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Abstract: - We propose an assessor reallocation algorithm that aims to objectively reduce the marking biases of 

the individual markers based on their earlier marking statistics. The underlying mathematical structure along 

with a number of pertinent statistical properties and relationships has been analyzed for the model to assure the 

validity of the proposed methodology. Experiments on simulated data and on the real cases have also been 

conducted to illustrate the effectiveness on the reduction of the accumulated marking biases over multiple 

assessment items involving multiple assessors. 
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1 Introduction 
Even though computer technologies are now widely 

employed in education [1,2] to provide additional 

support and to reduce the necessary repetitions, a 

teaching team is still almost always required to co-

teach a large university subject of several hundred 

students or more, with the lectures, tutorials or 

practicals being repeated for different timeslots or 

campuses. Quite a few casual tutors are often 

recruited within a very short space of time, right at 

the beginning of a semester, each of whom is 

typically assigned to marking all the assessment 

items other than the final exam for their own group 

of students. When an assessment item is marked by 

different tutors, the marks inevitably vary, and can 

vary to the extent of about 20% when casuals are 

heavily involved, which was exactly what happened 

some 2 years back that prompted this research work. 

Most of the studies [3] on the assessment have been 

somewhat subjective and are also closely linked 

with the individual subjects. One exception is the 

so-called grading on the curve [4,5] which 

determines the student grades according to the 

normal distribution of the marks. The main aim of 

this work is to devise a marking allocation scheme 

that is universally applicable to all subjects of large 

cohorts, and can be utilized to improve the overall 

marking fairness and consistency without having to 

formally evaluate the performance of the individual 

assessors. This scheme will thus reduce effectively 

the assessment inconsistencies due to the 

involvement of a large number of disparate or 

inhomogeneous teaching team members.  

The studies on the assessment consistency have 

been perhaps as old as the education itself. However 

we will here only mention some of the work that are 

most pertinent to our current methodology. To start 

with, it was found [6], quite consistent to our 

intuitive understanding, that the marking of a given 

assessment item tends to receive a better mark if the 

marking is immediately preceded by marking a 

poorer work of the same item. If the marking of the 

same work is preceded immediately by a better 

work then the marker tends to give a poorer mark. 

This is a typical example of subjective biases one 

perhaps can’t always avoid completely, just like 

people can have illusions of the same shape when it 

is placed at different backgrounds. However, it is 

also found [7] that individual assessors vary in their 

level of leniency or “biases”, and the leniency of 

most assessors remains internally consistent 

throughout the local marking batches. While a 

generic marking reliability [8] is perhaps not yet 

conclusive, the prevailing marking consistency over 

a longer period of time [9] shows that there is a 

minor decrease in leniency and that most assessors’ 

marking clusters remain nonetheless consistent 

within. These observations are in fact very much 

consistent with our currently work, or are somewhat 

implicitly utilized. In a different perspective, the 

acute issues of marking consistency across multiple 

assessors for the large student cohorts have also 

been analyzed recently in [10,11], illustrating that 
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the students' perception of inconsistent difference in 

grade was not unfounded, and the inconsistency 

problem can be exacerbated by other factors such as 

the inconsistencies in the language the markers use 

when providing the feedback. However there doesn't 

appear to exist so far any quantitatively-based 

algorithms with which the marking inconsistency 

can be objectively and systematically reduced, and 

this is why it has been main driving force of this 

work. It is worth noting that while we hereby 

concentrate on fairer schemes to assess mostly 

written student work, multiple choice questions are 

also known to be capable of assessing knowledge 

[12], and it would be even more interesting to 

incorporate the assessment schemes more closely to 

the cooperative learning strategies [13]. 

The traditional approach of entailing the marking 

consistency involves training the new staff as well 

as supplying very detailed marking guides. However 

these are not always sufficient, and the additional 

staff training is typically not even feasible due to the 

time and funding constraints. Moreover, subjective 

marking biases are often unavoidable for the design 

based or opinion based assessment items. Unless 

there are obvious and substantial marking errors, it 

is simply not reasonable to ask a marker to go back 

to assessment item and re-mark it because it was 

somehow felt that the marking might have been 

subconsciously prejudicial. Marks rescaling for 

certain groups of students may also seem a good 

alternative, but it can be difficult to formally justify 

which student marks are to be rescaled and which 

are not. Our purpose here is thus to reallocate the 

assessment tasks to different markers for the 

different assessment items, according to the marks 

statistics of all the markers for the previous 

assessment items. This way, the potential and often 

unconscious marking biases generic to the 

individuality of the assessors is well spread out and 

compensated over several items as much as possible. 

The obvious advantage of this over the marks 

rescaling is that all marks from all the markers are 

still formally deemed “accurate” to all the students. 

In order that each marker be profiled for his 

potential “biases” or leniency before any marker 

reallocation can be sensibly applied, some marks 

must already exist for all the participating markers. 

This should not be a problem as even an assessor 

joining the marking team in the middle of a semester 

can simply just not participate in the reallocation 

scheme in the 1
st
 assessment instance, or more 

precisely, they will join the marker reallocation at a 

priority lower than those who already marked some 

assessment items. Moreover, the more items an 

assessor has already marked, the more accurately he 

or she will be profiled for the “bias” with which the 

proposed reallocation scheme will reassign the 

markers to the different students. The marks coming 

off the assessment items via the reallocation scheme 

will again be added back to further profile the 

individual markers. Hence this scheme can also be 

applied repeatedly for all of the later assessment 

items, or simply applied selectively to just some 

major assignments. We note that for a large student 

cohort, some students will transfer from one activity 

group to another from time to time due to their 

changed commitment elsewhere. Hence it makes 

sense to expect that a given student may be marked 

by different assessors for his or her different 

assessment items, and will be even more so if the 

reallocation scheme is applied repeatedly over 

several assessment items. 

