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Abstract: - This paper proposes an integrated framework for fault prediction in the robot dead reckoning 
system. The integrated framework is built by particle filter and support vector machine (SVM). On the basis, 

the weighted fault probability parameters can be extracted to train the prediction model. Different from the 

traditional particle filter fault prediction model, the proposed framework can overcome difficulties of the 

empirical threshold setting for decision-making. On the other hand, particle filter can not only estimate the 

system state values, but also obtain the residual errors that are yielded by comparing with the actual measured 

values. The average relative error is calculated to reduce its computing complexity in fault prediction process. 

Furthermore, an improved particle filter combined with support vector machine (PF-SVM) integration 

framework for fault-proneness prediction was devised in robot dead reckoning system. This framework 

estimates the particle filter process according to system state values and observed parameters to train SVM 
model. Finally the simulation experiments demonstrate that the PF-SVM integration framework can increase 

computing efficiency for fault-proneness prediction, and keep relatively high prediction accuracy at the same 

time. Besides that, the corresponding time step of malfunction can be precisely predicted. 

Key-Words: - Particle filter, support vector machine, fault prediction, weighted fault probability, integration 

framework, dead reckoning system  

 

1 Introduction 
Fault-proneness prediction mainly deals with faults 

that will happen according to the past and current 

states of the system [1], and it is a natural extension 

to the problem of fault detection and identification 

(FDI). With the developing demand for a higher 

operational efficiency and security reliability in the 

mobile robot systems, fault-proneness prediction has 

become a key issue world-wide. A more critical 

issue in the study of fault diagnosis was raised up in 

the field of hybrid system fault-proneness 

prediction. The robot dead reckoning system is such 

a kind of classic hybrid system that has multi-

variables of both discrete and continuous values of 

system states. Unfortunately, in the robot dead 

reckoning system, fault-proneness cannot be easily 

measured, because the directly collected sensor data 

cannot distinctly attribute to the fault characteristics, 

so it is difficult to identify the fault symptoms. 

However, it can be obtained on the basis of 

extracted characteristic parameters indirectly by 

statistical and quantitative descriptions of system 

states. 

The existing methods of fault-proneness prediction 

are generally classified into three major types: the 

model-based fault-proneness prediction, including 

Recursive Least Square (RLS), Kalman filter and 

Particle filter methods [2]; and the knowledge-based 

fault-proneness prediction methods such as expert 

system [3] and fuzzy logic technology, which are 

not a closed and clear-cut discipline. It incorporates 

an emerging family of problem-stating and problem-

solving methods that attempt to mimic natural 

intelligence [4]; and the data-based fault-proneness 

prediction, for instance, time sequence analysis, 

grey theory and some machine learning methods [5].  

Particle filter, a sequential Monte-Carlo technique, 

which is widely applied to the State Space Model, is 

one of the classical model-based fault-proneness 

prediction methods. Particle Filter is able to handle 

discrete states and continuous states simultaneously, 

and allows the measured data to join from multiple 

sources subjecting to the constrained conditions. Up 

to now, several applications of Particle Filter for 

fault-proneness prediction have been devised [6-8] 

and further studied [9]; the prediction reliability of 

the system was computed and measured through the 

Monte Carlo simulation based on the results of 

particle filtering and fault-proneness prediction. 

Furthermore, the concept of strong tracking particle 

was put forward by introducing a strong tracking 

method into the particle to resolve the problems of 
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particle degeneracy and its poor ability to track 

saltatory states [2]. Though a great amount of work 

have been done to deal with the hybrid system for 

fault-proneness prediction using Particle Filter, they 

avoided the decision process for prediction. Most of 

the research regarded the weighted fault probability 

as significant characteristic parameters and tried to 

set an empirical threshold for decision-making to 

predict whether there will be a fault mode. But it’s 

difficult to select an adaptive threshold for different 

kinds of system. Fortunately, this can be solved by 

applying machine learning technologies to decision 

process of fault-proneness prediction. Unlike some 

traditional models for fault-proneness prediction, 

machine learning proposed in [10] confirmed the 

superior performance of Support Vector Machines 

over Artificial Neural Networks when treating fault-

proneness prediction as a binary classification task. 

Some researchers have made great progress on 

Support Vector Machine (SVM) for fault-proneness 

prediction; we can find its great worth from [11-13]. 

In this article, we focus to build a fault-proneness 

prediction model by SVM for the special robot dead 

reckoning system, where several particle filter and 

Support Vector Machine integration frameworks are 

devised and compared for fault-proneness prediction 

(a model-based and a data-based particle filter). 

These frameworks extract the weighted fault 

probability and the characteristic parameters of 

system states in the process of particle filtering in 

order to train SVM and adapt its chosen threshold, 

thus improve the runtime efficiency of algorithms 

and keep higher accuracy rates of fault prediction. 

Above all, we have demonstrated that one of these 

algorithms can accurately predict the certain time 

step of fault with a relatively high efficiency. 

The rest of this paper is organized as follows. In 

Section 2, some preliminaries about particle filter 

and Support Vector Machine are briefly reviewed.  

Particle filter based fault-proneness prediction and 

corresponding fault models devised for the robot 

dead reckoning system are presented in Section 3. 

Particle filter and  SVM integration framework for 

fault-proneness prediction are described in Section 4 

in details; including the utilization of the weighted 

fault probability in the SVM based Particle filter for 

fault-proneness prediction; the residual error 

obtained to improve the particle filter based fault-

proneness prediction; and particle filter and Support 

Vector Machine integration framework based fault-

proneness prediction. Simulation experiment results 

on the platform of MORCS-1 robot dead reckoning 

system for fault-proneness prediction are analyzed 

in Section 5, comparing effectiveness and efficiency 

of each devised algorithm for fault-proneness 

prediction. Finally, we draw our conclusions and the 

future development in section 6. 

