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Abstract: – This paper presents the optimization of a photovoltaic (PV) water pumping system using maximum 

power point tracking technique (MPPT). The optimization is suspended to reference optimal power. This 

optimization technique is developed to assure the optimum chopping ratio of buck-boost converter. The 

presented MPPT technique is used in photovoltaic water pumping system in order to optimize its efficiency. An 

adaptive controller with emphasis on Nonlinear Autoregressive Moving Average (NARMA) based on artificial 

neural networks approach is applied in order to optimize the duty ratio for PV maximum power at any 

irradiation level. In this application, an indirect data-based technique is taken, where a model of the plant is 

identified on the basis of input-output data and then used in the model-based design of a neural network 

controller. The proposed controller has the advantages of robustness, fast response and good performance. The 

PV generator DC motor pump system with the proposed controller has been tested through a step change in 

irradiation level. Simulation results show that accurate MPPT tracking performance of the proposed system has 

been achieved. Further, the performance of the proposed artificial neural network (ANN) controller is 

compared with a PID controller through simulation studies. Obtained results demonstrate the effectiveness and 

superiority of the proposed approach.  
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1. Introduction 
Photovoltaic (PV) energy has increased interest in 

electrical power applications. It is crucial to operate 

the PV energy conversion systems near the 

maximum power point to increase the efficiency of 

the PV system. The current and power of the PV 

array depends on the array terminal operating 

voltage. In addition, the maximum power operating 

point varies with insolation level and temperature. 

Therefore, the tracking control of the maximum 

power point is a complicated problem. To overcome 

these problems, many tracking control strategies 

have been proposed such as perturbation and 

observation [1], incremental conductance [2] where 

it proposed that the maximum power point can be 

tracked by comparing the incremental and 

instantaneous conductances of the PV array.; 

parasitic capacitance [3-4] where, the drawback 

caused by the intrinsic capacitance of the PV array 

minimized.; constant voltage [5] using hybrid PV 

diesel generation system, neural network [6-11] and 

fuzzy logic controller (FLC) [12–17]. But in cases 

of neural network and fuzzy logic controllers, it 

proposed to reach the maximum point by the 

knowledge of the voltage corresponding to that 

optimum point. Some applications need constant 

output voltage with suitable MPPT or constant 

output current [18-19].  These strategies have some 

disadvantages such as high cost, difficulty, 

complexity and instability. Also, In [6-8] and [11] 

the neural networks are used only for maximum 

power estimation while a different controller is used 

to adjust the inverter output. But in this proposed 

system the adaptive artificial neural network 

controller is used to adjust the inverter output and 

there is no any more controller else needed. 

The general requirements for maximum power 

point tracking (MPPT) are simplicity and low cost, 

quick tracking under changing conditions, and small 

output power fluctuation. A more efficient method 

to solve this problem becomes crucially important. 

In photovoltaic pumping system, maximum 

power transfer is expected between photovoltaic 

solar panel (PV) and pump motor at wide irradiance 

interval. If not, performance may drop to low values 

to be removed. If the load voltage and or current are 

controlled to be constant these lead to Maximum 

power decreases [18].   

This paper proposes a method to operate the 

motor pumping system at the high available 
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efficiency. That is by tracking the maximum power 

point using adaptive neural NARMA-L2 controller. 

The NARMA L2 neurocontroller was first trained to 

cancel both the nonlinearity and dynamic of the 

system. Then, it was reconfigured to become a 

closed loop controller. Once the NARMA L2 

neurocontroller suppresses both the nonlinearlity 

and dynamic behavior, the closed loop system 

becomes implicit algebraic relation between the 

input and the output. Consequently, the system is 

able to perfectly follow a smooth reference 

trajectory even it is generated in real-time. A photo 

sensor and maximum power point tracker algorithm 

are used to generate the controller reference power. 

Also, the principle different between the proposed 

method and any other tracking method is that the 

proposed method attempts to track and compute the 

maximum power and controls directly the extracted 

power from the PV to that computed value through 

ANN controller. While, any other method attempts 

to reach the maximum point by the knowledge of 

the voltage or the current corresponding to that 

optimum point.   

In this work, The feasibility and effectiveness of 

the PV generator, pumping system together with the 

proposed ANN controller have been demonstrated 

through computer simulations. Moreover, the 

proposed controller is compared with a conventional 

PID controller. Simulation results have proved that 

the proposed controller can give better overall 

performance.  