This paper is organized as follows. In section II, 

we first set up a simple formalism to rescale marks, 

and then illustrate the general procedure of our 

scheme to reassign the new marking duties 

according to the marks distribution of the previous 

assessment items. Section III then derives the 

individual markers’ biases and shows how to 

measure the accumulated marking biases. Section 

IV proposes the actual marker reallocation 

algorithm to minimize the accumulated marking 

inconsistencies or biases while maintaining the 

homogeneity of the statistical characteristics as 

much as possible. We then further justify in Section 

V our proposed methodology via both the 

experimental simulations and an actual subject 

delivery. Finally Section VI gives a conclusion. 

 

 

2 The Main Marks Statistics 
In this section, we will first set up a marks rescaling 

formalism that can be applied directly to realign the 

available marks, typically coming from a number of 

different markers. We will then explore how to 

reassign markers to the students for their later 

assessment items according to the existing marks 

statistics, based on the previous assessment items, 

for both the individual makers and for the individual 

students, for the purpose of minimizing the 

accumulation of the marking discrepancies or biases.  

 

 

2.1 Marks Rescaling and the Broad Marking 

Reallocation Scheme 
Let J={1, 2, …, n} denote the set of all the markers, 

and µ(j)
 and σ(j)

 denote the mean and the standard 

deviation of the marks for the group of students 

marked by the j-th marker. We also assume that 
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student marks will observe a normal distribution 

[14,4]. Then one way of consistently rescaling the 

student marks is to transform them via  

Y i
 (j)
 =µ′ + (X i

 (j)
 − µ(j)

)σ ′/σ (j)
, i=1, …, N

(j)
,           (1) 

where all the marks { X i
 (j)
 }, i=1, …, N

(j)
, in the j-th 

group of students, are transformed into Y i
 (j)

  

respectively, and µ (µ′) and σ (σ′) are the mean and 

standard deviation for the original (respectively the 

transformed) marks. Since Σi (X i
 (j)
 −µ(j)

)
2
=N

(j)×[σ(j) 2
 

+(µ−µ(j)
 )
2
] holds for all j’s, we note that the µ and σ 

can also be derived from those µ(j)
 and σ(j)

 directly 

via 

N = (Σj∈J N
(j)
 ),   µ = (Σj∈J N

(j)
 ×µ(j)

 )/ N,    

σ = [(Σj∈J  ( N
(j)
 × (σ(j) 2

 + (µ−µ(j)
 )
 2
 ))/N]1/2 .         (2) 

The target µ′ and σ′ thus become the mean and the 

standard deviation of the transformed new marks 

{ Y i
 (j)
  }, i=1, …, N

(j)
. Even though rescaling via (1) 

seems to offer a quick remedy to transform all 

marks towards a more suitable µ′ and σ′ anticipated 
by the unit (subject) instructor, the hidden biases 

due to the different markers have not been addressed 

in any way. While such subjective biases may be 

reduced by staff training, they are often inherent of 

each individuals, and a timely training is not always 

possible when new casual staff is recruited at the 

last minute. Hence this calls for an alternative 

approach that will maximally cancel out the 

potential marking biases. 

Suppose K assignments for each student have 

already been marked by several different markers. 

Then for the next assessment item, the (K+1)-th 

assignment, for each given student which assessor 

should be assigned to mark the student’s assessment 

item so as to minimise the accumulation of the bias 

that may be intrinsic to each individual assessor? In 

order to answer this question systematically, we 

need to first set up properly the relevant 

mathematical structure and notations. 

Let I={ i } be the set of all students, J={ j } with 

j≠0 be the set of all the markers, and J*=J∪ { 0 } 

for each i∈I. For each integer k with 1≤k≤K, we also 
assume the existence of ρk: I→J* such that j=ρk(i) 

indicates that the k-th assignment for student i had 

been assessed by marker j if j∈J, or the assignment 

was not submitted at all if j=0. Our task is to 

determine a ρK+1: I→J* such that the newer marking 

allocation ρK+1 best compensates the potential 

marking biases already experienced in marking the 

first K assessment items. Let Ik={i∈I: ρk (i)∈J} for 

1≤k≤K, and Ik 
(j)
={i∈ Ik: j=ρk (i) }, then Ik = ∪Ik 

(j)
, 

and Ik 
(j)
 ∩ Ik 

(j′)
 =∅, the empty set, ∀j≠j′. Hence for 

the k-th assessment item, its marking details are 

completely determined by the tuple (Ik, ρk, wk, νk) 

where wk represents the positive weight of the 

assessment item and νk: I→ℝ
+
, (ℝ +

 being the set of 

non-negative real numbers), gives the grading 

percentage mark xk,i via νk(i) for each student i∈I, i.e. 

xk,i=νk(i) and 0≤ xk,i ≤1. The actual mark student i 

received for this k-th assignment is thus wk ⋅xk,i. We 

note however that in practice one may choose xk,i to 

be within the range of  0 to 10 because this would 

essentially have no impact on our proposed 

algorithm but the marks out of 10 would make a 

better intuitive sense. 

If ∀i∈I marker j=ρk(i) has marked the k-th 

assignment for i, then the percentage mark xk,i will 

be denoted by xk,i
(j)
. Hence { xk,i

(j)
 } for i∈Ik 

(j)
 has 

Nk
(j)
 ≡ |Ik 

(j)
| elements, Nk =Σj∈J  Nk

 (j)
 is the total 

number of students who submitted the k-th 

assignment, and N =Σ
K
k=1 Nk

 
 is the total number of 

student submissions. ∀j∈J, we denote by µk
(j)
 and 

σk
(j)
 respectively the mean and the standard 

deviation for the (percentage) marks { xk,i
(j)
 } for 

i∈Ik 
(j)
 given by j for the k-th assignment. Likewise 

we denote by µ(j)
 and σ(j)

 respectively the mean and 

the standard deviation for the { xk,i
(j)
 } over all the i 

and k with i∈Ik 
(j)
 and 1≤ k≤K. We also denote by µk 

and σk respectively the overall mean and standard 

deviation of the marks of the k-th assignment for the 

submitted students. It also makes sense to set the 

“statistics” for marks of those who didn’t submit to 

those for the corresponding overall, hence we set 

µk
(0)
= µk and σk

(0)
= σk. As for all the marks for the 

submitted K assignments, we naturally denote by µ 
and σ the corresponding mean and standard 

deviation. 