 

2 Preliminaries 
 

2.1 Particle filter 
Particle Filter is a kind of nonlinear filtering 

algorithm on the basis of the sequential Monte Calo 

simulation method, which is a posterior density 

function of recursive approximation of states, and it 

converges to the real posterior density as the particle 

population tends to infinity. { }tX X t N= ∈， is a 

set of values belonging to R xn , set the initial 

distribution as 0( )p x  and ( )1|t tp x x − as the 

transition probability, which is also defined in the 

equation (1), { }
0t

ω
≥
is a sequence of independent 

random variables. 

1( , )t t t tx f x ω−=
 

(1) 

Meanwhile, the independent measurement of noise 

is { },tY Y t N= ∈ . Equation (2) defines the marginal 

distribution ( | )t tp y x , in which  0{ }t tυ ≥ is a 

sequence of independent random variables, but may 

not be the Gaussian noise.  

( , )t t t ty g x υ=
 

(2) 

where 0: 0 { , , }t tx x x= L and 1: 1 { , , }t ty y y= L are 

respectively the characteristic parameters of system 

states and the observed values in moment t , which 

are utilized for estimating the posterior distribution 

0: 1:( )t tp x y and marginal 

distribution 1:( | )t tp x y [14]. This task can be 

implemented by two continuous procedures: 

predicting and filtering [15].  

On the one hand, the prediction of the next time can 

use both the previous knowledge of state estimation 

and the process model to generate the priori state 

probability of density estimation, as shown in 

equation (3). 

( ) ( ) ( )0: 1: 1 1 0: 1 1: 1 0: 1t t t t t t tp x y p x x p x y dx− − − − −= ∫  (3) 

On the other hand, the posterior probability density 

function generated after the filtering step is shown 

in equation (4): 

( ) ( ) ( ) ( )0: 0: 1 0: 1 1: 1| | | |t t t t t t t tp x y p y x p x x p x y− − −∝ � �
 
(4) 

After the process of resample, the particle swarm 

{ }( )

0: 1,...,

i

t i N
x

=
% is updated as independent and identical 
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experience distribution samples by resetting its 

weights as
( ) 1j

tw N −=%  as shown in equation (5).  

( ) ( ) ( )( ) ( )( )

0: 0: 0: 0: 0:

1 1

1 1N N
i iN i

t t t t t t

i

t

i

x N x x x x
N N

δ δπ
= =

= − = −∑ ∑ (
%

(

 
(5) 

Here, ( )δ • is Dirac delta function, and it’s easy to 
prove that equation (5) approaches to the true 
posterior distribution whenN → ∞ . 
 

2.2 Support vector machine 
SVM is on the basis of statistical theory of VC 

dimension and structural risk minimization 

inductive principle. With limited sources of samples, 

Support Vector Machine hunts the best results of 

both complexity of modeling and learning ability in 

the expectation of getting optimal generalization 

ability. The most straightforward expression of 

structural risk is to construct classifier and utilize 

the difference between the sort results of sample 

data and the true ones. Obviously, the higher the VC 

dimension is, the worse the generalization capacity 

is, with increasing computing complexity. And 

Support Vector Machine is a kind of structural risk 

minimization algorithm. 

2.1.1 Linear classifier 

Each sample of Support Vector Machine contains 

targeted classification value (or tag type) and some 

properties (or characteristic parameters).Considering 

the linearly separable cases, given the training 

sample 1{ , }N

i i ix y = , 1,...,i N= , in which 
n

ix R∈ is 

the ith sample of input model, {1, 1}ly∈ − is the set 

of classification tag for training. According to the 

principle of Support Vector Machine, hunting the 

optimal classification hyperplane is equal to seeking 

the maximal margin between positive and negative 

classes of separation. Support vectors are regarded 

as the closest ones to the decision-making boundary 

shown in Fig.1, and x1, x2 satisfied equation (6). 

1

2

1

1

w x b

w x b

⋅ + =


⋅ + = −  

(6) 

 
Fig.1 Simple binary classifier 

 

The hyperplane corresponding to wx + b = 0 is the 

decision boundary. Here w is an adjustable weight 

vector, and is also a normal vector of the 

hyperplane, and b is the offset, or the constant term 

of the hyperplane. So the margin is: 

1 2

2
( )

w
dis x x

w w
= ⋅ − =

 

(7) 

In equation (7), the task is to maximize the margin, 

looking for min w , or 

2

min
2

w
 in other words. 

For any ( , )i ix y , there exists: 

1, 1

1, 1

i i

i i

w x b y

w x b y

⋅ + ≤ = −


⋅ + ≥ − =  

(8) 

Combining equation (7) and (8) to seek the optimal 

classification hyperplane is equivalent to find the 

maximal margin between the positive and negative 

classes of separation. By pulling into the Lagrange 

multiplier, we settle the issues above and obtain 

*

0

1

N

i i i

i

w a y x
=

=∑ ,    
( ) ( )

0 01 , 1s sb w x y= − = , 

to solve the problem of linear classifier. 

 

2.2.2. Kernel function 

Kernel function, a convenient inner product function 

to transform the input values from low dimension 

space to high dimension space, makes it easy to 

compute and reduce VC dimension. Different kernel 

functions applied to learning machines can construct 

different types of nonlinear decision hyperplanes, 

from which we will obtain different algorithms of 

Support Vectors. Considering the nonlinear case, x 

is sufficiently mapped into a high dimension space 

as shown in equation (9) and (10).  

, , 1

1

2min
l

T

i
w b i

w w C
ξ

ξ
=

+ ∑  (9) 

 
Subject to          

( ( ) ) 1 ,

0.