 

2. System Dynamics 
The proposed isolated generation system mainly 

consists of PV generator, DC-DC buck-boost 

converter and a DC motor coupled to a centrifugal 

pump as shown in Fig. 1. In the following 

subsections, a mathematical model for each device 

is developed and they combined together to form the 

complete model, which is to be used in the 

controller design and simulation studies. 

 

 
Fig. 1. The proposed PV-generator DC motor pump system 

 

2.1 PV Generator Model 
The PV generator consists of solar cells 

connected in series and parallel fashion to provide 

the desired voltage and current required by the DC 

motor system. This PV generator exhibits a 

nonlinear voltage-current characteristic that depends 

on the insolation (solar radiation), as given by (1) 

[20]. 
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where Vg is the PV generator voltage; Ig is the PV 

generator current; Ag=Λ/Ns is the PV generator 

constant; Λ=q/(ε×Z×U), is the solar cell constant; 

q=1.602×10
-19

 C. is the electron charge; Z=1.38×10
-

23
 J/K is Boltzman constant; U= 298.15 K is the 

absolute temperature; ε =1.1 is the completion 

factor; Ns=360 is the series-connected solar cells; 

Np=3 is the parallel paths; Rsg=Rs×(Ns/Np) is the PV 

generator series resistance; Rs= 0.0152 Ω is the 

series resistance per cell; Iphg=Iph×Np is the 

insolation-dependent photo current of the PV 

generator; Iph=4.8 A is the photo current per cell; 

Iog=Io×Np is the PV generator reverse saturation 

current; Io=2.58e
-5

 A is the reverse saturation current 

per cell; G is the solar insolation in per unit, and 1.0 

per unit of G = 1000 W/m
2
. 

The PV generator Voltage-Current and Voltage-

Power characteristics at five different values of G 

are shown in Fig. 2. and Fig. 3 respectively. From 

which, at any particular value of G, there is only one 

point at which the PV generator power is maximum. 

This point is called the Maximum Power Point 

(MPP). To locate its position, the corresponding 

voltage (Vgm) and current (Igm) must be determined 

first
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Fig. 2. I-V characteristics of the PV generator at five different values of G. 

 

 
 

Fig. 3. P-V characteristics of the PV generator at five different values of G. 

 

2.2 DC Motor Model 
The dynamics of the separately excited DC motor 

and its load are represented by the following set of 

differential equations with constant coefficients: 

ωb
a

aaaa K
dt

dI
LIRE ++=                                

        (2) 

Lat T
dt

d
JwAIK +++=

ω
β1                        

        (3) 

The Load (pump) torque can be represented by: 

8.1
2 ξω+= ATL                                         (4) 

where the name-plate parameters are: Voltage 

Ea=110 volt; Current Ia = 7.3 A.; Inertia J = 0.02365 

Kg.m
2
; Resistance Ra=1.5 Ω; Inductance La=0.2 H; 

Torque & back emf constant K =0.67609 Nm.A
-1

; 

Motor friction A1=0.2 Nm; Load friction A2 = 0.3 

Nm; damping coefficient B=0.002387 Nm.s.rad
-1

; 

Load torque constant ξ = 0.00059 Nm.s.rad
-1

. 
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2.3 DC-DC Converter Model 
The most important parameter of the buck-boost 

converter is its chopping ratio Y that depends on the 

duty ratio D through a nonlinear relation given by: 

D

D
Y

−
=

1
                                                (5) 

This converter is inserted between the PV generator 

and the DC motor to match the PV generator output 

characteristics to the DC motor input characteristics. 

Assuming the converter is ideal, then its input and 

output powers are equal resulting in the following 

relation [21]: 
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2.4 Power Regulator Model and MPPT 

Algorithm 
There is a unique point on the PV voltage-current (I-

V) and voltage-power (V-P) characteristic curves as 

shown in figures (2) and (3) respectively, called the 

maximum power point (MPP), at which the array 

produces maximum output power for each G. In 

general, when the load is direct-coupled, the 

operation point is not at the PV array’s MPP, 

resulting an oversized PV array. However, because 

of the small scale of a PV array (less than 200 W), 

the over-sizing is cheaper than a commercial MPPT. 

But if the PV scale became more than 200 W, it will 

be preferable to operate it at the MPPT and with an 

economical method.  

