

A particle filter and SVM integration framework for fault-proneness

prediction in robot dead reckoning system

Lingli Yu, Min Wu, Zixing Cai, Yu Cao

School of Information Science and Engineering

Central South University

Changsha, Hunan, 410083

CHINA

llyu@csu.edu.cn

Abstract: - This paper proposes an integrated framework for fault prediction in the robot dead reckoning
system. The integrated framework is built by particle filter and support vector machine (SVM). On the basis,

the weighted fault probability parameters can be extracted to train the prediction model. Different from the

traditional particle filter fault prediction model, the proposed framework can overcome difficulties of the

empirical threshold setting for decision-making. On the other hand, particle filter can not only estimate the

system state values, but also obtain the residual errors that are yielded by comparing with the actual measured

values. The average relative error is calculated to reduce its computing complexity in fault prediction process.

Furthermore, an improved particle filter combined with support vector machine (PF-SVM) integration

framework for fault-proneness prediction was devised in robot dead reckoning system. This framework

estimates the particle filter process according to system state values and observed parameters to train SVM
model. Finally the simulation experiments demonstrate that the PF-SVM integration framework can increase

computing efficiency for fault-proneness prediction, and keep relatively high prediction accuracy at the same

time. Besides that, the corresponding time step of malfunction can be precisely predicted.

Key-Words: - Particle filter, support vector machine, fault prediction, weighted fault probability, integration

framework, dead reckoning system

1 Introduction
Fault-proneness prediction mainly deals with faults

that will happen according to the past and current

states of the system [1], and it is a natural extension

to the problem of fault detection and identification

(FDI). With the developing demand for a higher

operational efficiency and security reliability in the

mobile robot systems, fault-proneness prediction has

become a key issue world-wide. A more critical

issue in the study of fault diagnosis was raised up in

the field of hybrid system fault-proneness

prediction. The robot dead reckoning system is such

a kind of classic hybrid system that has multi-

variables of both discrete and continuous values of

system states. Unfortunately, in the robot dead

reckoning system, fault-proneness cannot be easily

measured, because the directly collected sensor data

cannot distinctly attribute to the fault characteristics,

so it is difficult to identify the fault symptoms.

However, it can be obtained on the basis of

extracted characteristic parameters indirectly by

statistical and quantitative descriptions of system

states.

The existing methods of fault-proneness prediction

are generally classified into three major types: the

model-based fault-proneness prediction, including

Recursive Least Square (RLS), Kalman filter and

Particle filter methods [2]; and the knowledge-based

fault-proneness prediction methods such as expert

system [3] and fuzzy logic technology, which are

not a closed and clear-cut discipline. It incorporates

an emerging family of problem-stating and problem-

solving methods that attempt to mimic natural

intelligence [4]; and the data-based fault-proneness

prediction, for instance, time sequence analysis,

grey theory and some machine learning methods [5].

Particle filter, a sequential Monte-Carlo technique,

which is widely applied to the State Space Model, is

one of the classical model-based fault-proneness

prediction methods. Particle Filter is able to handle

discrete states and continuous states simultaneously,

and allows the measured data to join from multiple

sources subjecting to the constrained conditions. Up

to now, several applications of Particle Filter for

fault-proneness prediction have been devised [6-8]

and further studied [9]; the prediction reliability of

the system was computed and measured through the

Monte Carlo simulation based on the results of

particle filtering and fault-proneness prediction.

Furthermore, the concept of strong tracking particle

was put forward by introducing a strong tracking

method into the particle to resolve the problems of

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 363 Issue 11, Volume 10, November 2011

particle degeneracy and its poor ability to track

saltatory states [2]. Though a great amount of work

have been done to deal with the hybrid system for

fault-proneness prediction using Particle Filter, they

avoided the decision process for prediction. Most of

the research regarded the weighted fault probability

as significant characteristic parameters and tried to

set an empirical threshold for decision-making to

predict whether there will be a fault mode. But it’s

difficult to select an adaptive threshold for different

kinds of system. Fortunately, this can be solved by

applying machine learning technologies to decision

process of fault-proneness prediction. Unlike some

traditional models for fault-proneness prediction,

machine learning proposed in [10] confirmed the

superior performance of Support Vector Machines

over Artificial Neural Networks when treating fault-

proneness prediction as a binary classification task.

Some researchers have made great progress on

Support Vector Machine (SVM) for fault-proneness

prediction; we can find its great worth from [11-13].

In this article, we focus to build a fault-proneness

prediction model by SVM for the special robot dead

reckoning system, where several particle filter and

Support Vector Machine integration frameworks are

devised and compared for fault-proneness prediction

(a model-based and a data-based particle filter).

These frameworks extract the weighted fault

probability and the characteristic parameters of

system states in the process of particle filtering in

order to train SVM and adapt its chosen threshold,

thus improve the runtime efficiency of algorithms

and keep higher accuracy rates of fault prediction.

Above all, we have demonstrated that one of these

algorithms can accurately predict the certain time

step of fault with a relatively high efficiency.

The rest of this paper is organized as follows. In

Section 2, some preliminaries about particle filter

and Support Vector Machine are briefly reviewed.

Particle filter based fault-proneness prediction and

corresponding fault models devised for the robot

dead reckoning system are presented in Section 3.