Since each marker has his own marking tendency 

in leniency or harshness, we will first establish for 

each individual marker his “bias” profile by 

analysing the past marking statistics, and then 

allocate suitable markers to the next assessment 

item so that the total accumulated marking biases 

are shared evenly or pro-rata among all the students. 

The main procedure of this strategy is summarised 

in Figure 1, of which the details will be expounded 

in the subsequent sections. 

 

 

2.2 Derivation of the Underlying Statistical 

Properties 
The purpose of this subsection is to establish the 

relevant underlying statistical properties and 

formulas that will be helpful or necessary for the 

later analysis and development of our methodology. 
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Since the transformation (1) is a linear filter and 

linear filters are known to exhibit rich properties, 

see e.g. [15,16], we expect to see a similar set of 

nice properties as shown below. 

First we see that if the data { X i
 
}
 
have the mean 

µ and the standard deviation σ, then X′i =µ+ (Xi − 
µ)σ′/σ (and X″i =µ′+( X′ i − µ′)σ″/σ′ , respectively) 
will have their mean µ′ and standard deviation σ′ 
(and µ″ and σ″ respectively). The same X″ i can be 
derived directly from X″ i=µ+( X i − µ)σ″/σ. In other 
words, the transformed results X″ i are independent 
of the transformation paths. Secondly, it is easy to 

verify that the transform Xi → X′ i is invertible as 
long as both σ and  σ′ are greater than 0. 

Next we need to decide how to meaningfully 

synthesise the statistics for the existing marks of the 

past assessment items. In terms of profiling an 

assessor’s marking behaviour, if wk and wk′ are the 

marks weight for the k-th and k′-th assignment 

respectively and wk≠wk′, then the corresponding 

percentage marks should contribute to the profiling 

in proportion to the marks weights. We observe that 

if one modifies all marks weights uniformly by a 

fixed factor δ>0, the resulting µ and σ will remain 

the same. But if δ is large enough, then the effect of 
rounding the weights to integers will become less 

significant. Therefore we can assume without loss of 

generality that the marks weights wk are integers. 

Hence we have for the overall mean  
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and for the overall standard deviation 
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in which we have also used the identity 
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We note that (3) and (4) show how to derive the 

overall µ and σ from those µk and σk for the k-th 

assignment, and they also imply min k (µk ) ≤ µ ≤ 
max k (µk ), and min k (σk 

2 
) + min k ( (µ−µk )

2 
) ≤ σ2

 

≤ max k (σk 
2 
) + max k ( (µ−µk )

2 
), which are 

consistent with our intuitive expectations. 

For the student marks of the assignments, the 

smallest granularity for the statistics in this work is 

on the j-th group for the k-th assignment. More 

precisely, we will have to always calculate  

[ ] ( ) )(2)()(
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k NxIx j
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j
k
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−== µσµ     (5) 

for all the j’s and k’s. Hence it makes sense to also 

find other statistics in terms of these µk 
(j) 
and σk 

(j) 

whenever possible. Since µk and σk can be 

calculated from µk 
(j) 
and σk 

(j)
 via (2), the overall µ 

and σ can also be derived from them via (3) and (4). 

If we apply the derivation in (3) and (4) to only the 

marks provided by marker j, then we obtain 
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Similar to those assignment-wise statistics µk
 
and σk, 

these marker-wise statistics  µ 
(j) 
and σ(j)

 are also 

sufficient to determine the overall mean and 

standard deviation via 

( )
( )[ ] ( )./)(
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Local statistics:  

µk
(j),  σk

(j) 
Overall statistics: µ, σ 

Markers’ profile 

µ*(j), σ*(j) 

Marks for assignments 1 to K 

Statistical predictions 

µ′K+1
(j),  σ′K+1

 (j) 

List ranked via 
accumulated 
biases 

List of students to be 
each assigned a marker 

Fetch student i of 
the largest bias 
accumulation in the 
remaining list 

Find marker j′ to best compensate accumulated 
biases for i when added the new bias 

Figure 1: Procedure to reallocate markers 
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Update marker j′ to improve other properties at a 
small trade-off on the accumulated biases 
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We note that the denominators in (3) and (4) are the 

same as those in (6) and (7) because N= ∑k wkNk = 

∑j N
(j)
, and (6) and (7) illustrate the direct 

connection of µ and σ to the marker-wise statistics 

which are also needed to determine the bias profiles 

for the markers via (11) below. 

Suppose for a given number K of marked 

assignments, one has already calculated the statistics 

µ 
(j)
, σ(j)

, µ and σ. When the marks of an additional 

assessment item are added to the consideration, by 

definition these statistics need to be recalculated 

from scratches with K replaced by K+1. We will 

however show here how to update these statistics for 

K+1 assignments through those for the first K 

assignments and those for the last (K+1)-th 

assignment. Let these new statistics be denoted by 

the primed counterpart such as µ′(j), σ′ (j), µ′ and σ′ 
for the case of K+1 marked assignments. Then we 

have 
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To prove this, we first observe from (6) 
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which is the first part of (8), and then from (6) again 
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we have 
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which leads to the second equation of (8). For the 

update of µ and σ to µ′ and σ′, we can make use of 

(3) and (4), rather than (7), to derive similar to (8) 

the following formulas  
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It is perhaps worth noting here that iterative 

formulas such as those in (8) and (9) may be 

represented in terms of weighted finite automata [17] 

as well. 