T

i i i

i

y w x bφ ξ

ξ

+ ≥ −

≥
 (10) 

in which C>0 is a penalty parameter of fault, and 

( , ) ( ) ( )T

i j i iK x x x xφ φ≡ is called kernel function. 

 

 

3 Robot dead reckoning system fault 

model and fault prediction based on 

particle filter 

 
3.1 Fault prediction and fault space model for 

dead reckoning 

The expression of hybrid dynamic system (HDS) is 

shown in equation (11); ts ∈ S  is the discrete 
system mode at moment t where S  is the finite set 
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of discrete system modes; xn

tx R∈ is the continuous 

state variable of  system at moment t; zn

tz R∈ is the 

measurement of the system at moment t; un

tu R∈ is 

the input of dead reckoning system at moment t; vt 

and nt are considered as the process noise and 

measurement noise respectively. 

( , , )

( , , )

t t t t t

t t t t t

x f s x u v

z h s x u n

= +


= +

&

 (11) 

As we all know that fault-proneness prediction in 

the mobile robot dead reckoning system is a typical 

HDS, which can be described as following: given its 

system model, on the basis of observation sequence 

0: 0 1{ , , , }t ty y y y= … , continuous control input 

sequence 0: 0 1{ , , , }t tu u u u= …  and the continuous 

state sequence 0: 1 0 1 1{ , , }t tx x x x− −= …,  , the fault-

proneness prediction estimate the state tx  at moment 

t and obtain the discrete state t ks +  at moment t k+ .  

Setting [ , , ]TL Rx ω ω ω=  as state variables and 

[ , ]TL Ru u u=  as input vector, where Lu  and Ru  are 

the input control variables that respectively signify 

the set speed of the left wheel and right wheel, 

and [ , , ]TL Ry ω ω ω= as observation vector;  and the 

following  1( | , )t t tp x x s−   is expressed in equation 

(12) in linear Gaussian model: 

1( ) ( ) ( )t t t t t t tx A s x B s F s uω−= + +
 

(12) 

and ( | , )t t tp y x s  is expressed as shown in equation 

(13) in linear Gaussian model: 

( ) ( ) ( )t t t t t t ty C s x D s v G s u= + +
 

(13) 

where 0 1 2 3 4 5 6 7{ , , , , , , , }ts S S S S S S S S S∈ = ; S0 

represents the normal working state of the system; 

S1 represents malfunction with its left wheel 

encoder; S2 represents its losing efficiency with the 

right wheel encoder; S3 represents the failure with 

its gyroscope; S4 represents that both wheel 

encoders lose their efficiency; S5 represents the loss 

of left wheel encoder and gyroscope; S6 represents 

the fault of right wheel encoder and gyroscope; S7 

represents the malfunction of all the three at the 

same time. The system parameter matrixes are: 

( ) 0; ( ) 0; ( ) 0;A s B s G s= = =
 

1 0 0 0

( ) 0 1 ; ( ) 0 0

0 0

e

F s D s f

c d g

   
   = =   
         

where / , / ; 0.1; 0.1;L Rc r d r e fω ω= − = = =  g= 

0.0223. And e, f, g respectively represents standard 

deviation of noise of the left wheel, right wheel, and 

gyroscope. The motion patterns of the mobile robot 

subject to the detectable fault set of system state of a 

certain sensor. For example, it is difficult to confirm 

whether there will be a fault occurring with gyro 

sensor when the outputs of robot is still the 

encoders; similarly, the fault of gyro is hard to 

figure when the robot is in straight line mode (M2). 

Regarding to the differences among the kinematic 

models of different fault modes, we use different 

observation equations to express, for example: 

0 1

2 7

1 0 0 0 0 0

( ) 0 1 0 ; ( ) 0 1 0 ;

0 0 1 0 0 1

1 0 0 0 0 0

( ) 0 0 0 ; ( ) 0 0 0

0 0 1 0 0 0

C s C s

C s C s

   
   = =   
      

   
   = =   
      

L 。

 

 

3.2 The experimental platform MORCS-1 

Mobile robots are used in active service for the 

assisted living of elderly people [16]. We use the 

mobile robot (MORCS-1) of Central South 

University as the experiment platform and the 

picture of MORCS-1 is shown in Fig.2, whose dead 

reckoning system is composed of encoders for both 

left and right wheels, and mobile-robot gyroscope. 

The encoders measure the angular velocity of left 

and right driving wheels respectively; meanwhile 

the gyro measures the yaw rate of the robot. As the 

tuning is obtained by the difference of their speeds 

between left motor and right motor in real-time, and 

the motion pattern is decided by the speed of the left 

and/or the right driving wheel. The robot may in the 

static mode (M1, 0L R

t tu u= = ), the straight line 

mode (M2, 0L R

t tu u= ≠ ), the rotation revolved 

around the left wheel (M3, 0, 0L R

t tu u= ≠ ), the 

rotation about the right wheel (M4, 0, 0L R

t tu u≠ = ), 

and other rotations (M5, 0, 0,L R L R

t t t tu u u u≠ ≠ ≠ ).  

 
Fig.2 MORCS-1 mobile-robot 
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3.3 Fault prediction based on particle filter 

Suppose tx follows the first-order Markov process in 

mode ts , and the measurement sequence ty  is 

mutually independent. Set the prior distribution of 

original state 1x as ( )op x , and the prior distribution 

of mode ts as ( )op s . 

Step1. estimate the current state using 1:( | )t tp s y  

(1) Initializaiton 

The initialized time is 0t = , sampling for samples 

1,2,...,i N= : 0 0~ ( )id p d  0 0 0, ~ ( | )ix p x d ， set 

the initial weight 0 1/i Nω = ，and then obtain its 

equal weighted sample set 0 0 1{ , ,1/ }i i N

id x N = . 