Particle filter and SVM integration framework for

fault-proneness prediction are described in Section 4

in details; including the utilization of the weighted

fault probability in the SVM based Particle filter for

fault-proneness prediction; the residual error

obtained to improve the particle filter based fault-

proneness prediction; and particle filter and Support

Vector Machine integration framework based fault-

proneness prediction. Simulation experiment results

on the platform of MORCS-1 robot dead reckoning

system for fault-proneness prediction are analyzed

in Section 5, comparing effectiveness and efficiency

of each devised algorithm for fault-proneness

prediction. Finally, we draw our conclusions and the

future development in section 6.

2 Preliminaries

2.1 Particle filter
Particle Filter is a kind of nonlinear filtering

algorithm on the basis of the sequential Monte Calo

simulation method, which is a posterior density

function of recursive approximation of states, and it

converges to the real posterior density as the particle

population tends to infinity. { }tX X t N= ∈， is a

set of values belonging to R xn , set the initial

distribution as 0()p x and ()1|t tp x x − as the

transition probability, which is also defined in the

equation (1), { }
0t

ω
≥
is a sequence of independent

random variables.

1(,)t t t tx f x ω−=

(1)

Meanwhile, the independent measurement of noise

is { },tY Y t N= ∈ . Equation (2) defines the marginal

distribution (|)t tp y x , in which 0{ }t tυ ≥ is a

sequence of independent random variables, but may

not be the Gaussian noise.

(,)t t t ty g x υ=

(2)

where 0: 0 { , , }t tx x x= L and 1: 1 { , , }t ty y y= L are

respectively the characteristic parameters of system

states and the observed values in moment t , which

are utilized for estimating the posterior distribution

0: 1:()t tp x y and marginal

distribution 1:(|)t tp x y [14]. This task can be

implemented by two continuous procedures:

predicting and filtering [15].

On the one hand, the prediction of the next time can

use both the previous knowledge of state estimation

and the process model to generate the priori state

probability of density estimation, as shown in

equation (3).

() () ()0: 1: 1 1 0: 1 1: 1 0: 1t t t t t t tp x y p x x p x y dx− − − − −= ∫ (3)

On the other hand, the posterior probability density

function generated after the filtering step is shown

in equation (4):

() () () ()0: 0: 1 0: 1 1: 1| | | |t t t t t t t tp x y p y x p x x p x y− − −∝ � �

(4)

After the process of resample, the particle swarm

{ }()

0: 1,...,

i

t i N
x

=
% is updated as independent and identical

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 364 Issue 11, Volume 10, November 2011

experience distribution samples by resetting its

weights as
() 1j

tw N −=% as shown in equation (5).

() () ()() ()()

0: 0: 0: 0: 0:

1 1

1 1N N
i iN i

t t t t t t

i

t

i

x N x x x x
N N

δ δπ
= =

= − = −∑ ∑ (
%

(

(5)

Here, ()δ • is Dirac delta function, and it’s easy to
prove that equation (5) approaches to the true
posterior distribution whenN → ∞ .

2.2 Support vector machine
SVM is on the basis of statistical theory of VC

dimension and structural risk minimization

inductive principle. With limited sources of samples,

Support Vector Machine hunts the best results of

both complexity of modeling and learning ability in

the expectation of getting optimal generalization

ability. The most straightforward expression of

structural risk is to construct classifier and utilize

the difference between the sort results of sample

data and the true ones. Obviously, the higher the VC

dimension is, the worse the generalization capacity

is, with increasing computing complexity. And

Support Vector Machine is a kind of structural risk

minimization algorithm.

2.1.1 Linear classifier

Each sample of Support Vector Machine contains

targeted classification value (or tag type) and some

properties (or characteristic parameters).Considering

the linearly separable cases, given the training

sample 1{ , }N

i i ix y = , 1,...,i N= , in which
n

ix R∈ is

the ith sample of input model, {1, 1}ly∈ − is the set

of classification tag for training. According to the

principle of Support Vector Machine, hunting the

optimal classification hyperplane is equal to seeking

the maximal margin between positive and negative

classes of separation. Support vectors are regarded

as the closest ones to the decision-making boundary

shown in Fig.1, and x1, x2 satisfied equation (6).

1

2

1

1

w x b

w x b

⋅ + =


⋅ + = −

(6)

Fig.1 Simple binary classifier

The hyperplane corresponding to wx + b = 0 is the

decision boundary. Here w is an adjustable weight

vector, and is also a normal vector of the

hyperplane, and b is the offset, or the constant term

of the hyperplane. So the margin is:

1 2

2
()

w
dis x x

w w
= ⋅ − =

(7)

In equation (7), the task is to maximize the margin,

looking for min w , or

2

min
2

w
 in other words.

For any (,)i ix y , there exists:

1, 1

1, 1

i i

i i

w x b y

w x b y

⋅ + ≤ = −


⋅ + ≥ − =

(8)

Combining equation (7) and (8) to seek the optimal

classification hyperplane is equivalent to find the

maximal margin between the positive and negative

classes of separation. By pulling into the Lagrange

multiplier, we settle the issues above and obtain

*

0

1

N

i i i

i

w a y x
=

=∑ ,
() ()

0 01 , 1s sb w x y= − = ,

to solve the problem of linear classifier.