 

 

3 Measuring Markers’ Biases 
We now examine how to effectively profile the 

markers’ biases exhibited in the past marked K 

assignments. First if a single assessor marked both 

the k-th assignment and the k′-th assignment for the 

whole cohort, we have to expect that the statistics 

for these two different assignments will in general 

differ due to the different nature or complexity of 

the assignments. In order to homogenize the 

statistics across the marks for the different 

assignments, we choose a base pairµ andσ, and 
normalize the marks for each assignment via 

x*k,i
(j) 
= µ-   + (xk,i

(j) − µk) σ-  /σk,  

∀j∈J, i=1,..,Nk, k=1,..,K                          (10) 

which implies also x*k,i
 
=µ-  + (xk,i − µk) σ-  /σk. For the 

rescaled marks { x*k,i
(j) 

 } we will calculate the 

statistics µ*k 
(j)
, σ*k 

(j)
,  µ* 

(j)
, σ* 

(j)
, µ*k

 
, σ*k , µ*, and 

σ* respectively in parallel to those without the *’s. 
These *-ed statistics constitute the bias profiling for 

all the markers, and µ*=µ and σ*=σ. Technically, 
our proposed marker reassignment procedure uses 

{ xk,i
(j) 
 } to measure the biases accumulated over the 

marked assignments,  uses { x*k,i
(j) 
 } to predict the 

biases in the next assignment to be marked, and then 

reallocates the markers so that the combined biases 

are as evenly spread out as possible across all the 

students. In fact, µ* 
(j)
 and σ* 

(j)
 can be explicitly 

represented by those non-starred statistics via 

µ* (j)= µ-   + σ-  ⋅
kk

j

k

K

k

j

k σµµα /)( )(

1

)( −⋅∑ =
,  

∑ =
=

K

k

j

kk

j

kk

j

k NwNw
1'

)(

''

)()( /α , 

[σ* (j)]2 = σ-  2⋅{ 2)(

1

)( ]/[ k

j

k

K

k

j

k σσα∑ =
  

+ 2

1

)()( ]/)[(∑ =
−

K

k kk

j

k

j

k σµµα   

− }∑ =
−

K

k kk

j

k

j

k1

2)()( ]/)([ σµµα  .             (11) 

The 1
st
 half of (11) follows immediately from (6) 

and 

WSEAS TRANSACTIONS on SYSTEMS Zhuhan Jiang, Jiansheng Huang

ISSN: 1109-2777 391 Issue 11, Volume 10, November 2011



µ* (j) = ( )∑∑ ∑ == ∈

K

k

j

kk

K

k Ii

j

ikk Iwxwj
k 1

)(

1

)(

, ||/*)(
 

=  µ-   + σ-  ⋅ ( ) ∑∑ ∑ == ∈
−

K

k

j

kkkk

K

k Ii

j

ikk Nwxwj
k 1

)(

1

)(

, //)()( σσµ , 

which made use of (10). For the 2
nd
 half of (11), we 

first observe from (10) and the 1
st
 half of (11) 

[σ* (j)]2 /σ-  2  

= ( )∑∑ ∑ == ∈
−⋅

K

k

j

kk

K

k Ii

jj

ikk Nwxwj
k 1

)(

1

2)()(

, /)**()( µ  

=∑ ∑ ∑= ∈ =
−−−

K

k Ii

K

m mm

j

m

j

mkk

j

ikkj
k

xw
1

2

1

)()()(

,)( ]/)(/)[( σµµασµ /N
(j)
 

= (I + II + III) /N
(j)
    (12) 

where terms I, II and III are 

I= ∑ ∑=
−

K

k i kk

j

ikk xw
1

2)(

, ]/)[( σµ , 

II= ∑ ∑ ∑= =
−

K

k i mm

j

m

K

m

j

mkw1

2)(

1

)( ]/)([ σµµα , 

III= −2 ∑ ∑ ∑= =
−⋅−

K

k i mm

j

m

K

m

j

mkk

j

ikk xw
1

)(

1

)()(

, ]/)([]/)([ σµµασµ  

Expanding (xk,i
(j) − µk)

2
=[(xk,i

(j) − µk
(j)
)+ (µk

(j)− µk)]
2
 

one has 

I= ∑ ∑=
−

K

k i k

j

k

j

ikk xw
1

22)()(

, /)( σµ +∑ =
−

K
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j
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j

kkNw
1

22)()( /)( σµµ  
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−⋅− )( )(/)( )()(
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2)(
j

kIi

j

k

j

ik

K
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j

kk xw µσµµ   
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−+

K
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j

k

j
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K
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j
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j
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1

22)()( /)(/ σµµσσ . 

Summing up over i one has also 

II= ( )( )2)(

1

)(

1

)( /)( mm

j

m

K

m

j

m

K

k

j

kkNw σµµα −∑∑ ==
 

III= −2 ( ) ( )mm

j

m

K

m

j

m

K

k kk

j

k

j

kkNw σµµασµµ /)(/)(
)(

1

)(

1

)()( −⋅− ∑∑ ==
 

= −2 × (II). 

Hence (12) is simplified to the 2
nd
 half of (11). We 

note that the important formulae or relationships 

such as (11), (8), (7), (6) and (2) are also verified 

numerically. 

Let the tilded statistics µ~ (j), σ~ (j) denote those for 
the marks of the (K+1)-th assessment item. Then 

they can be derived from 

µ~ (j)= µ~ + (µ* 
(j)
 − µ-  )σ~ /σ-  , σ~ (j)= σ* 

(j)
 ⋅ σ~ /σ-  ，   (13) 

and may also make use of µ*=µ-  , σ*=σ-  , and µ~ =µ , 

σ~ =σ due to respectively (10) and the marks 

prediction. To show this, we let zi
(j) 
 denote the 

marks for the (K+1)-th assignment by the j-th 

marker, and z*i
(j) 
, the normalised marks as in (10). 