(2) Update the weighted values 

Calculate 1{ , }i i N

t t is x = according to 1( | )i

t tp s s − , and 

compare the observed value with prediction result of 

the output of particle filter to calculate the weighted 

values of importance. 

 1
1

1

( | ) ( | )

( | , )

i i i
i i t t t t
t t i i

t t t

p y s p s s

q s s y
ω ω −

−
−

= for each sample. 

 (3) Weights   Normalization

1

i
i t
t N

i

t

i

ω
ω

ω
=

=

∑
% . 

 (4) State estimation 

Given the set of 1{ , , }i i i N

t t t id x ω =% to approximately 

estimate 1:( | )t tp s y : 

1:t

1 1

( | ) ( )i
t

N N
i i j

t t t ts
j i

p s y s sω δ
= =

= −∑∑ %  (14)
 

Step2. estimate the posterior density distribution 

1:( | )t k tp s y+ at moment t. 

1: 1:

1: 1 : 1

1

( | ) ( | ) , 2

( | )[ ( | )]

t k t t k t t k
S

t k

t t j j t t k

j t

p s S y p x y ds k

p s y p s s ds

+ + +

+

− + −
= +

∈ = ≥

=

∫

∏∫
    (15) 

Let equation (14) into equation (15):  

1: 1 1 1: 1

1 2

( | ) ( | ) ( | )
t kN

i i

t k t t t t j j t t k

i j t

p s S y p s s p s s dsω
+

+ + − + + −
= = +

∈ =∑ ∏∫  

Here 1: 1t t kds + + − =  1 1t t t kds ds ds− + +⋅ ⋅ ⋅ ⋅ , the prediction 

of malfunction after k steps is based on information 
at moment t . As a result, we can utilize the posterior 

density distribution of state 1:( | )t tp s y at moment t  

to estimate state 1:( | )t k tp s y+  at moment t k+ , as 

shown in Table 1. 

Table 1 the pseudo code of fault prediction based on 

particle filter 

(1) Sampling 

for j=1 to k 

for i=1:N      

sample 
i

t js + ~  
1( | )t j s jp s s+ + −
    

and  0: 0: 1: ( , )i i i

t j t j t js s s+ + − +    

  end   

 end   

Obtain the samples 
1:{ ; 1, 2,..., }i

t ks i N+ =  

(2) State prediction 1:

1

( | ) ( )
t k

N
i

t k t t s t k

i

p s y sω δ
++ +

=

=∑ %   

(3) Decision-making of predicting fault probability      

 

3.4 Weighted fault probability of particle filter 

for decision-making of fault-proneness prediction 

The prediction of fault-proneness probability 

1:( | )t k tp s y+  at moment t k+  is decided by several 

statistical indicators: fault-proneness probability and 

its mathematical expectation or variance. In paper, 

weighted fault probability was utilized for 

prediction of fault-proneness occurring probability  

[17]. Weighted fault probability, one of the 

characteristic parameters for the judgment of 

malfunction, is an efficient approach to predict fault 

occurring. With k steps ahead of time, the weighted 

fault probability depends on its forecasting from 

moment t to t+k, whose calculation is shown in 

equation (16). 

�Pr ( ) Pr ( , )
N

t k t k i i

i j

ob s ob s i w+ + −
=

=∑ �

 

(16)
 

While 1 j N≤ ≤ , N represents the maximum 

allowed size of decision-making step for prediction 

at moment t+k (for example N=5). �Pr ( )t kob s +  

represents the prediction result of weighted fault 

probability whose step size is j at moment t+k in 

equation (16); Pr ( , )t k iob s i+ −  shows the prediction 

of weighted fault probability at current moment 

t k i+ − in which wi is the corresponding particle 

weight. The weighted fault probability reflects the 

accumulation process of fault degree. As a result, 

the weighted fault probability can record variation 

tendency of system faults, which is an important 

parameter in decision-making of fault prediction. 

We utilize weighted fault probability based particle 

filter to predict fault-proneness of the robot dead 

reckoning system in MORCS-1, whose results are 

shown in Fig.3 (a) by calculating the weighted fault 

probability respectively, and in Fig.3 (b), the thick 

line represents corresponding real-time fault mode. 

After analytical comparison, fault will occur when 

its corresponding weighted fault probability verges 
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on 1. If there is tendency of fault, its weighted fault 

probability will be significantly rising. Therefore, it 

is important to set an appropriate experience-based 

threshold of the weighted fault probability to predict 

the impending fault probability. If the weighted fault 

probability of a certain fault mode is greater than the 

setting threshold, or the sum of other weighted fault 

probabilities is much less than another threshold, we 

can safely draw the conclusion that this fault mode 

will occur after k time steps.  

   

（a）            

   

（b） 

Fig.3 Comparison of weighted fault probability 

and the real fault mode 
 

4 Several proposed fault-proneness 

prediction methods based on particle 

filter and support vector machine (PF-

SVM) integration framework 

 
4.1 Decision-making of fault-proneness prediction 

utilizing weighted fault probability of particle 

filter on the basis of support vector machine 

It is practical to complete fault prediction using 

threshold of weighted fault probability. However, 

the threshold selection mainly depends on 

experience. It is not ideal when it comes to the 

calculation of the weighted fault probability; or the 

inappropriately selected threshold based on 

experience cannot be adjusted adaptively, and 

prediction results will not be optimistic. Thus, we 

use the prediction model of SVM to improve the 

threshold setting problem.  

The input characteristic parameter of Fault-

proneness prediction method is the model of 

weighted fault probability, and output tags are 

prediction results of fault mode. The weighted fault 

probability is a process variable calculated from the 

estimation process of particle filtering, from which 

we obtain and form plenty of the training samples. 