2.2.2. Kernel function

Kernel function, a convenient inner product function

to transform the input values from low dimension

space to high dimension space, makes it easy to

compute and reduce VC dimension. Different kernel

functions applied to learning machines can construct

different types of nonlinear decision hyperplanes,

from which we will obtain different algorithms of

Support Vectors. Considering the nonlinear case, x

is sufficiently mapped into a high dimension space

as shown in equation (9) and (10).

, , 1

1

2min
l

T

i
w b i

w w C
ξ

ξ
=

+ ∑ (9)

Subject to

(()) 1 ,

0.

T

i i i

i

y w x bφ ξ

ξ

+ ≥ −

≥
 (10)

in which C>0 is a penalty parameter of fault, and

(,) () ()T

i j i iK x x x xφ φ≡ is called kernel function.

3 Robot dead reckoning system fault

model and fault prediction based on

particle filter

3.1 Fault prediction and fault space model for

dead reckoning

The expression of hybrid dynamic system (HDS) is

shown in equation (11); ts ∈ S is the discrete
system mode at moment t where S is the finite set

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 365 Issue 11, Volume 10, November 2011

of discrete system modes; xn

tx R∈ is the continuous

state variable of system at moment t; zn

tz R∈ is the

measurement of the system at moment t; un

tu R∈ is

the input of dead reckoning system at moment t; vt

and nt are considered as the process noise and

measurement noise respectively.

(, ,)

(, ,)

t t t t t

t t t t t

x f s x u v

z h s x u n

= +


= +

&

 (11)

As we all know that fault-proneness prediction in

the mobile robot dead reckoning system is a typical

HDS, which can be described as following: given its

system model, on the basis of observation sequence

0: 0 1{ , , , }t ty y y y= … , continuous control input

sequence 0: 0 1{ , , , }t tu u u u= … and the continuous

state sequence 0: 1 0 1 1{ , , }t tx x x x− −= …, , the fault-

proneness prediction estimate the state tx at moment

t and obtain the discrete state t ks + at moment t k+ .

Setting [, ,]TL Rx ω ω ω= as state variables and

[,]TL Ru u u= as input vector, where Lu and Ru are

the input control variables that respectively signify

the set speed of the left wheel and right wheel,

and [, ,]TL Ry ω ω ω= as observation vector; and the

following 1(| ,)t t tp x x s− is expressed in equation

(12) in linear Gaussian model:

1() () ()t t t t t t tx A s x B s F s uω−= + +

(12)

and (| ,)t t tp y x s is expressed as shown in equation

(13) in linear Gaussian model:

() () ()t t t t t t ty C s x D s v G s u= + +

(13)

where 0 1 2 3 4 5 6 7{ , , , , , , , }ts S S S S S S S S S∈ = ; S0

represents the normal working state of the system;

S1 represents malfunction with its left wheel

encoder; S2 represents its losing efficiency with the

right wheel encoder; S3 represents the failure with

its gyroscope; S4 represents that both wheel

encoders lose their efficiency; S5 represents the loss

of left wheel encoder and gyroscope; S6 represents

the fault of right wheel encoder and gyroscope; S7

represents the malfunction of all the three at the

same time. The system parameter matrixes are:

() 0; () 0; () 0;A s B s G s= = =

1 0 0 0

() 0 1 ; () 0 0

0 0

e

F s D s f

c d g

   
   = =   
      

where / , / ; 0.1; 0.1;L Rc r d r e fω ω= − = = = g=

0.0223. And e, f, g respectively represents standard

deviation of noise of the left wheel, right wheel, and

gyroscope. The motion patterns of the mobile robot

subject to the detectable fault set of system state of a

certain sensor. For example, it is difficult to confirm

whether there will be a fault occurring with gyro

sensor when the outputs of robot is still the

encoders; similarly, the fault of gyro is hard to

figure when the robot is in straight line mode (M2).

Regarding to the differences among the kinematic

models of different fault modes, we use different

observation equations to express, for example:

0 1

2 7

1 0 0 0 0 0

() 0 1 0 ; () 0 1 0 ;

0 0 1 0 0 1

1 0 0 0 0 0

() 0 0 0 ; () 0 0 0

0 0 1 0 0 0

C s C s

C s C s

   
   = =   
      

   
   = =   
      

L 。

3.2 The experimental platform MORCS-1

Mobile robots are used in active service for the

assisted living of elderly people [16]. We use the

mobile robot (MORCS-1) of Central South

University as the experiment platform and the

picture of MORCS-1 is shown in Fig.2, whose dead

reckoning system is composed of encoders for both

left and right wheels, and mobile-robot gyroscope.

The encoders measure the angular velocity of left

and right driving wheels respectively; meanwhile

the gyro measures the yaw rate of the robot. As the

tuning is obtained by the difference of their speeds

between left motor and right motor in real-time, and

the motion pattern is decided by the speed of the left

and/or the right driving wheel. The robot may in the

static mode (M1, 0L R

t tu u= =), the straight line

mode (M2, 0L R

t tu u= ≠), the rotation revolved

around the left wheel (M3, 0, 0L R

t tu u= ≠), the

rotation about the right wheel (M4, 0, 0L R

t tu u≠ =),

and other rotations (M5, 0, 0,L R L R

t t t tu u u u≠ ≠ ≠).

