∗
1,1(s) + 1,

sp∗1,1(s) + (ε1 + λ1)p∗1,1(s) = ε0p
∗
0,1(s),

sp∗2,1(s) + γp∗2,1(s) = λ1p
∗
1,1(s),

sp∗3,1(s, y) + ∂
∂yp∗3,1(s, y) + µ(y)p∗3,1(s, y) = 0,

sp∗0,2(s) + (ε0 + cλ0)p∗0,2(s) = ε1p
∗
1,2(s)

+
∫∞
0 µ(y)p∗3,1(s, y)dy,

sp∗1,2(s) + (ε1 + aλ1)p∗1,2(s) = ε0p
∗
0,2(s),

sp∗2,2(s) + bγp∗2,2(s) = aλ1p
∗
1,2(s),

sp∗3,2(s, y) + ∂
∂yp∗3,2(s, y) + µ(y)p∗32(s, y) = 0,

...
sp∗0,j(s) + (ε0 + cj−1λ0)p∗0,j(s) = ε1p

∗
1,j(s)

+
∫∞
0 µ(y)p∗3,j−1(s, y)dy,

sp∗1,j(s) + (ε1 + aj−1λ1)p∗1,j(s) = ε0p
∗
0,j(s),

sp∗2,j(s) + bj−1γp∗2,j(s) = aj−1λ1p
∗
1,j(s),

sp∗3,j(s, y) + ∂
∂yp∗3,j(s, y) + µ(y)p∗3,j(s, y) = 0,

...

Solving the above equations, we derive





p∗0,1(s) = s+ε1+λ1
(s+ε1+λ1)(s+λ0)+(s+λ1)ε0

,

p∗1,1(s) = ε0
s+ε1+λ1

p∗0,1(s),
p∗2,1(s) = λ1

s+γ
ε0

s+ε1+λ1
p∗0,1(s),

p∗3,1(s, y) =(λ0p
∗
0,1(s)+γp∗2,1(s))e

− R y
0 (s+µ(τ))dτ

= (λ0 + γ λ1
s+γ

ε0
s+ε1+λ1

)p∗0,1(s)e
− R y

0 (s+µ(τ))dτ ,

p∗0,2(s) = s+ε1+aλ1
(s+ε1+aλ1)(s+cλ0)+(s+aλ1)ε0

×(λ0 + γ λ1
s+γ

ε0
s+ε1+λ1

)p∗0,1(s)(1− sG∗(s)),
p∗1,2(s) = ε0

s+ε1+aλ1
p∗0,2(s),

p∗2,2(s) = aλ1
s+bγ

ε0
s+ε1+aλ1

p∗0,2(s),
p∗3,2(s, y)
= (cλ0p

∗
0,2(s) + bγp∗2,2(s))e

− R y
0 (s+µ(τ))dτ

= (cλ0 + bγ aλ1
s+bγ

ε0
s+ε1+aλ1

)p∗0,2(s)e
− R y

0 (s+µ(τ))dτ ,
...
p∗0,j(s) = s+ε1+aj−1λ1

(s+ε1+aj−1λ1)(s+cj−1λ0)+(s+aj−1λ1)ε0

×(cj−2λ0 + bj−2γ aj−2λ1

s+bj−2γ
ε0

s+ε1+aj−2λ1
)

×p∗0,j−1(s)(1− sG∗(s))j−1,

p∗1,j(s) = ε0

s+ε1+aj−1λ1
p∗0,j(s),

p∗2,j(s) = aj−1λ1

s+bj−1γ
ε0

s+ε1+aj−1λ1
p∗0,j(s),

p∗3,j(s, y)
= (cj−1λ0p

∗
0,j(s) + bj−1γp∗2,j(s))e

− R y
0 (s+µ(τ))dτ

= (cj−1λ0 + bj−1γ aj−1λ1

s+bj−1γ
ε0

s+ε1+aj−1λ1
)

×p∗0,j(s)e
− R y

0 (s+µ(τ))dτ ,
...