Meanwhile, we adopt all kinds of the chosen fault 

modes to train Support Vector Machine and build 

the decision-making model. 

 

Tab. 2 Fault modes list 
(L, R respectively denotes the left wheel encoder and the right 

wheel encoder, G(Gyro) denotes the gyroscope.) 

 

Fault 

Mode 

Failure of 

components 

Fault 

Mode 

Failure of 

components 

1 Normal 5 LR 

2 L 6 LG 

3 R 7 RG 

4 G 8 LRG 

 

 
Fig. 4 Relationships among fault modes 

 

The fault modes of the robot dead reckoning system 

in MORCS-1 are presented in Fig.4, in which 1~8 

respectively represent the eight kinds of fault modes 

in table 2. The entire possible fault modes and their 

variation relationship can be one of them or a subset 

in the robot dead reckoning system. Expanding the 

fault relationships in Fig.4, we obtain the relation 

sequences of all the fault modes as shown in Fig.5. 

In these relation sequences, we can find that there is 

some redundant information, taking mode 1 & 8 for 

example. But it does not affect our sample training 

because the real-time fault occurring only belongs to 

a subset or a part of the test sample. And the model 

of Support Vector Machine can predict its result as 

well because the test sample has contained all of the 

transformation sequences among all the fault modes. 

 

21

3

4

5

7

8

61 2 8

1

1

1

1

3

4

5

6

7

8

8

8

8
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Fig.5 The set of fault relationships among test samples 

 

Training sample is extracted from the weighted fault 

probability from particle filter. The randomness of 

“particles” is proved when we run the same set of 

training sample; it will generate different particles 

so that we will respectively obtain different values 

of characteristic parameters of the weighted fault 

probabilities each time. Nevertheless, the weighted 

fault probabilities are in the same trend. Hence, we 

can obtain abundant sets of unified characteristics as 

training samples.  

1. Steps for the fault prediction method on the basis 

of weighted fault probability of Particle Filter and 

Support Vector Machine: 

1) Extract characteristic parameters of the weighted 

fault probability, store samples of data according to 

LIBSVM software package [18], and then adjust 

these data in proportion; 

2) Choose RBF kernel function;  

3) Adopt the cross validation to select the optimal 

parameters c and g as shown in table 3. 

Table 3 the pseudo code for parameters c and g: 

 
4) Use the selected optimal parameters c and g to 

train the entire set and obtain the model of Support 

Vector Machine as shown in table 4. 

Table 4 the pseudo code for obtaining SVM model 

 
5) Test for fault-proneness prediction by the devised 

model mentioned above. 

 

4.2 Residual error to improve computational 

complexity for fault-proneness prediction based 

on particle filter 

The utilization of residual error to improve fault-

proneness prediction with particle filter draws its 

lessons from the approach of fault diagnosis. Firstly 

the tendency of system state is estimated; then the 

system makes decision of pre-warning according to 

the average relative error.  

Since computational complexity of time to extract 

the weighted fault probability is relatively high, 

there is no need to use residual error to extract and 

predict fault probability. And fault prediction has 

superiority in consideration of its time complexity, 

whose main flow scheme is shown in Fig.6. In the 

first place, we utilize Particle Filter to estimate the 

parameters of system states at moment t on the basis 

of measured value at moment t-1; then we compare 

the real-time measured value with its estimated one 

at moment t. If average relative error were greater 

than the setting threshold, it will be explained that 

there is a tendency of malfunction or the real-time 

measured value of variation is abnormal. That is to 

say, a fault of the system is just around the corner as 

shown in Fig.6. At moment t-1, the system works 

normal, but at moment t it is warned of fault and a 

pre-warning should be made at moment t-1. 

Fig. 6 Improve fault prediction with particle filter 

using residual error 

 
Setting a threshold of residual error to improve fault 

prediction method: if the tendency of malfunction is 

obvious, then pre-warning will be in time, or if the 

tendency of fault varies gently, its pre-warning will 

not be made timely. The steps of its realization are 

listed as following: 

bestcv = 0; % set the best model firstly 

for log2c = -5:5,    

     for log2g = -5:5,  

cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ', 

num2str(2^log2g)]; %Parameters format 

cv=svmtrain(train_f_labels,train_f, cmd);  

%Training c and g between -5 and 5 separately.  

      if (cv >= bestcv),     

 %%Solve c and g in the best model 

      bestcv = cv;  

bestc = 2^log2c;  

bestg = 2^log2g; 

 end 

    end 

end 

cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg)];  
% gain the optimal parameters c and g for training model 

cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg)]; 

model = svmtrain(train_f_labels, train_f, cmd); 

%model training, the “model” we obtain is a 

 %syntagm data. 
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(1)Initialization: sampling for 1,2,...,i N=  at 

moment 0t = , 0 0 0 0 0~ ( ), ~ ( | )i id p d x p x d  set the 

initial value 0 1/i Nω = , we obtain its equivalent 

weighted set of sample 0 0 1{ , ,1/ }i i N

id x N = . 

(2)Update weights: calculate 1{ , }i i N

t t id x =  according 

to 1( | )i

t tp s s − , then compare each output of particle 

of fault prediction with the measured value, update 

the weight
i

tω
 of importance for each sample. 

(3) Weight normalization:  

1

i
i t
t N

i

t

i

ω
ω

ω
=

=

∑
%

. 