Fig.2 MORCS-1 mobile-robot

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 366 Issue 11, Volume 10, November 2011

3.3 Fault prediction based on particle filter

Suppose tx follows the first-order Markov process in

mode ts , and the measurement sequence ty is

mutually independent. Set the prior distribution of

original state 1x as ()op x , and the prior distribution

of mode ts as ()op s .

Step1. estimate the current state using 1:(|)t tp s y

(1) Initializaiton

The initialized time is 0t = , sampling for samples

1,2,...,i N= : 0 0~ ()id p d 0 0 0, ~ (|)ix p x d ， set

the initial weight 0 1/i Nω = ，and then obtain its

equal weighted sample set 0 0 1{ , ,1/ }i i N

id x N = .

(2) Update the weighted values

Calculate 1{ , }i i N

t t is x = according to 1(|)i

t tp s s − , and

compare the observed value with prediction result of

the output of particle filter to calculate the weighted

values of importance.

 1
1

1

(|) (|)

(| ,)

i i i
i i t t t t
t t i i

t t t

p y s p s s

q s s y
ω ω −

−
−

= for each sample.

 (3) Weights Normalization

1

i
i t
t N

i

t

i

ω
ω

ω
=

=

∑
% .

 (4) State estimation

Given the set of 1{ , , }i i i N

t t t id x ω =% to approximately

estimate 1:(|)t tp s y :

1:t

1 1

(|) ()i
t

N N
i i j

t t t ts
j i

p s y s sω δ
= =

= −∑∑ % (14)

Step2. estimate the posterior density distribution

1:(|)t k tp s y+ at moment t.

1: 1:

1: 1 : 1

1

(|) (|) , 2

(|)[(|)]

t k t t k t t k
S

t k

t t j j t t k

j t

p s S y p x y ds k

p s y p s s ds

+ + +

+

− + −
= +

∈ = ≥

=

∫

∏∫
 (15)

Let equation (14) into equation (15):

1: 1 1 1: 1

1 2

(|) (|) (|)
t kN

i i

t k t t t t j j t t k

i j t

p s S y p s s p s s dsω
+

+ + − + + −
= = +

∈ =∑ ∏∫

Here 1: 1t t kds + + − = 1 1t t t kds ds ds− + +⋅ ⋅ ⋅ ⋅ , the prediction

of malfunction after k steps is based on information
at moment t . As a result, we can utilize the posterior

density distribution of state 1:(|)t tp s y at moment t

to estimate state 1:(|)t k tp s y+ at moment t k+ , as

shown in Table 1.

Table 1 the pseudo code of fault prediction based on

particle filter

(1) Sampling

for j=1 to k

for i=1:N

sample
i

t js + ~
1(|)t j s jp s s+ + −

and 0: 0: 1: (,)i i i

t j t j t js s s+ + − +

 end

 end

Obtain the samples
1:{ ; 1, 2,..., }i

t ks i N+ =

(2) State prediction 1:

1

(|) ()
t k

N
i

t k t t s t k

i

p s y sω δ
++ +

=

=∑ %

(3) Decision-making of predicting fault probability

3.4 Weighted fault probability of particle filter

for decision-making of fault-proneness prediction

The prediction of fault-proneness probability

1:(|)t k tp s y+ at moment t k+ is decided by several

statistical indicators: fault-proneness probability and

its mathematical expectation or variance. In paper,

weighted fault probability was utilized for

prediction of fault-proneness occurring probability

[17]. Weighted fault probability, one of the

characteristic parameters for the judgment of

malfunction, is an efficient approach to predict fault

occurring. With k steps ahead of time, the weighted

fault probability depends on its forecasting from

moment t to t+k, whose calculation is shown in

equation (16).

�Pr () Pr (,)
N

t k t k i i

i j

ob s ob s i w+ + −
=

=∑ �

(16)

While 1 j N≤ ≤ , N represents the maximum

allowed size of decision-making step for prediction

at moment t+k (for example N=5). �Pr ()t kob s +

represents the prediction result of weighted fault

probability whose step size is j at moment t+k in

equation (16); Pr (,)t k iob s i+ − shows the prediction

of weighted fault probability at current moment

t k i+ − in which wi is the corresponding particle

weight. The weighted fault probability reflects the

accumulation process of fault degree. As a result,

the weighted fault probability can record variation

tendency of system faults, which is an important

parameter in decision-making of fault prediction.

We utilize weighted fault probability based particle

filter to predict fault-proneness of the robot dead

reckoning system in MORCS-1, whose results are

shown in Fig.3 (a) by calculating the weighted fault

probability respectively, and in Fig.3 (b), the thick

line represents corresponding real-time fault mode.

After analytical comparison, fault will occur when

its corresponding weighted fault probability verges

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 367 Issue 11, Volume 10, November 2011

on 1. If there is tendency of fault, its weighted fault

probability will be significantly rising. Therefore, it

is important to set an appropriate experience-based

threshold of the weighted fault probability to predict

the impending fault probability. If the weighted fault

probability of a certain fault mode is greater than the

setting threshold, or the sum of other weighted fault

probabilities is much less than another threshold, we

can safely draw the conclusion that this fault mode

will occur after k time steps.