Then  

zi
(j) 
 = µ~  + (z*i

(j) − µ-   ) σ~ /σ-  , 

µ~ (j) = )(
1

j
KIi +∈

Σ  zi
(j)
/|IK+1

(j)
|  

= µ~ +( )(
1

j
KIi +∈

Σ z*i
(j)
/|IK+1

(j)
|−µ-  )σ~ /σ-  ,                (14) 

which proves the first half of (13). Since (13) and 

(14) imply 

zi
(j)− µ~ (j) = (z*i

(j) − µ*(j))σ~ /σ-  , 

[σ~ (j)]2= )(
1

j
KIi +∈

Σ (zi
(j)− µ~ (j))2 /|IK+1

(j)
|  

= [σ~ /σ-  ]2⋅ )(
1

j
KIi +∈

Σ (z*i
(j)− µ*(j))2 /|IK+1

(j)
|  

= [σ~ /σ-  ]2⋅[σ* 
(j)
 ]
2
, 

the second half of (13) also holds. We note that the 

homogenization via (10) is essentially redundant if 

K=1, and this is because having just 1 past 

assessment item offers no room for the marking 

inconsistency to be ironed out. 

Now that we know how to predict the statistical 

behaviour or bias of each marker for the (K+1)-th 

assignment, we also need to measure the 

accumulation of such biases for each marker. For a 

given student i, if marker j′ is assigned to mark the 

student’s (K+1)-th assignment, then the total amount 

of the accumulated mean biases can be estimated as 

∆µ(i, j′, wK+1) where 

,)~~(')',',( )'( µµµµ i

jwwji ∆+−=∆  

∑ =
−=∆

K

k k

i

kki
kw

1

)(
)( µµµ ρ ,                                (15) 

and 
k

i

k
k µµ ρ −)( becomes 0 if student i didn’t submit 

the k-th assignment. As for the standard deviation, 

the meaning of σ′≡ σ ± δ is not the same for the 

different signs even though |σ′−σ| remains the same 

in both cases. To better gauge the closeness of σ and 
σ′, we measure both the difference |σ′−σ| and the 
overlap, denoted by ℘(σ,σ′)≡min(σ,σ′). Hence the 
total amount of the accumulated bias widths can be 

modelled by ∆σ(i, j′, wK+1) defined for 0≤λ≤ 2 by 

∆σ(i, j′, w′)= |∆
+
σ − ∆

-
σ| + (2−λ)⋅℘(∆+

σ, ∆
-
σ),      (16) 

where ∆±
σ(i,j′,w′) are respectively the sum of the 

positive and negative terms in 

σσσσσσ
−+⊕ ∆−∆+−≡∆ ii

jwwji ~/)~~(')',',( )'(           (17) 

for w′=wK+1, and ∆
±
iσ ≥0 are respectively the sum of 

the positive and negative terms in 

∑ =
−

K

k kk

i

kk
kw

1

)(
/)( σσσ ρ ,         (18) 
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in which )(i

k
kρσ  is just 

kσ  if student i didn’t submit 

the k-th assignment. We note that λ=0 corresponds 
to the obvious case of ∆σ= ∆

+
σ + ∆

-
σ, λ=1 to 

∆σ=max(∆±
σ), while λ=2 corresponds to the other 

extreme case of ∆σ= |∆
+
σ − ∆

-
σ|. The role of the 

denominators in (17) and (18) is to make the 

calculation percentage-wise. Also, (15) and (18) 

have made the implicit use of  

µk 
(0) ≡ µk ,  σk 

(0) ≡ σk ,  µ~ 
(0) ≡ µ~ ,  σ~ (0) ≡ σ~ ,          (19) 

which implies ∆iµ = ∆iσ = 0 holds for any student i 
if that student has not submitted any of first K 

assignments. We finally note that ∆µ and ∆σ are 

independent ofµ andσ according to (11) and (13). 
However, using fixedµ andσ will make the values 

x*k,i
(j) 

 unchanged as K changes. In the case of 

choosing simply µ-  =µ and σ-  =σ, we can rewrite (15), 
(17) and   ∆σ

±
 in (16) more explicitly as 

),(,),,( )*()()( µµµ µµµ −=∆∆+∆=∆ jj

i

j wwji  

,),,( )()( σσσσσ
−+−+⊕ ∆−∆+∆−∆=∆ ii

jjwji  

,/)( )*()()( σσσσσ −=∆−∆ −+ jjj w  ,)( σσσ
±±± ∆+∆=∆ i

j  (20) 

where ∆σ
(j)− 

=0 and ∆σ
(j)+ 

=w(σ*(j)−σ)/σ if σ*(j)≥σ, and  
∆σ

(j)+ 
=0 and ∆σ

(j) − 
=w(σ*(j)−σ)/σ if σ*(j)≤σ. Moreover, 

we can set in (20) µ*(j)=µ and σ*(j)=σ, similar to 

(19), for every tutor j who hasn’t marked any 

previous assignments. 

 

 

4 Markers’ Reallocation 
By following the main procedure outline in Figure 1, 

we can now proceed to design the marker 

reallocation algorithm. For the clarity of the 

algorithm, we first specify formally the input, which 

can be symbolically represented by 

(I.1)  wk >0, ρk: I→J*, νk: I→ℝ
+
,  k=1, .., K; wK+1 >0 

(I.2)  I′⊂ I,  N′(j) ≥0,  ∑j∈J N′
(j)
 ≥ | I′| ,   (21) 

where I′ denotes the set of students whose new, i.e. 
(K+1)-th, assignment need to be allocated to a 

suitable marker,  and the allocation quota N′(j) 

denotes the maximum number of students whose 

new assignment could be contracted for being 

marked by the j-th marker. We note that providing 

the mapping νk is essentially the same as providing 

all the marks { xk,i
(j) 
 }. The expected output of the 

allocation algorithms is then a marker-assigning 

mapping ρ: I→J* such that 

(O.1) ρ( I′) ⊂ J,  ρ( I−I′) ⊂ { 0 }; 

(O.2) |ρ−1
(j)| ≤ N′(j),  ∀j ∈J; 

(O.3) ∃ 1≥κ>0 such that |ρ−1
(j)| ≈ κ⋅N′(j), ∀j ∈J, (22) 

where (O.1) implies the new assignment by the 

students in I′ will be assigned to the markers in J, 

and the rest of the students didn’t submit the new 

assignment. (O.2) simply says the total number of 

students assigned to the j-th marker should not 

exceed the quota N′(j). And (O.3) is actually optional, 
and implies that the total number of students 

assigned to each marker should be proportional to 

their quota, if not all their quotas can be exactly met.  