In this paper we chose a very simple method for 

MPPT operation, that by on-line estimating the PV 

maximum power output for each insolation level. 

However, we measure on-line the insolation level 

using photo sensor. Then we estimate the maximum 

power for each insolation level related to the 

following reference power equation: 

43

2
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The power output of the PV generator (delivered to 

the motor pump system) can be adjusted via 

controlling the duty ratio of the DC-DC converter 

according to the following differential equation: 

motref PP
dt

dD
−=                                           (8) 

Where    aamot EIP =  

 

2.5 Complete System Model 
The subsystem models can be interfaced to form the 

unified nonlinear model. The complete nonlinear 

dynamic model of the PV generator motor pump 

system can be described as: 
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2.6 Linearized Model 
Small signal linear model of the solar motor-

pumped system is formed around an operating point 

to study the system dynamics when subjected to 

small perturbations. The linearized model can be 

described by the following equation: 

dBAxpx δµ ++=                                 (12) 

Where  

[ ]DIx a ∆∆∆= ω , [ ]refP=µ  , [ ]Gd =     , and                                                                                     

A  is a  3 x 3  matrix containing the system 

parameters.  

 

3.  MPPT Condition 
For tracking maximum power points of PV with dc 

motor, system uses a dc/dc converter. This converter 

may be buck, boost or buck-boost type in respect of 

normal (direct coupled) operating characteristic of 

PV- pump motor. In this work, a buck-boost DC-DC 

converter is used. Assuming power converter is 

ideal, all of PV power is delivered to motor. Under 

MPPT conditions, motor is driven by maximum 

power of PV.  

gmgmaa IVIE =                (13) 

Motor input characteristics are defined by chopper 

ratio (D) of dc/dc converter. For maximum power 

tracking, there is a critical value of D with respect to 

a given irradiance level (D=D
m
). Hence motor input 

voltage and current expressions:  

gm
m

m
a V
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In order to determine D
m
, the steady-state equations 

of DC motor-Pump system can be written as 

follows: 

ωKRIE aaa +=                                         (16) 

ωKEb =                                                        (17) 

8.1
2 ωξ+== AIKT a                                      (18) 

ωTRIIEP aaaamech =−= 2
                       (19) 

For a given G, the maximum power (Pm) is equal to 

maximum of Vgm*Igm values. At maximum power 

condition, the current is Igm, voltage is Vgm. Hence 

as a function of G, Pm is;  

)()()( GIGVGP gmgmm =                                  (20) 

 Using equations (14-20) firstly shaft speed ω
m 

and 

back emf E
bm 

at maximum power are calculated for 

a given G (irradiance). These values also depend on 

pump load.  

When motor input values (current and voltage) are 

transformed to PV side by use of D
m
, the following 

equation is obtained: 

0)()()( 2 =+−++− bmagmaagmmagm ERIDRRIDRV  

                                                (21) 

The positive root of equation (21) is equal to D
m 

. 

Hence using equations (14,15) motor input values 

are obtained. And then performance can be analyzed 

under MPPT condition. For normal system without 

MPPT, PV output current and voltage values are 

equal to those of motor input.  

For analysis, PV pumping system is simulated 

based on Matlab/Simulink program environment. 

These results are shown by figs 4-6. For the average 

mechanical power at sampled irradiance levels, PV 

system with MPPT improves the system 

performance compared to normal system. Motor 

input power (Pmot=Ea.Ia ) matches to PV maximum 

power point for overall irradiance levels.  

Also using MPPT, higher speed and torque are 

provided at same irradiance conditions. Assuming 

least operating torque of system is equal to 2 Nm, 

normal system must wait until irradiance gets to 0.4 

pu. Whereas for system with MPPT, approximately 

0.2 pu irradiance level is sufficient to actively 

operate the system. Thus active operating region of 

pumping system is expanded by MPPT.

  

 
Fig. 4: power versus G irradiance with and without MPPT 
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Fig. 5: shaft speed versus G irradiance with and without MPPT 

  

 
Fig. 6: torque versus G irradiance with and without MPPT  

 

4. Nonlinear Autoregressive Moving 

Average (Narma-L2) Controller 
NARMA-L2 is one of the popular neural network 

architectures for prediction and control. The 

principle idea of this control scheme is to apply the 

input output linearization method where the output 

becomes a linear function of a new control input 

[22].  