（a）

（b）

Fig.3 Comparison of weighted fault probability

and the real fault mode

4 Several proposed fault-proneness

prediction methods based on particle

filter and support vector machine (PF-

SVM) integration framework

4.1 Decision-making of fault-proneness prediction

utilizing weighted fault probability of particle

filter on the basis of support vector machine

It is practical to complete fault prediction using

threshold of weighted fault probability. However,

the threshold selection mainly depends on

experience. It is not ideal when it comes to the

calculation of the weighted fault probability; or the

inappropriately selected threshold based on

experience cannot be adjusted adaptively, and

prediction results will not be optimistic. Thus, we

use the prediction model of SVM to improve the

threshold setting problem.

The input characteristic parameter of Fault-

proneness prediction method is the model of

weighted fault probability, and output tags are

prediction results of fault mode. The weighted fault

probability is a process variable calculated from the

estimation process of particle filtering, from which

we obtain and form plenty of the training samples.

Meanwhile, we adopt all kinds of the chosen fault

modes to train Support Vector Machine and build

the decision-making model.

Tab. 2 Fault modes list
(L, R respectively denotes the left wheel encoder and the right

wheel encoder, G(Gyro) denotes the gyroscope.)

Fault

Mode

Failure of

components

Fault

Mode

Failure of

components

1 Normal 5 LR

2 L 6 LG

3 R 7 RG

4 G 8 LRG

Fig. 4 Relationships among fault modes

The fault modes of the robot dead reckoning system

in MORCS-1 are presented in Fig.4, in which 1~8

respectively represent the eight kinds of fault modes

in table 2. The entire possible fault modes and their

variation relationship can be one of them or a subset

in the robot dead reckoning system. Expanding the

fault relationships in Fig.4, we obtain the relation

sequences of all the fault modes as shown in Fig.5.

In these relation sequences, we can find that there is

some redundant information, taking mode 1 & 8 for

example. But it does not affect our sample training

because the real-time fault occurring only belongs to

a subset or a part of the test sample. And the model

of Support Vector Machine can predict its result as

well because the test sample has contained all of the

transformation sequences among all the fault modes.

21

3

4

5

7

8

61 2 8

1

1

1

1

3

4

5

6

7

8

8

8

8

test6

test1

test3

test2

test5

test4

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 368 Issue 11, Volume 10, November 2011

Fig.5 The set of fault relationships among test samples

Training sample is extracted from the weighted fault

probability from particle filter. The randomness of

“particles” is proved when we run the same set of

training sample; it will generate different particles

so that we will respectively obtain different values

of characteristic parameters of the weighted fault

probabilities each time. Nevertheless, the weighted

fault probabilities are in the same trend. Hence, we

can obtain abundant sets of unified characteristics as

training samples.

1. Steps for the fault prediction method on the basis

of weighted fault probability of Particle Filter and

Support Vector Machine:

1) Extract characteristic parameters of the weighted

fault probability, store samples of data according to

LIBSVM software package [18], and then adjust

these data in proportion;

2) Choose RBF kernel function;

3) Adopt the cross validation to select the optimal

parameters c and g as shown in table 3.

Table 3 the pseudo code for parameters c and g:

4) Use the selected optimal parameters c and g to

train the entire set and obtain the model of Support

Vector Machine as shown in table 4.

Table 4 the pseudo code for obtaining SVM model

5) Test for fault-proneness prediction by the devised

model mentioned above.

4.2 Residual error to improve computational

complexity for fault-proneness prediction based

on particle filter

The utilization of residual error to improve fault-

proneness prediction with particle filter draws its

lessons from the approach of fault diagnosis. Firstly

the tendency of system state is estimated; then the

system makes decision of pre-warning according to

the average relative error.

Since computational complexity of time to extract

the weighted fault probability is relatively high,

there is no need to use residual error to extract and

predict fault probability. And fault prediction has

superiority in consideration of its time complexity,

whose main flow scheme is shown in Fig.6. In the

first place, we utilize Particle Filter to estimate the

parameters of system states at moment t on the basis

of measured value at moment t-1; then we compare

the real-time measured value with its estimated one

at moment t. If average relative error were greater

than the setting threshold, it will be explained that

there is a tendency of malfunction or the real-time

measured value of variation is abnormal. That is to

say, a fault of the system is just around the corner as

shown in Fig.6. At moment t-1, the system works

normal, but at moment t it is warned of fault and a

pre-warning should be made at moment t-1.

Fig. 6 Improve fault prediction with particle filter

using residual error

Setting a threshold of residual error to improve fault

prediction method: if the tendency of malfunction is

obvious, then pre-warning will be in time, or if the

tendency of fault varies gently, its pre-warning will

not be made timely. The steps of its realization are

listed as following:

bestcv = 0; % set the best model firstly

for log2c = -5:5,

 for log2g = -5:5,

cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ',

num2str(2^log2g)]; %Parameters format

cv=svmtrain(train_f_labels,train_f, cmd);

%Training c and g between -5 and 5 separately.

 if (cv >= bestcv),

 %%Solve c and g in the best model

 bestcv = cv;

bestc = 2^log2c;

bestg = 2^log2g;

 end

 end

end

cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg)];
% gain the optimal parameters c and g for training model

cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg)];

model = svmtrain(train_f_labels, train_f, cmd);

%model training, the “model” we obtain is a

 %syntagm data.