(9)
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where G∗(s) =
∫∞
0 e−

R y
0 (s+µ(τ))dτdy. Here we point

out that all functions pi,j(s) ≥ 0.i = 0, 1, 2, 3, j ∈ N.

4.1 Availability of the system
Availability of the system at time t is the probability
of the system in working state, which is defined by

A(t) = A0(t) + A1(t),

where

A0(t) = P{N(t) = 0} = P0(t) =
∞∑

j=1

p0,j(t)

and

A1(t) = P{N(t) = 1} = P1(t) =
∞∑

j=1

p1,j(t).

The Laplace transform of A0(t) is given by

A∗0(s) =
∞∑

j=1

p∗0,j(s) = p∗0,1(s) +
∞∑

j=2

p∗0,j(s)

Substituting the expression of the Laplace transform
of the solution, we get an explicit expression of A∗(s).

In order to calculate the steady state availability
of A(t), let us at first estimate p∗0,j(s). Observe that
for j ≥ 2,

p∗0,j(s)
p∗0,j−1(s)

=
s+ε1+aj−1λ1

(s+ε1 + aj−1λ1)(s+cj−1λ0) + (s+aj−1λ1)ε0

(cj−2λ0+
γ

s+bj−2γ

aj−2λ1ε0

s+ε1+aj−2λ1
)(1−sG∗(s))j−1

and hence

p∗0,j(s)
p∗0,1(s)

=
j−1∏

k=1

s+ε1+akλ1

(s+ε1 + akλ1)(s+ckλ0) + (s+akλ1)ε0

(ck−1λ0+
γ

s+bk−1γ

ak−1λ1ε0

s+ε1+ak−1λ1
)(1−sG∗(s))k.

Using inequality

0 < 1− sG∗(s) = 1− s

∫ ∞

0
e−
R r
0 (s+µ(y))dydr < 1

and the conditions a > 1, b ≥ 1 and c > 1 we have
estimate

p∗0,j(s)
p∗0,1(s)

<

j−1∏

k=1

s+ε1+akλ1

(s+ε1 + akλ1)(s+ckλ0) + (s+akλ1)ε0

×ck−1λ0(s+ε1+ak−1λ1) + ak−1λ1ε0

s+ε1+ak−1λ1

≤ 1
(cj−1λ0)

(λ0 + ε0).

Then
∞∑

j=2

p∗0,j(s) ≤
∞∑

j=2

1
cj−1λ0

(λ0 + ε0)p∗0,1(s). (10)

From (9) we have

p∗0,1(s) =
s + ε1 + λ1

(s + ε1 + λ1)(s + λ0) + (s + λ1)ε0
.

Using above and (10), for s > 0, a > 1, c > 1 and
b ≥ 1, the Laplace transform of A0(t) has estimate

A∗0(s) = p∗0,1(s) +
∞∑

j=2

p∗0,j(s)

≤ p∗0,1(s)
{

1 +
λ0 + ε0

(c− 1)λ0

}

These yields
lim
s→0

sA∗0(s) = 0.

For i = 1, from (9) we have

p∗1,1(s) =
ε0

s + ε1 + λ1
p∗0,1(s),

p∗1,j(s) =
ε0

s + ε1 + aj−1λ1
p∗0,j(s).

Using previous estimate yields

p∗1,j(s) ≤
ε0

s + ε1 + aj−1λ1

λ0 + ε0

cj−1λ0
p∗0,1(s).

Therefore, the Laplace transform of A1(t) has esti-
mate

A∗1(s) = p∗1,1(s) +
∞∑

j=2

p∗1,j(s)

=
ε0

s + ε1 + λ1
p∗0,1(s) +

∞∑

j=2

ε0p
∗
0,j(s)

s+ε1+ aj−1λ1

≤

 ε0

λ1
+

∞∑

j=2

ε0

aj−1λ1

(λ0 + ε0)
cj−1λ0


 p∗0,1(s)
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this implies

lim
s→0

sA∗1(s) = 0.