When students are being one-by-one assigned a 

suitable marker for the new assignment, students 

who suffered the most “biases” accumulated over 

the past K assignments should be given higher 

priority in finding the most suitable marker so as to 

best compensate the past marking biases. For this 

purpose, we let Ψ be an ordered list of the set I′, 
sorted in the decreasing order of 

 ( |∆iµ| + τ⋅|∆iσ|, |∆iσ| )     (23) 

for a given user-selected coupling factor τ≥0, where 
|∆iµ| is shown in (15) and  

∆iσ= |∆
+
iσ − ∆

−
iσ| + (2-λ)℘(∆+

iσ, ∆
−
iσ) (24) 

is defined along the same line as (16) and (17). In 

the case of two students having exactly the same 

ranking, the student with a higher total weight of the 

previously submitted assignments will be ahead of 

the other student. Hence the students who didn’t 

submit any previous assignments will sit at the 

bottom of the list.  

For a fairer scheme, we also randomise the 

ordering of the elements of Ψ within the same band, 

i.e. the elements of the same |∆iµ| and |∆iσ|. For each 
marker j∈J, we use the set Ψ(j)

 to collect the 

students assigned to the j-th marker, and use M
(j)
 to 

denote the total number of elements in Ψ(j)
, i.e. 

M
(j)
=|Ψ(j)

|. We thus initialise the Ψ(j)
 by setting M

(j)
 

=0 and Ψ(j)
 =∅. The marker reallocation procedure 

is to continuously assign the top element on the 

student list Ψ to a marker, then removing the student 

fromΨ, until the list Ψ becomes empty. 

Let i∈I be the top element on the list Ψ, and let 

||i||≡ |∆iµ|+|∆iσ|. If ||i||=0, i.e. ∆iµ=∆iσ=0, we can just 
randomly associate the remaining students on the 

list Ψ with the markers so that each marker j marks 

the new assessment item for the allocated N′(j) 
number of students or less. More precisely, For all 

j∈J such that M
(j)
 < N′(j), we can randomly pick 

N′(j)−M (j)
 students Φ from Ψ, assign their new 

assignment to be marked by the j-th marker, and 

then remove them from Ψ. 
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If ||i||≠0, we find a j′∈J from all those j∈J such 

that M
(j)
 < N′(j) and |∆µ(i,j′,w′)| is the smallest, and 

then assign student i's new assignment to the j′-th 
marker. If we allow a certain degree of error 

tolerance ε≥0 for the ∆µ(i,j′,w′), i.e. trading ε 
amount of ∆µ(i,j′,w′) for a better ∆σ(i,j′,w′),  then we 
find a j″∈J from all those j∈J such that  

M
(j)
 < N′(j),  |( |∆µ(i,j′,w′)| − |∆µ(i,j″,w′)| )| ≤ ε (25) 

and   |∆σ(i,j″,w′)| is the smallest. If j′≠ j″, we set j′≠ 
j″. Hence the new j′ best compensates the mean as 

well as the standard deviation. 

Another strategy to even out the potential biases 

is to avoid as much as possible having different 

assignments for the same student to be assessed by 

the same marker. To achieve this goal, we introduce 

error tolerance εµ≥0 and εσ≥0 so that the allocated 
new marker will be as much different as those who 

marked the student’s previous assignments. For any 

student i and any candidate marker j, we denote by 

χ(i,j) the number of student i's previous assignments 

marked by j. Hence we find a j″∈J from all those 

j∈J such that 

M
(j)
<N′(j),   |( |∆µ(i,j′,w′)| − |∆µ(i,j″,w′)| )| ≤ εµ,  

|( |∆σ(i,j′,w′)| − |∆σ(i,j″,w′)| )| ≤ εσ,   (26) 

and χ(i,j) is the smallest. If j′≠ j″, we set j′≠ j″. 
Now that we have shown assigning marker j′ to 

student i is the best, we can carry on with the same 

procedure for the next unassigned student. However, 

if there are students of a similar status, i.e. their k-th 

assignment is marked by the same marker as student 

i for each k with 1≤k≤K, then these students can also 
be optimally assigned to the j-th marker for the 

same reason, within the marker’s allocation quota. 

This completes the design of our main marker 

reallocation algorithm although (O.3) in (22) has not 

been addressed yet. Property (O.3) comes into 

consideration when markers have already been 

contracted to mark more than the actual number of 

students due to such as the student attrition. Hence 

(O.3) is to ensure the marking duties for the markers 

are reduced, if necessary, proportional to their 

contracted workload.  

Once one selects the coupling constant τ≥0, the 
error tolerance ε≥0 to compensate σ,  the trade-off 
error tolerance εµ≥0 and εσ≥0 for ∆µ and ∆σ, and the 

coupling λ for (24),  all of them defaulting to 0, one 

can also set the pivot meanµ (default µ) and the 
pivot standard deviation σ (default σ). If one 
further chooses Ψ for the list of students to be each 

allocated to a marker, Ψj for the set of students 

assigned to marker j, Lj for the adjusted marking 

quota for marker j, Mj for the number of elements 

currently in Ψj, and sets w′=wK+1, then the algorithm 

is essentially composed of the following major steps. 

i) Pre-processing: Lj ← N′(j) ∀j∈J, and then reduce 

Lj proportionally so that ∑j∈J Lj = |I′|. Round Lj 
up or down to the nearby integer while 

maintaining ∑j∈J Lj = |I′|. 
ii) Initialisation: Ψ ← I′; Ψj ←∅,  Mj ←0, ∀ j∈J. 

iii) Calculate µ 
(j)
, σ(j)

, µ, σ, ∆iµ, ∆iσ, ∀ j∈J, via (6) 

etc. Set µ-  =µ, σ-  =σ, and calculate µ* 
(j)
, σ* 

(j)
 via 

for all the j’s. 