Basically, there are two steps involved when 

using NARMA L2 control: system identification 

and control design. In the system identification stage 

design, a neural network of the plant that needs to 

be controlled is developed using two subnetworks 

for the model approximation. The network is then 

trained offline in batch form using data collected 

from the operation of the plant. Next, the controller 

is simply the rearrangement of two subnetworks of 

the plant model. Computation of the next control 

input to force the plant output to follow a reference 

signal is materialized through simple mathematical 

equation. 

 

4.1 NARMA-L2 plant model identification 
In this work, the ANN architecture is applied with 

the aid of the Neural Network Toolbox of 

MATLAB software. The identification can be 

summarized by the flowing: 

The model structure used is the standard 

NARMA model [20] adapted to the feedback 

linearization of affine system. A companion form 

system (control affine) is used as the identification 

model, i.e.: 
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In essence, the NARMA-L2 approximate model will 

be parameterized by two neural networks f̂  and ĝ  

that will be used to identify the system of Eq. (22), 

i.e.: 
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The two subnetworks are used for the model 

approximation; the first multilayer neural network 

(MLNN1) and the second multilayer neural network 

(MLNN2)  , which are used to approximate 

nonlinear functions f and g respectively.  

The plant model identification in NARMA-L2 

Control starts off with a dataset of input output data 

pairs collected using the plant mathematical model. 

Then, the neural nets model is trained and validated. 

Here, the MLNN1 subnetwork is a feedforward 

neural network with five hidden layer with p 

neurons of hyperbolic tangent (tanh) activation 

function and an output layer of one neuron with 

linear activation function. Also, the MLNN2 

subnetwork is a feedforward neural network with q 

tanh hidden layer neurons and one output neuron. 

For each subnetwork, the number of past output 

n and the past input m; which compose the input 

vector and the number of neurons (p and q) of the 

hidden layer are determined. Subsequently, the 

selected neural network structure is trained using the 

input pattern and the desired output from the 

dataset. Here, the parameters (weights and biases) of 

the two MLNN subnetworks that properly 

approximate the nonlinear modeling representing 

the optimized PV motor pump system power 

regulator is estimated.  

Finally, to measure the success at approximating 

the dynamical system plant model using the neural 

network model, the prediction error ek should be 

uncorrelated with all linear and nonlinear 

combination of past inputs and outputs. Thus, the 

validation and cross validation tests are carried out 

to ascertain the validity of the obtained neural 

network model [23-27]. 

 

4.2. NARMA-L2 controller design  
There are two neural networks are used which are 

called f and g. Each one is a feed forward with three 

layers, i.e., an input, a hidden and an output layers. 

The input layer of f network has two nodes for the 

output power and a bias signal of 1.0. The input 

layer of g network has two nodes for the duty ratio 

and a bias signal of 1.0. The hidden layer has three 

nodes. The output layer has only one node. The 

output signal represent the duty ratio signal for the 

maximum power point. 

The NARMA-L2 controller design is 

uncomplicated. The control action can be simply 

implemented using the obtained NARMA-L2 model 

based on Eq. 23 in which the functions f and g are 

defined. In order that a system output, y(k+1), to 

follow a reference trajectory yr(k+1), we set: y(k+1) 

= yr(k+1). The NARMA-L2 controller is designed 

through substituting y(k+1) with yr(k+1) in Eq. 23. 

Then the resolving controller output would have the 

form of: 
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Fig. 7 shows the block diagram of NARMA-L2 

controller which clearly a rearrangement of the 

NARMA-L2 plant approximated model. 
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Fig. 7: NARMA-L2 controller schematic. 

 

5. System Configuration 
The main objectives of the proposed NARMA 

controller is to track and extract the maximum 

available power from PV generator feeding motor 

pump system. That is done by adjusting the suitable 

value of the duty ratio to give the maximum power. 

The NARMA controller output signal D  is given 

by: 
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The block diagram of the PV generator motor-pump 

system with the MPPT algorithm and the proposed 

NARMA controller is shown in Fig. 8. The entire 

system has been simulated on the digital computer 

using the neural networks tool box in 

Matlab/Simulink [28] software package. 
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Fig. (8):  Block diagram of the PV generator motor-pump system with the MPPT algorithm and the proposed 

ANN controller. 

 

6. Simulation Results 
Computer simulations have been carried out in order 

to validate the effectiveness of the proposed scheme. 