According to the Tauberian theorem (see, [15]), the
availability of the steady state of the system is given
by

A = lim
t→∞A(t) = lim

s→0
sA∗(s) = 0. (11)

This shows that when a > 1, c > 1 and b ≥ 1, the
availability of the system will tend to zero after a long
time running, which means that the deteriorating sys-
tem will become completely unavailable. This result
is consistent with the practical situations. This is be-
cause the system after repair is not ”as good as new”.

4.2 Working probability of the repairman

The probability of the repairman working at time t is
PW (t) = P3(t). Here we are mainly interested in the
steady state probability of the repairman, which is the
asymptotic behavior of PW (t)

lim
t→∞PW (t) = PW .

Although we have shown that if the steady state of the
system exists and it holds that PW = md+mf0

µ , the
terms md and mf0 are unknown.

To determine the exact value of PW , firstly we
calculate the waiting repaired probability of the dete-
riorating system

P2(t) = P{N(t) = 2} =
∞∑

j=1

p2,j(t).

According to (9) we have

p∗2,1(s) =
λ1

s + γ

ε0

s + ε1 + λ1
p∗0,1(s),

p∗2,j(s) =
aj−1λ1

s + bj−1γ

ε0

s + ε1 + aj−1λ1
p∗0,j(s).

Thus, for s > 0, a > 1, c > 1 and b ≥ 1, the Laplace

transform of P2(t) has estimate

P ∗
2 (s) = p∗2,1(s) +

∞∑

j=2

p∗2,j(s)

=
λ1

s + γ

ε0

s + ε1 + λ1
p∗0,1(s)

+
∞∑

j=2

aj−1λ1

s + bj−1γ

ε0

s + ε1 + aj−1λ1
p∗0,j(s)

≤ λ1

γ

ε0

ε1 + λ1
p∗0,1(s) +

ε0

γ

∞∑

j=2

1
bj−1

p∗0,j(s)

≤




λ1

γ

ε0

ε1+λ1
+

ε0

γ

∞∑

j=2

1
bj−1

(λ0+ε0)
cj−1λ0



 p∗0,1(s)

=
{

λ1ε0

γ(ε1 + λ1)
+

ε0(λ0 + ε0)
γλ0(bc− 1)

}
p∗0,1(s).

So we also have

P2 = lim
t→∞P2(t) = lim

s→0
sP ∗

2 (s) = 0.

This means that when a > 1, c > 1 and b ≥ 1, the
probability of the system waiting for repair will tend
to zero after a long time running. This is because
the system after repair is not ”as good as new”, the
frequency of system failures becomes higher, and the
failed system will be repaired at once due to a delayed
vacation.

According to the normal condition (4) we have

P0(t) + P1(t) + P2(t) + P3(t) = 1

and A(t) = P0(t) + P1(t). Therefore,

PW = lim
t→∞PW (t)

= lim
t→∞[1−A(t)− P2(t)] = 1.

The probability of the repairman working at t tend to
1 after a long time running, it is because the system
after repair is not ”as good as new”.

Further we consider more cases in detail. We split
PW (t) into two parts: PW0(t) and PW2(t), i.e.,

PW (t) = PW0(t) + PW2(t)

where PW0(t) is the probability of the repairman
working at t resulted in the system fails when the re-
pairman is preparing vacation; PW2(t) is the probabil-
ity of the repairman working at t after his vacation.

Since the probability of the repairman working at
time t is

PW (t) = P3(t) =
∞∑

j=1

∫∞
0 p3,j(t, y)dy
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Its Laplace transform is given by

P ∗
W (s) =

{
λ0p

∗
0,1(s) + γp∗2,1(s)

}
G∗(s)

+
∞∑

j=2

{
cj−1λ0p

∗
0,j(s)+bj−1γp∗2,j(s)

}
G∗(s)

where we have used the boundary conditions in (2),
so the Laplace transform of PW0(t) and PW2(t) are
respectively

P ∗
W0

(s) = λ0

∞∑

j=1

cj−1p∗0,j(s)G
∗(s)

and

P ∗
W2

(s) = γ
∞∑

j=1

bj−1p∗2,j(s)G
∗(s).