iv) Sort Ψ in the decreasing order of (|∆iµ|+τ⋅|∆iσ|, 
|∆iσ|) via (15) and (20). 

v) If Ψ=∅, go to step xii). 

vi) Let i be the 1
st
 element of Ψ, set ||i||=|∆iµ|+|∆iσ|. 

vii) If ||i||=0, randomly allocate all the students in Ψ: 

a) ∀j∈J such that Mj < Lj, randomly pick 

Lj−Mj students Φ from Ψ, set Ψj =Ψj ∪Φ, 

Ψ=Ψ−Φ, and then set Mj=Lj  
b) Go back to step v). 

viii) Otherwise (i.e. ||i||≠0), find a j′∈J such that 

|∆µ(i,j′,w′)| is the smallest among all those j∈J 
with Mj<Lj. 

ix) Find a j″∈J such that |∆σ(i,j″,w′)| is the smallest 

among all those j∈J with Mj<Lj and 

 |( |∆µ(i,j′,w′)| − |∆µ(i,j″,w′)| )| ≤ ε.  

If j′≠j″, set j′=j″. 
x) Find a j″∈J such that χ(i,j), defined just above 

(26), is the smallest among all those j∈J with 
Mj<Lj and  

|( |∆µ(i,j′,w′)| − |∆µ(i,j″,w′)| )| ≤ εµ , 

|( |∆σ(i,j′,w′)| − |∆σ(i,j″,w′)| )| ≤ εσ .  

If j′≠j″, set j′=j″. 
xi) Go back to step v). 

xii) Each marker j∈J is assigned to mark the new 
assignment for those students precisely 

contained in Ψj. 
 

 

5 Experiments via Simulations  
We will now evaluate our assessor reallocation 

method in two main ways. One is to apply it to an 

actual unit delivery and then evaluate its impact. 

The other is to experiment the algorithm on the 

simulation data. The complete reallocation 

algorithm and the simulation experiments are 

written in the form of a single program in PERL and 

the Box-Muller transform [18] is used to generate 

random normal distributions.  

We first conduct our experiments on the 

simulated data. Let assessor j∈J be assigned to 
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marking Tj students, and let I={i: 1≤i≤T} with T 
=Σj∈J Tj denote all the student IDs. For simplicity, 

we assume these assessors have marked all the 

previous K different assessment items for the same 

number of students although who those students are 

may vary, and that they are now to be allocated to 

mark the (K+1)-th assessment item. 

Assume all marks are between 0 and 10, and that 

the students’ true marks are of the normal 

distributions with µ′k and σ′k being the mean and the 

standard deviation for the k-th assignment 

respectively. The “true” marks refer to the marks the 

students would receive if the most accurate marking 

has been conducted. Likewise, x′k,i and xk,i
(j)
 will  

respectively denote student i's the true and actual 

mark of the k-th assignment by marker j. Hence the 

actual marks can be generated from the true marks 

via xk,i
(j)
 = µk

(j)
 + (x′k,i − µ′k ) σk

(j)
 /σ′k . If we 

calculate the total marks for each student, ∑1≤k≤K+1 

wk⋅xk,i, and then the average error against the true 
marks ∑1≤k≤K+1 wk⋅x′k,i, we will then find that the 
marking reallocation does lead to less such errors. 

In the marks simulations or predictions, we need 

to be aware that the marks for the different 

assignments of the same given student are most 

likely correlated. For any given k with 1≤k≤m, let ξk 

be the random variable that generates the true marks 

for the k-th assignment for all the students. Then the 

random variable ξm+1 that generates the true marks 

for the (m+1)-th assignment is likely to observe the 

distribution 

 ξm+1 = (α + βΘ)ξ  + γθ + δ,  

ξ = (∑1≤k≤m wk⋅ξk) / (∑1≤k≤m wk),    (27) 

where the marks ξm+1 is to be truncated to the marks 

range if necessary, Θ and θ are two random 

numbers generated by the unit Gaussian, parameter 

α is a user-selected value close to 1, and parameters 

β, γ, and δ are generally selected to be close to 0. 
The formulation of ξm+1 in (27) is in fact based on 

the understanding that each student typically 

performs consistently across all the assignments. 

We note that if ξ has the mean µξ and the standard 

deviation σξ, then ξm+1 has the mean αµξ+δ and the 
variance (σξ)

2
(α2

+β2
) + (µξ)

2β2 
+γ2. The new marks 

ξm+1 can be regarded as the performance 

perturbation of the combined marks ξ. Given the 
true marks for the previous assignments, it is hence 

possible to predict the true marks via (27) for the 

next assignment. 

Suppose Φ′=(Φ′i) is the vector of  the true total 
marks and Φ is the vector of the approximate or 

actual marks, we may measure the goodness of the 

approximation by comparing ||Φ−Φ′|| for a vector 
norm ||.||. However, since the relative values of the 

marks are often more important than the absolute 

values, we may make use of measurement 

<Φ,Φ′>m≡minα,β ||(αΦ+β)−Φ′||. We will in 

particular use the Euclidean distance ||.||2 as the 

norm and utilise thus the Lease Squares 

Approximation to calculate the measurement. 

When dealing with a real subject delivery, one 

has for all assignments only the actual marks, and 

the “true” marks are never known. To overcome this 

difficulty, we will first compensate the assessors’ 

biases on the actual marks and use these marks to 

substitute for the “true” marks. Hence for the actual 

marks {xk,i
(j)
}i for a given k, the rescaling towards 

the overall mean x″k,i = µk + (xk,i
(j)
 −µ k

(j)
) σk/σk

(j)
 will 

be treated as the approximate true marks. We note 

that this strategy has borrowed from the error 

estimation via the difference of consecutive iterates 

in a general numerical method. With this 

preparation, we can then evaluate the difference 

between the sum of the actual marks with the sum of 

the estimated true marks, which will constitute 

another error indicator termed the predicted error. 