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 369 Issue 11, Volume 10, November 2011

(1)Initialization: sampling for 1,2,...,i N= at

moment 0t = , 0 0 0 0 0~ (), ~ (|)i id p d x p x d set the

initial value 0 1/i Nω = , we obtain its equivalent

weighted set of sample 0 0 1{ , ,1/ }i i N

id x N = .

(2)Update weights: calculate 1{ , }i i N

t t id x = according

to 1(|)i

t tp s s − , then compare each output of particle

of fault prediction with the measured value, update

the weight
i

tω
 of importance for each sample.

(3) Weight normalization:

1

i
i t
t N

i

t

i

ω
ω

ω
=

=

∑
%

.

(4)State estimation: Given the set 1{ , , }i i i N

t t t id x ω =% , use

1:(|)t tp s y to calculate the edge density distribution

1:(|)t yp d y :

 (5) Decision-making and fault prediction: compare

observation vector $ ty with the real-time measured

vector ty and calculate their residual error:

1:

1 1

(|) ()i
t

N N
i i j

t y t t ts
j i

p s y s sω δ
= =

= −∑∑ %

 (17)

Here t is the number of prediction sample. And we

obtain the relative error of residual te%
$

t tte y y= −
 (18)

Then the ratio of prediction model between relative

error and average relative error is calculated:

$

t
t

t

e
e

y
=%

 (19)

and

/te eρ = % %
 (20)

(ρ > a) setting the threshold value, we conclude that
the malfunction will sometimes occur (the setting

threshold value can be∞).
From the discussion above, we sum up as following:

the fault prediction ability of time steps depends on

variation tendency of fault data such as the residual

error of particle filter. If the tendency of fault is not

obvious enough, the pre-warning of system will be

lagged behind or even cannot forecast an actual time

step of malfunction.

4.3 Fault prediction based on particle filter and

support vector machine integration framework

On the one hand, the calculation of weighted fault

probability of Particle Filter for the fault-proneness

prediction needs multi-step looping of computation

with large numbers of particles and costs a lot of

operating time. On the other hand, the utilization of

residual error improves the Particle Filter based

fault prediction to be much simpler but has strong

prediction ability. Nevertheless, it cannot accurately

predict the corresponding time step of malfunction

relatively. Thus, we propose a new fault prediction

method on the basis of Particle Filter and Support

Vector Machine integration framework to combine

strengths and avoid weaknesses. In this method, we

firstly extract the system state parameters of particle

filter in middle process from training particles set.

We make use of process parameters as characteristic

parameters, and then design training samples and

corresponding output tags to train the model of

Support Vector Machine. Fault prediction method of

Particle Filter and Support Vector Machine (PF-

SVM) integration framework is shown in Fig.7:

Fig.7 PF-SVM integrated framework

Instead of using the measured parameters to directly

train the models, we take advantages of the Particle

Filter to extract and estimate the process parameters

for training the prediction model of Support Vector

Machine.

The main advantages of this integration framework

are list as following:

Firstly, since the characteristic parameters of its left

wheel velocity, right wheel velocity, and both

logical velocity are not obvious enough to indicate

the tendency of fault, we should further extract

some other characteristic parameters. Thus, we

make use of particle filter to estimate parameters of

system states and adopt the observation variables

and state variables as features that can describe

fault-proneness of the system because they are

comparatively more obvious than the observed

velocities.

Secondly, on the basis of the randomness of the

“particles” of particle filter, we obtain different

estimation parameters each time; thus we can gain

the desired size of samples by multiple operating so

as to enrich and improve our kinds and quantities of

characteristic parameter of the training samples.

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 370 Issue 11, Volume 10, November 2011

The Particle Filter and SVM integration framework

based fault prediction is realized in mainly two

steps:

1. Sample collecting and model training: to train

SVM model in the first place, we use the training

characteristic matrix in this method as the

parameters of the system state estimation in Particle

Filter. And the output of training tags are the

prediction results of fault modes as shown in the left

part of Fig.8.

2. Fault prediction: using the algorithm Particle

Filter we directly forecast the parameters of system

state by making use of the function svmpredict(…)

in Support Vector Machine toolbox as shown in the

right part of Fig.8.

Start

test1~test6

PF

Generate state variables

（training characteristic parameters）

Training sample tags

SVMtrain(…)

Generate SVM model

Start

Particle initialization

PF algorithm

State variable

（testing sample）

SVMpredict(…)

Fault mode

End

Fig.8 PF-SVM integrated flow chart

The fault prediction of time step using the method

of Particle Filter and Support Vector Machine (PF-

SVM) integration framework is relatively precise,

comparatively simpler and practical with low time

complexity. The problem of unobvious features with

characteristic matrix is solved through enlarging the

training sample because one of the great advantages

of Support Vector Machine model is that its learning

ability keeps working well no matter how large the

sample size is. Furthermore, it is easy to enlarge the

parameters sets of training samples because they can

be produced and can be assured of the diversity by

the randomness of particles.