(4)State estimation: Given the set 1{ , , }i i i N

t t t id x ω =% , use 

1:( | )t tp s y  to calculate the edge density distribution 

1:( | )t yp d y : 

 (5) Decision-making and fault prediction: compare 

observation vector $ ty  with the real-time measured 

vector ty  and calculate their residual error: 

1:

1 1

( | ) ( )i
t

N N
i i j

t y t t ts
j i

p s y s sω δ
= =

= −∑∑ %

            (17) 

Here t  is the number of prediction sample. And we 

obtain the relative error of residual te%   
$

t tte y y= −
                                  (18) 

Then the ratio of prediction model between relative 

error and average relative error is calculated: 

$

t
t

t

e
e

y
=%

                                      (19) 

and  

/te eρ = % %
                                     (20) 

( ρ > a) setting the threshold value, we conclude that 
the malfunction will sometimes occur (the setting 

threshold value can be∞ ). 
From the discussion above, we sum up as following: 

the fault prediction ability of time steps depends on 

variation tendency of fault data such as the residual 

error of particle filter. If the tendency of fault is not 

obvious enough, the pre-warning of system will be 

lagged behind or even cannot forecast an actual time 

step of malfunction. 

 

4.3 Fault prediction based on particle filter and 

support vector machine integration framework 

On the one hand, the calculation of weighted fault 

probability of Particle Filter for the fault-proneness 

prediction needs multi-step looping of computation 

with large numbers of particles and costs a lot of 

operating time. On the other hand, the utilization of 

residual error improves the Particle Filter based 

fault prediction to be much simpler but has strong 

prediction ability. Nevertheless, it cannot accurately 

predict the corresponding time step of malfunction 

relatively. Thus, we propose a new fault prediction 

method on the basis of Particle Filter and Support 

Vector Machine integration framework to combine 

strengths and avoid weaknesses. In this method, we 

firstly extract the system state parameters of particle 

filter in middle process from training particles set. 

We make use of process parameters as characteristic 

parameters, and then design training samples and 

corresponding output tags to train the model of 

Support Vector Machine. Fault prediction method of 

Particle Filter and Support Vector Machine (PF-

SVM) integration framework is shown in Fig.7: 

 
Fig.7 PF-SVM integrated framework 

 

Instead of using the measured parameters to directly 

train the models, we take advantages of the Particle 

Filter to extract and estimate the process parameters 

for training the prediction model of Support Vector 

Machine.  

The main advantages of this integration framework 

are list as following:  

Firstly, since the characteristic parameters of its left 

wheel velocity, right wheel velocity, and both 

logical velocity are not obvious enough to indicate 

the tendency of fault, we should further extract 

some other characteristic parameters. Thus, we 

make use of particle filter to estimate parameters of 

system states and adopt the observation variables 

and state variables as features that can describe 

fault-proneness of the system because they are 

comparatively more obvious than the observed 

velocities.  

Secondly, on the basis of the randomness of the 

“particles” of particle filter, we obtain different 

estimation parameters each time; thus we can gain 

the desired size of samples by multiple operating so 

as to enrich and improve our kinds and quantities of 

characteristic parameter of the training samples.  
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The Particle Filter and SVM integration framework 

based fault prediction is realized in mainly two 

steps: 

1. Sample collecting and model training: to train 

SVM model in the first place, we use the training 

characteristic matrix in this method as the 

parameters of the system state estimation in Particle 

Filter. And the output of training tags are the 

prediction results of fault modes as shown in the left 

part of Fig.8. 

2. Fault prediction: using the algorithm Particle 

Filter we directly forecast the parameters of system 

state by making use of the function svmpredict(…) 

in Support Vector Machine toolbox as shown in the 

right part of Fig.8. 

Start

test1~test6

PF

Generate state variables

（training characteristic parameters）

Training sample tags

SVMtrain(…)

Generate SVM model

Start

Particle initialization

PF algorithm

State variable 

（testing sample）

SVMpredict(…)

Fault mode

End

 
Fig.8 PF-SVM integrated flow chart 

 

The fault prediction of time step using the method 

of Particle Filter and Support Vector Machine (PF-

SVM) integration framework is relatively precise, 

comparatively simpler and practical with low time 

complexity. The problem of unobvious features with 

characteristic matrix is solved through enlarging the 

training sample because one of the great advantages 

of Support Vector Machine model is that its learning 

ability keeps working well no matter how large the 

sample size is. Furthermore, it is easy to enlarge the 

parameters sets of training samples because they can 

be produced and can be assured of the diversity by 

the randomness of particles. 

 

5 Experiments analyses of fault 

prediction for robot dead reckoning 

system MORCS-1 

For the convenience of expression, We label these 

four kinds of algorithms in this paper: algorithm 1: 

A particle filter based algorithm for fault prediction 

mentioned in 3.3-3.4; algorithm 2: A weighted fault 

probability based Support Vector Machine for fault 

prediction mentioned in 4.1; algorithm 3:  Improved 

particle filter using residual error for fault prediction 

mentioned in 4.2; algorithm 4: A particle filter and 

Support Vector Machine integration framework for 

fault-proneness prediction mentioned in 4.3. 

 

5.1 Sample data for SVM 

To construct a complete library of training samples 

for the fault-proneness prediction of the robot dead 

reckoning system, in which the fault space has 2
3
=8 

kinds of fault modes (types), we have to set 8 kinds 

of sample tags. In algorithm 2, input characteristic 

parameter for the untrained Support Vector Machine 

is the weighted fault probability, while in algorithm 

4 the input of the untrained model of Support Vector 

Machine is the process parameters of system states 

and the observation parameters of estimation by the 

Particle Filter. The output tags of both algorithm 2 

and 4 are the fault modes, or the fault types. We 

record the logical inputs of both left and right wheel 

encoders and collect the actual output data of these 

wheel encoders and gyroscope, from which we will 

select parts of them as the training data of the 

model, and the rest as the testing data. In the 

collection of training samples, the entire types of 

fault modes should be included. And then the theory 

of Particle Filter is applied to extract weighted fault 

probability and other related parameters for different 

algorithms in these collections of training sample. 