We expect that the predicted errors will decrease 

under our assessor reallocation scheme. 

Another way of error estimation is to make use 

of the marks of an assessment item that is known to 

be reasonably accurate across all the students in 

terms of the fairness, such as the marks of the final 

exam of which at least each question is marked by 

the same person for all. If such fair marks are also 

available for other items at different times, then the 

marks for an item closest to a given assignment may 

be used for estimate the true marks for that 

assignment. In this regard we will typically utilise 

the least squares approximation when comparing 

with such substitute “true” marks. More precisely, 

suppose the final exam marks {ϕi: i∈I′} are 

available for all students in I′⊆I, thus Φ=(ϕi) being 

the marks vector, and xk=( xk,i
 
)i∈I′ is the marks 

vector for the k-th assignment for the students in I′. 
Since marks for the different assignments will 

compensate each other’s marking biases under the 

marker reallocation scheme, we expect that 

<xk+xk′,Φ>m  ≤  <xk,Φ>m, and that the value < ∑k xk, 

Φ>m should be smaller compared with the case 

when the reallocation is not administered. 

Tables I simulates the marking process and 

illustrates the reduction in the overall marking errors. 

Row M denotes the markers 1-9, row N denotes the 

number of students each marker will mark, ∆µ 
denotes the difference of the individual mean with 
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the given µ=7, and likewise for ∆σ with σ=2. It is 
shown in the table that the errors for the use of 

“new” markers are consistently smaller than those 

for the use of “same” markers. We note that if N 

marks {xi} are to approximate marks {ϕi}, then (∑i 

|xi−ϕi |
n
/N)

1/n
 is the linear error for n=1 and is the 

squared error for n=2. If the approximation is in 

least squares, then the corresponding squared error 

is referred to as the least squares error. We will also 

make use of the predicted errors defined earlier, and 

illustrate their effectiveness in comparison with the 

other error indicators. It is perhaps worth noting 

here that the data in Table I for such as M, N, µ,σ, 
∆µ and ∆σ are made to resemble an actual unit 

delivery to which Table III is also related. 

TABLE I.  TWO ASSESSMENTS OF EQUAL WEIGHT 

M 1 2 3 4 5 6 7 8 9 

N 41 53 93 87 23 16 41 39 23 

∆µ -.19 .63 .40 -.27 -.37 -.77 -.41 .05 -.20 

∆σ .24 -.56 -.57 .03 .52 .83 -.04 .23 -.05 

Error Type Linear Error Squared Error Least Squares 

Methods same new same new same new 

Direct errors .7920 .4397 1.090 .5087 1.082 .4880 

Predicted errors .9936 .4019 1.310 .4828 1.292 .4587 

 

To experiment with the case of 3 assignments, 

we set the weight ratio to 1:1:2 and let the same 

group of markers to each mark the same number of 

students as in Table I. We conducted 1000 

simulations in which all true marks are randomly 

generated by making use of (27). In Table II, Case 

A denotes that no marker reallocation is ever done, 

Case B denotes that the 1
st
 and 3

rd
 assessment items 

are marked by the same tutors for the same students 

while the 2
nd
 item was reallocated to new markers 

based on the marks statistics on the 1
st
 item, and 

Case C denotes that the same tutors will mark the 

same set of students for the 1
st
 and 2

nd
 items and 

these tutors are reallocated to different students via 

our algorithm to mark the 3
rd
 assessment item. Table 

II shows that the marks errors (in L
2
 norm) will in 

general be cut into about half of what they would be 

when no reallocation is applied. In particular, the 

average and minimum errors without reallocation 

are 0.56 and 0.50 respectively, while after the 

reallocation of the 3
rd
 assignment, they reduce to 

0.30 and 0.23 respectively.  

TABLE II.  SIMULATION ON THREE ITEMS 

Items Case A Case B Case C 

Average .5591 .3874 .3041 

Minimum .5028 .3325 .2343 

Maximum .6253 .5054 .4203 

 

As the last of our experiments, we now apply our 

reallocation algorithm to an actual unit delivered on 

3 campuses simultaneously. The assessment of the 

unit is composed of 2 major assignments and a final 

exam, along with a few less significant items. In 

order to reduce the noises in the error-prone data, 

we first remove those incomplete samples in which 

one or more assessment items are missing. We then 

remove the extremely poor–performing students too 

because their marks are more likely to be “irregular” 

and tend to not reflect the actual marks truthfully. In 

fact we evaluate our algorithm only on the students 

of complete records and in the groups of the exam 

marks exceeding 20, 25, and 35 respectively, out of 

the full mark 50. Tables III lists the average linear 

errors, and shows that the errors are being reduced 

across the board when assessment items 1 and 2 are 

added together, thus compensating each other’s 

biases. 

TABLE III.  EXAM MARKS ADOPTED AS THE 

TRUE MARKS 

Exam Marks 20 - 24.9 25 - 34.9 35 - 50 

Item 1 5.4516 4.5484 2.8278 

Item 2 4.3467 3.5108 2.7951 

Items 1+2 4.0604 3.3016 2.4051 

 

We note here that other experiments have also been 

conducted in support of our proposed methodology, 

when a number of additional controlling features 

and parameters are further introduced. However this 

is beyond the scope of our current work, and we will 

present them in a different work for which the 

critical mathematical consideration will be mostly 

left out for a different audience. 

 

 

4 Conclusion 
We have proposed an objective methodology which 

ensures that none of the students of multiple 

assessment items will suffer any irregular loss of the 

overall marks due to unconscious marking biases 

generic to individual markers. This is mainly done 

through reallocating suitable markers to the students 

for a new or next assessment item, on the basis of all 

assessors’ marking patterns from the previously 

marked multiple assessment items. We have in 

particular developed the mathematical structure for 

the modeling of this problem, along with the 

derivation of some important statistical properties. 

We also devised a systematic simulation scheme to 

evaluate our proposed algorithm, and have 

demonstrated the convincing improvement on the 

resulting fairness on the overall assessment marks. 
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