5 Experiments analyses of fault

prediction for robot dead reckoning

system MORCS-1

For the convenience of expression, We label these

four kinds of algorithms in this paper: algorithm 1:

A particle filter based algorithm for fault prediction

mentioned in 3.3-3.4; algorithm 2: A weighted fault

probability based Support Vector Machine for fault

prediction mentioned in 4.1; algorithm 3: Improved

particle filter using residual error for fault prediction

mentioned in 4.2; algorithm 4: A particle filter and

Support Vector Machine integration framework for

fault-proneness prediction mentioned in 4.3.

5.1 Sample data for SVM

To construct a complete library of training samples

for the fault-proneness prediction of the robot dead

reckoning system, in which the fault space has 2
3
=8

kinds of fault modes (types), we have to set 8 kinds

of sample tags. In algorithm 2, input characteristic

parameter for the untrained Support Vector Machine

is the weighted fault probability, while in algorithm

4 the input of the untrained model of Support Vector

Machine is the process parameters of system states

and the observation parameters of estimation by the

Particle Filter. The output tags of both algorithm 2

and 4 are the fault modes, or the fault types. We

record the logical inputs of both left and right wheel

encoders and collect the actual output data of these

wheel encoders and gyroscope, from which we will

select parts of them as the training data of the

model, and the rest as the testing data. In the

collection of training samples, the entire types of

fault modes should be included. And then the theory

of Particle Filter is applied to extract weighted fault

probability and other related parameters for different

algorithms in these collections of training sample.

To obtain the sample tags in Support Vector

Machine training, we should bring ahead of time for

k time steps to warn the actual fault mode

corresponding to the training sample (such as k=5),

that is, we should mark it out immediately to obtain

the fault prediction sample tags when its relevant

variation tendency of fault appears.

Considering the transformation relationships among

fault types (shown in Fig.4) and their completeness

in sample sets, we combine the actual operating of

the robot dead reckoning system and conclude that

when one of the sensors go wrong and cannot be

repaired spontaneously, the system would transform

into another fault mode bringing with its original

malfunction. For this reason, we select the set of

sample data of the fault transformation

relationships, test1~test6, as shown in Fig.5, to

cover the entire fault types. Possible fault types of

the robot dead reckoning system can be one of them

or their sub-cases, though there is redundancy exist

among the sequences of fault modes in Fig.5. If the

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 371 Issue 11, Volume 10, November 2011

actual fault type is only a part of one certain training

sample, the Support Vector Machine model can also

predict the corresponding results because the

training samples almost include the entire

transformation information among all the fault

modes.

5.2 Experiments platform for robot dead

reckoning system fault prediction

Software simulation allow to approximate the

behavior of complex systems under several scenario

conditions[19]. In this paper, we utilize Matlab as

our experiment platform for simulation, and apply

four different algorithms to sample its real-time data

of sensors and predict the system state of fault with

MORCS-1 robot. Our main interface of the program

and its relevant sub-blocks are shown in Fig.9.

Fig.9 The main interface for simulation and analysis

(1. Input and output blocks, 2. Prediction of process

parameters block, 3. Prediction results block, 4.

Control block, 5. Parameters description block)

In the whole process of the simulation experiment,

block3 makes decisions for fault prediction by using

the weighted fault probability and output of block2.

Firstly we separately adopt the prediction scheme of

algorithm1 and algorithm2, then click the button of

“Improved Scheme” on the right side of the bottom

to run the two improved schemes of algorithm3 and

algorithm4 for fault prediction in block2; they don’t

have to calculate the weighted fault probability.

5.3 Experiments analysis for fault prediction

method

In order to verify the fault prediction results of the 4

kinds of algorithms for robot dead reckoning

system, we adjust MORCS-1 in different motion

states to design and simulate fault modes. In Fig.10,

there are the input parameters of both left and right

wheel encoders. In Fig.11, there are the real-time

output parameters of both wheel encoders and

gyroscope of MORCS-1. We judge the motion

mode of MORCS-1 by setting the velocities of both

wheel encoders as shown in Fig.12, where its

vertical coordinate 1 represents the linear motion,

and vertical coordinate 2 represents the motion

revolving about the right wheel while vertical

coordinate 3 represents the motion rounding about

the left wheel, and vertical coordinate 4 represents

other motion mode, vertical coordinate 5 represents

the state of rest, as described in 3.2. By calculating

the parameters of input and output, we obtain Fig.12

where MORCS-1is in the state of rest at first, and

then the input of both left and right wheels are

equivalent linear motion, while in the rest states are

kinds of curvilinear motions (mode 4).