Using the expression of p∗2,j(s) in (9) and the esti-
mates for p∗0,j(s), we get the following estimate about
P ∗

W2
(s):

P ∗
W2

(s)

= γ
λ1

s + γ

ε0

s + ε1 + λ1
p∗0,1(s)G

∗(s)

+
∞∑

j=2

bj−1γ
aj−1λ1

s + bj−1γ

ε0p
∗
0,j(s)

s + ε1 + aj−1λ1
G∗(s)

≤ ε0



p∗0,1(s) +

∞∑

j=2

p∗0,j(s)



 G∗(s)

≤ ε0

λ0

{
1 +

1
λ0

(λ0 + ε0)
1

c− 1

}
G∗(s).

Therefore, we have

lim
s→0

sP ∗
W2

(s) = 0.

Note that P ∗
W (s) = P ∗

W0
(s) + P ∗

W2
(s) and

lim
t→∞PW2(t) = lim

s→0
sP ∗

W2
(s) = 0.

So we have

lim
t→∞PW0(t) = lim

s→0
sP ∗

W0
(s) = 1.

The calculation above shows that the probability
of the repairman working at t after his vacation will
tend to zero and the working probability of the repair-
man during preparing for his vacation will tend to 1
when the system has a long time running. This means
that when the system has run a long period, the re-
pairman will have no time for his vacation. The failed
system will be repaired at once. Such a result is also
consistent with the practical situations.

4.3 Delayed rate and rate of occurrence of
failures

In this paper we introduced the strategy of delayed
vacation. However, when the repairman is on his va-
cation and the system fails, the repair of the system
will be delayed. We need to calculate the delayed rate
of the system at time t, which is defined by

md(t) =
∞∑

j=1

bj−1γp2,j(t).

At the same time, we also calculate rate of occurrence
of failures, mf (t), the rate of occurrence of failures at
time t.

Here we also split mf (t) into two parts mf0(t)
and mf1(t), i.e.,

mf (t) = mf0(t) + mf1(t)

where mf0(t) is called the rate of occurrence of fail-
ures at time t when the repairman is in system; mf1(t)
is called the rate of occurrence of failures at time t
when the repairman is on vacation.

4.3.1 Delayed rate
The Laplace transform of delayed rate is

m∗
d(s) = γp∗2,1(s) +

∞∑

j=2

bj−1γp∗2,j(s).

We have proved that

P ∗
W2

(s) = γp∗2,1(s)G
∗(s) +

∞∑

j=2

bj−1γp∗2,j(s)G
∗(s).

Obviously, G∗(s)md(s) = P ∗
W2

(s). By expected
value ∫ ∞

0
tµ(t)e−

R t
0 µ(y)dydt =

1
µ

and the equality
∫ ∞

0
tµ(t)e−

R t
0 µ(y)dydt = −

∫ ∞

0
tde−

R t
0 µ(y)dt

=
∫ ∞

0
e−
R t
0 µ(y)dydt =

1
µ

and
G∗(s) =

∫ ∞

0
e−
R t
0 (s+µ(y))dydt,

it has G∗(0) = 1
µ . Therefore, it holds that

md = lim
s→0

sm∗
d(s) =

PW2

G∗(0)
= 0. (12)
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This calculation shows that for the deteriorating
system, after a long time running, the normal working
time of the system might be less than the time of re-
pairman preparing for his vacation. The failed system
will be repaired at once. The delayed rate tends to be
zero means that the delayed repair of the system does
not occur.

4.3.2 Rate of occurrence of failures

According to the calculation method of the rate of oc-
currence of failures (see, [17]), mf0(t) and mf1(t) are
of the form

mf0(t) =
∞∑

j=1
cj−1λ0p0,j(t),

mf1(t) =
∞∑

j=1
aj−1λ1p1,j(t).

(13)

The Laplace transform of mf0(t) is

m∗
f0

(s) =
∞∑

j=1

cj−1λ0p
∗
0,j(s)

= λ0p
∗
0,1(s) +

∞∑

j=2

cj−1λ0p
∗
0,j(s).