As mentioned previously the Neural networks are 

trained offline and in batch form. We have used 5 

hidden layers and 10000 sample data, which are 

generated to train the network. 100 training epochs 

and employing training as a training function were 

enough to get good results. The training, validation 

and testing data of the ANN controller are shown in 

Figs 9, 10 and 11 respectively. The performance of 

the proposed system has been tested with a step 

change in solar insolation level. Thus, the solar 

insolation level assumed to vary abruptly between 

400 W/m
2
 and 800 W/m

2
 as shown in fig. 12, which 

mean that the reference maximum power vary also 

abruptly between 480 watts and 635 as shown in fig. 

13. Figs. 13-17 illustrate the dynamic responses of 

the actual and reference power, armature current, 

shaft speed, duty ratio and armature voltage 

respectively for both PID controller and the 

proposed ANN controller.  

It has been noticed in the figs 13-17 that as the 

solar insolation level increases from 600 W/m
2
 to 

800 W/m
2
, the power output of the PV-generator 

(reference power) will increase related to the 

maximum power algorithm, the duty ratio will 

increase such that the output power of the DC-DC 

converter equal the PV-generator maximum power, 

also both armature current and voltage will increase 

to meet the increasing in power and by the way the 

motor shaft speed will increase. And vice versa if 

the solar insolation level decreases. The response of 

the ANN controller is compared with the PID one 

for the same conditions. Tuning of the PID 

controller was done by trial and error. In addition, 

these figures show that the power delivered to the 

motor-pump system follow the PV maximum output 

power with small settling time and with zero steady 

state error. Also these figures indicate that the 

dynamic responses based on the proposed ANN 

controller is better than the conventional PID 

controller in terms of fast response and small 

maximum overshoot.  

Simulation results show also that a motor pump 

system can be supplied from a PV-generator with 

the maximum available power, which is needed by 

the load. 
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Fig. 9: Training data of ANN controller 

 

 
Fig. 10: Validation data of ANN controller   
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Fig. 11: testing data of ANN controller.   
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Fig. 12:  Solar insolation level variations. 

 

 
Fig. 13: Dynamic responses of power due to step change in the insolation level. 
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Fig. 14: Dynamic responses of armature current due to step change in the insolation level. 
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Fig. 15: Dynamic responses of rotor speed due to step change in the insolation level. 
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Fig. 16: Dynamic responses of duty ratio due to step change in the insolation level. 
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Fig. 17: Dynamic responses of armature voltage due to step change in the insolation level. 
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7. Conclusions 
In this study, the ANN controller has been used in 

order to design a state feedback static controller for 

a PV pumping system. The controlled system 

consists of a PV generator that supplies a DC motor 

pump system through buck-boost DC-DC converter. 

The control objective aims to track and operate the 

motor-pump system at the MPPT of the PV 

generator. This is carried out via controlling the 

duty ratio of the DC-DC converter. The results show 

that the MPPT techniques add about 38% more 

performance than at normal condition. The results 

also show that the maximum power tracker is 

achieved with zero steady state error and with 

settling time less than one second and accurate 

tracking performance of the proposed system has 

been achieved. Also the results show that the 

proposed ANN controller has significantly better 

performance than the classical PID controller. 

 

Nomenclature: 

gV
 

PV generator voltage 

gI
 

PV generator current 

phgI
 

Insolation photo current of the PV generator 

Iph photo current per cell 

Io the reverse saturation current per cell 

ogI
 

PV generator reverse saturation current 

sgR
 

PV generator  series resistance 

sR
 

series resistance per cell 

G Solar radiation 

sN
 

series-connected solar cells 

pN
 

the parallel paths 

ε the completion factor 

U absolute temperature 

q the electron charge 

Z Boltzman constant 

Λ solar cell constant 

gmV  PV generator maximum voltage 

gmI  PV generator maximum current 

aE  DC motor armature voltage 

aI  DC motor armature current 

aR  Armature resistance 

aL  Armature inductance 

ω  Rotor shaft speed 

bE  Back emf voltage 

tK  Torque constant 

bK  back emf constant 

β    friction coefficient 

J  moment of inertia  

LT  Load torque 

ξ  Load torque constant 

D Duty ratio 

motP  
Motor input power 

mD  Maximum duty ratio 

bmE  Maximum back emf voltage 
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