To obtain the sample tags in Support Vector 

Machine training, we should bring ahead of time for 

k time steps to warn the actual fault mode 

corresponding to the training sample (such as k=5), 

that is, we should mark it out immediately to obtain 

the fault prediction sample tags when its relevant 

variation tendency of fault appears.  

Considering the transformation relationships among 

fault types (shown in Fig.4) and their completeness 

in sample sets, we combine the actual operating of 

the robot dead reckoning system and conclude that 

when one of the sensors go wrong and cannot be 

repaired spontaneously, the system would transform 

into another fault mode bringing with its original 

malfunction. For this reason, we select the set of 

sample data of the fault transformation 

relationships, test1~test6, as shown in Fig.5, to 

cover the entire fault types. Possible fault types of 

the robot dead reckoning system can be one of them 

or their sub-cases, though there is redundancy exist 

among the sequences of fault modes in Fig.5. If the 
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actual fault type is only a part of one certain training 

sample, the Support Vector Machine model can also 

predict the corresponding results because the 

training samples almost include the entire 

transformation information among all the fault 

modes. 

 

5.2 Experiments platform for robot dead 

reckoning system fault prediction 

Software simulation allow to approximate the 

behavior of complex systems under several scenario 

conditions[19]. In this paper, we utilize Matlab as 

our experiment platform for simulation, and apply 

four different algorithms to sample its real-time data 

of sensors and predict the system state of fault with 

MORCS-1 robot. Our main interface of the program 

and its relevant sub-blocks are shown in Fig.9. 

 
Fig.9 The main interface for simulation and analysis 

(1. Input and output blocks, 2. Prediction of process 

parameters block, 3. Prediction results block, 4. 

Control block, 5. Parameters description block) 

 

In the whole process of the simulation experiment, 

block3 makes decisions for fault prediction by using 

the weighted fault probability and output of block2. 

Firstly we separately adopt the prediction scheme of 

algorithm1 and algorithm2, then click the button of 

“Improved Scheme” on the right side of the bottom 

to run the two improved schemes of algorithm3 and 

algorithm4 for fault prediction in block2; they don’t 

have to calculate the weighted fault probability. 

 

5.3 Experiments analysis for fault prediction 

method 

In order to verify the fault prediction results of the 4 

kinds of algorithms for robot dead reckoning 

system, we adjust MORCS-1 in different motion 

states to design and simulate fault modes. In Fig.10, 

there are the input parameters of both left and right 

wheel encoders. In Fig.11, there are the real-time 

output parameters of both wheel encoders and 

gyroscope of MORCS-1. We judge the motion 

mode of MORCS-1 by setting the velocities of both 

wheel encoders as shown in Fig.12, where its 

vertical coordinate 1 represents the linear motion, 

and vertical coordinate 2 represents the motion 

revolving about the right wheel while vertical 

coordinate 3 represents the motion rounding about 

the left wheel, and vertical coordinate 4 represents 

other motion mode, vertical coordinate 5 represents 

the state of rest, as described in 3.2. By calculating 

the parameters of input and output, we obtain Fig.12 

where MORCS-1is in the state of rest at first, and 

then the input of both left and right wheels are 

equivalent linear motion, while in the rest states are 

kinds of curvilinear motions (mode 4).  

 
(a) Left wheel        (b) Right wheel 

Fig.10 Logical input parameters 

 

 
(a)                                (b)                                  (c) 

Fig.11 Output parameters 

(a) Left wheel encoder (b) Right wheel encoder (c) 
Gyroscope 

 

     
Fig.12 Motion modes   

 

 
Fig.13 Weighted fault probability 

 

As shown in Fig.13, to calculate the weighted fault 

probability by algorithm1, we set the threshold of 

weighted fault probability as 0.5 at first, in other 

word, when the weighted probability of a certain 

fault mode is greater than 0.5,  this mode will be 

judged as the fault that would appear after several 

time steps. We can see that fault mode2 occurred at 

2 3 

1 
4 

5 
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time step 25, fault mode5 appeared at time step 75, 

and fault mode8 happened at time step 118. Details 

of the entire fault modes for algorithm1 are listed in 

Fig.14 (a). It should be noted that the horizontal axis 

denotes time step, and vertical axis denotes fault 

mode. From the result, the pre-alarming are made at 

each turn although for the fault at time step 119, it 

warn only one time step in advance (giving an pre-

warning at time step 118). The experiment data of 

algorithm2 for the fault-proneness prediction is 

shown in Fig.14 (b); and it was pre-alarming in time 

as well before each fault occurring, and for the fault 

at time step 119, it alarm less than 5 time steps in 

advance, but it was comparatively better than 

algorithm1. The fault prediction result of algorithm3 

is shown in Fig.14(c), its pre-warning was made the 

same as above, but for the fault at time step 119, it 

warn nearly 5 time steps in advance, leaving enough 

time for emergency management; and at time step  

89, its pre-alarm was more than 10 time steps ahead. 

This fact indicated that at time step 89, the variation 

tendency of fault is obvious, while at time step 119, 

it is relatively moderate. Last but not the least, with 

its fault prediction results of algorithm4 shown in 

Fig.14 (d), we can find that its pre-alarm was even 

better than the other algorithms: all the predictions 

are appropriately 5 time steps ahead than the real-

time occurring of faults, that is to say, the stability 

of algorithm4 is the highest in predicting the time 

steps of fault occurring in experiments. Considering 

the fact that fault prediction of time steps ahead of 

schedule is directly related to the variation tendency 

of faults by computing its sampling data, we can 

conclude that these four fault prediction methods are 

all efficient, especially for algorithm4.  