Since

P ∗
W0

(s) =
∞∑

j=1
cj−1λ0p

∗
0,j(s)G

∗(s)

= m∗
f0

(s)G∗(s),

so we have

mf0 = lim
s→0

sm∗
f0

(s) =
PW0

G∗(0)
= µ.

While the Laplace transform of mf1(t) is

m∗
f1

(s) =
∞∑

j=1

aj−1λ1p
∗
1,j(s),

from (9) we have

p∗1,1(s) =
ε0

s + ε1 + λ1
p∗0,1(s)

and
p∗1,j(s) =

ε0

s + ε1 + aj−1λ1
p∗0,j(s).

Thus for s > 0, a > 1, c > 1 and b ≥ 1 we have
estimate

m∗
f1

(s) =
∞∑

j=1

aj−1λ1p
∗
1,j(s)

= λ1p
∗
1,1(s) +

∞∑

j=2

aj−1λ1p
∗
1,j(s)

=
λ1ε0

s + ε1 + λ1
p∗0,1(s)

+
∞∑

j=2

aj−1λ1ε0

s + ε1 + aj−1λ1
p∗0,j(s)

≤ ε0



p∗0,1(s) +

∞∑

j=2

p∗0,j(s)





= ε0A
∗
0(s)

and hence mf1 = lims→0 sm∗
f1

(s) = 0. So it holds
that

mf = mf0 + mf1 = µ.

The above calculation again verifies the equality

PW =
md + mf0

µ
= 1.

The result of calculation above shows that after
the system has a long working time, the rate of oc-
currence of failures mf0 as the repairman is in sys-
tem will be constant; the rate of occurrence of failures
when the repairman is on vacation will be 0. The sys-
tem is no longer valid, the failure probability mf of
the system at time t might be nonzero constant. The
repairman will be kept in the system to repair.

The result of our calculation is different from that
in [13], where the author asserted that the rate of oc-
currence of failures is constant zero with unproved.
Here we shows that mf = µ. This is right and con-
sistent with the practical situations, because the failed
system must be repaired at once.

5 Conclusion

In the present paper we studied reliability of a class
of deteriorating system under the strategy of delayed
vacation. The reliability problem of the deteriorating
system becomes so important in engineering. This is
because the electronic products are extensively used.
This problem has been studied from different aspects,
for examples, a priority of repair policy used [18] ac-
cording to the importance of different components in
the deteriorating system, deteriorating of standby sys-
tem considered in [19]. The system modeling of the
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repairman with vacation strategy is a new content,
which usually adopts the vacation strategy as the sys-
tem starts to work. As the system’s failure is random,
it is probable the system fails in a short time. In order
to solve this question, we proposed the strategy of de-
layed vacation. The purpose is to improve reliability
of the system.

Based on the strategy of delayed vacation, we de-
duced the mathematical model for such a deteriorating
system under the general distribution obeyed by re-
pair time. Using the supplementary variable method,
we established partial differential equations model in
cycles and state model. In addition, we studied relia-
bility indices of the system, such as availability of the
system, failure rate as well as the probability of repair
working. The results show that

1) The strategy of delayed vacation can enhance
the reliability of the system, but it cannot change the
nature of the deteriorating system;

2) When the time goes to sufficient long, the
availability of the system becomes very small; the
working probability of the repairman will tend to be
1. This is just a character of the deteriorating system.

3) The working probability of the repairman in
preparing for vacation will tend to be 1, and the work-
ing probability of the repairman after his vacation will
tend to be 0.

4) The rate of occurrence of failure of the system
is a nonzero constant, which corrected a result in pre-
vious work [13].

It is well known that for a deteriorating system,
the more the system is repaired, the more quickly sys-
tem fails. So, with time development, the system will
be invalid state and the repairman will be in working
state. From engineering point of view, it will lead to
much higher costs in system maintenance [20]. There-
fore, a renew policy or replacement policy is neces-
sary in practice. We will study this question in the
further work.
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