     
(a) Fault prediction result of algorithm 1 

 
 (b) Fault prediction result of algorithm 2 

      
(c) Fault prediction result of algorithm 3 

 
    (d) Fault prediction result of algorithm 4 

Fig.14 Fault prediction results of algorithms 

 

In this simulation experiment of these algorithms, 

we have obtained better effectiveness and efficiency. 

Nevertheless, we define the “prediction accuracy” 

as the ratio of the correctly predicted samples and 

total testing samples, or it means the prediction data 

compared with the real-time data after all the 

operating ends.  For this purpose, ten independent 

sampling experiments are carried out to test the four 

algorithms of their prediction accuracy. And we can 

find that the average accuracy is above 95% as 

shown in Fig.15 where they are close to each other, 

but only algorithm4 has a tendency of ascendancy. 

 

 
Fig.15 Comparisons of these four algorithms on the 

degree of fault prediction accuracy 

 

Table.5 Run time comparison（Time unit: s） 

   Algorithm 1 2 3 4 5  

ALG 1 

ALG 2 
11.499 10.744 10.225 11.704 10.189  

ALG 3 6.006 6.041 6.141 8.071 6.224  
1 

ALG 4 6.402 6.713 6.502 8.538 6.673  

ALG 1 2 

ALG 2 
10.583 11.044 11.086 10.767 10.747  

95.98264 

96.29627 

97.08993 

97.29627 

95.1 
95.4 
95.7 
96 

96.3 
96.6 
96.9 
97.2 
97.5 

1 2 3 4 

Degree of Accuracy for Fault Prediction 

Algorithm 
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ALG 3 6.282 6.362 6.449 6.167 6.121  

ALG 4 6.715 6.873 7.048 6.761 6.562  

ALG 1 

ALG 2 
10.504 10.604 10.846 11.678 10.976  

ALG 3 6.171 6.148 6.022 6.309 6.351  
3 

ALG 4 6.395 6.796 6.392 7.03 6.805  

Algorithm 6 7 8 9 10 Average 

ALG 1 

ALG 2 
9.949 10.197 11.026 10.275 10.586 10.639 

ALG 3 6.323 6.66 6.37 6.077 6.139 6.405 
1 

ALG 4 6.942 6.624 7.372 6.436 6.659 6.886 

ALG 1 

ALG 2 
10.389 10.195 10.625 10.271 10.305 10.601 

ALG 3 6.362 6.077 6.013 6.621 6.192 6.264 
2 

ALG 4 6.943 6.282 6.5 7.083 6.53 6.729 

ALG 1 

ALG 2 
9.939 10.953 10.737 9.927 10.294 10.645 

ALG 3 5.918 6.131 6.154 5.789 6.250 6.124 
3 

ALG 4 6.313 6.519 6.567 6.029 6.789 6.563 

 

To statistically compare the runtime of these four 

algorithms, we conduct three independent groups of 

experiments, for each group we carried out ten 

independent experiments and had their records each 

runtime. From the obtained experiment data in table 

2, we can see that the runtime of algorithm 1 and 2 

are much similar as our expectation because their 

prediction parameters are much the same while only 

their decision-making methods are different. So we 

consider algorithm 1 and 2 as the same type. What’s 

more, the computing time of algorithm 1 and 2 are 

comparatively complex as shown in table 5 while 

algorithm3 cost much less runtime. Although the 

time-consuming of algorithm4 is slightly more than 

algorithm3, it is generally acceptable for most of the 

systems. Thus, we can conclude that algorithm4 is 

the best of these four algorithms not only for its 

higher average accuracy of prediction but also for 

the stability of the pre-warning time steps for fault 

prediction with a relatively better efficiency. 
The proposed algorithm is applied in MORCS-1 

successfully, and the mobile robot can predict fault in 

real time, so the satisfactory application results are 

obtained. 

 

6 Conclusion and prospective 
Algorithm 1 is based on the traditional particle filter 

prediction framework whose extracted characteristic 

parameter is the weighted fault probability, and its 

output accuracy is basically stable for nearly all the 

testing data; algorithm 2 has a relatively higher fault 

prediction accuracy than algorithm1, indicating that 

the construction of SVM model to replace the fixed 

setting of threshold of algorithm 2 is efficient. 

However, both of these two algorithms cost too 

much runtime for the extracting of weight fault 

probability. Algorithm 3 uses residual error to 

simplify the computation, thus improves algorithm 

runtime. Algorithm 3 is not only simple and easy to 

realize but also fast to operate with lower false rate 

of alarming. But compared with algorithm 4, time 

step for fault prediction of algorithm 3 is relatively 

imprecise because it mainly depends on variation 

tendency of data. Algorithm 4 improves algorithm 

1, 2 and 3 respectively by integrating all of their 

advantages. Algorithm 4 can calculate the time step 

of fault prediction with the highest accuracy and 

speed. Furthermore, if a little bit weaker was shown 

in stability of algorithm 4, we could solve the 

problem by improving the sets of training samples 

or even retrain for the Support Vector Machine. 

At last, we list some needed improvements of these 

experiments as following:  

a) Firstly, in this article, the experiments supposed 

that the robot did not moved on complexity terrain 

for the purpose of simplifying the model; 

b) Secondly, when applying the basic algorithm of 

particle filter to fault-proneness prediction, the 

problems of particle degeneracy and its efficiency 

should be taken into consideration. 

c) Thirdly, the fault-proneness prediction often 

lacks a universal type. In this article, we utilize the 

SVM to improve particle filter of fault-proneness 

prediction for the purpose of generalization. In the 

future, other techniques of machine learning will be 

taken into consideration to complete a generalized 

fault prediction framework. 

In brief, research of the fault-proneness prediction 

for hybrid systems is still in full swing and problems 

mentioned above need to be solved a step further. 
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