(a) Left wheel (b) Right wheel

Fig.10 Logical input parameters

(a) (b) (c)

Fig.11 Output parameters

(a) Left wheel encoder (b) Right wheel encoder (c)
Gyroscope

Fig.12 Motion modes

Fig.13 Weighted fault probability

As shown in Fig.13, to calculate the weighted fault

probability by algorithm1, we set the threshold of

weighted fault probability as 0.5 at first, in other

word, when the weighted probability of a certain

fault mode is greater than 0.5, this mode will be

judged as the fault that would appear after several

time steps. We can see that fault mode2 occurred at

2 3

1
4

5

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 372 Issue 11, Volume 10, November 2011

time step 25, fault mode5 appeared at time step 75,

and fault mode8 happened at time step 118. Details

of the entire fault modes for algorithm1 are listed in

Fig.14 (a). It should be noted that the horizontal axis

denotes time step, and vertical axis denotes fault

mode. From the result, the pre-alarming are made at

each turn although for the fault at time step 119, it

warn only one time step in advance (giving an pre-

warning at time step 118). The experiment data of

algorithm2 for the fault-proneness prediction is

shown in Fig.14 (b); and it was pre-alarming in time

as well before each fault occurring, and for the fault

at time step 119, it alarm less than 5 time steps in

advance, but it was comparatively better than

algorithm1. The fault prediction result of algorithm3

is shown in Fig.14(c), its pre-warning was made the

same as above, but for the fault at time step 119, it

warn nearly 5 time steps in advance, leaving enough

time for emergency management; and at time step

89, its pre-alarm was more than 10 time steps ahead.

This fact indicated that at time step 89, the variation

tendency of fault is obvious, while at time step 119,

it is relatively moderate. Last but not the least, with

its fault prediction results of algorithm4 shown in

Fig.14 (d), we can find that its pre-alarm was even

better than the other algorithms: all the predictions

are appropriately 5 time steps ahead than the real-

time occurring of faults, that is to say, the stability

of algorithm4 is the highest in predicting the time

steps of fault occurring in experiments. Considering

the fact that fault prediction of time steps ahead of

schedule is directly related to the variation tendency

of faults by computing its sampling data, we can

conclude that these four fault prediction methods are

all efficient, especially for algorithm4.

(a) Fault prediction result of algorithm 1

 (b) Fault prediction result of algorithm 2

(c) Fault prediction result of algorithm 3

 (d) Fault prediction result of algorithm 4

Fig.14 Fault prediction results of algorithms

In this simulation experiment of these algorithms,

we have obtained better effectiveness and efficiency.

Nevertheless, we define the “prediction accuracy”

as the ratio of the correctly predicted samples and

total testing samples, or it means the prediction data

compared with the real-time data after all the

operating ends. For this purpose, ten independent

sampling experiments are carried out to test the four

algorithms of their prediction accuracy. And we can

find that the average accuracy is above 95% as

shown in Fig.15 where they are close to each other,

but only algorithm4 has a tendency of ascendancy.

Fig.15 Comparisons of these four algorithms on the

degree of fault prediction accuracy

Table.5 Run time comparison（Time unit: s）

 Algorithm 1 2 3 4 5

ALG 1

ALG 2
11.499 10.744 10.225 11.704 10.189

ALG 3 6.006 6.041 6.141 8.071 6.224
1

ALG 4 6.402 6.713 6.502 8.538 6.673

ALG 1 2

ALG 2
10.583 11.044 11.086 10.767 10.747

95.98264

96.29627

97.08993

97.29627

95.1
95.4
95.7
96

96.3
96.6
96.9
97.2
97.5

1 2 3 4

Degree of Accuracy for Fault Prediction

Algorithm

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 373 Issue 11, Volume 10, November 2011

ALG 3 6.282 6.362 6.449 6.167 6.121

ALG 4 6.715 6.873 7.048 6.761 6.562

ALG 1

ALG 2
10.504 10.604 10.846 11.678 10.976

ALG 3 6.171 6.148 6.022 6.309 6.351
3

ALG 4 6.395 6.796 6.392 7.03 6.805

Algorithm 6 7 8 9 10 Average

ALG 1

ALG 2
9.949 10.197 11.026 10.275 10.586 10.639

ALG 3 6.323 6.66 6.37 6.077 6.139 6.405
1

ALG 4 6.942 6.624 7.372 6.436 6.659 6.886

ALG 1

ALG 2
10.389 10.195 10.625 10.271 10.305 10.601

ALG 3 6.362 6.077 6.013 6.621 6.192 6.264
2

ALG 4 6.943 6.282 6.5 7.083 6.53 6.729

ALG 1

ALG 2
9.939 10.953 10.737 9.927 10.294 10.645

ALG 3 5.918 6.131 6.154 5.789 6.250 6.124
3

ALG 4 6.313 6.519 6.567 6.029 6.789 6.563

To statistically compare the runtime of these four

algorithms, we conduct three independent groups of

experiments, for each group we carried out ten

independent experiments and had their records each

runtime. From the obtained experiment data in table

2, we can see that the runtime of algorithm 1 and 2

are much similar as our expectation because their

prediction parameters are much the same while only

their decision-making methods are different. So we

consider algorithm 1 and 2 as the same type. What’s

more, the computing time of algorithm 1 and 2 are

comparatively complex as shown in table 5 while

algorithm3 cost much less runtime. Although the

time-consuming of algorithm4 is slightly more than

algorithm3, it is generally acceptable for most of the

systems. Thus, we can conclude that algorithm4 is

the best of these four algorithms not only for its

higher average accuracy of prediction but also for

the stability of the pre-warning time steps for fault

prediction with a relatively better efficiency.
The proposed algorithm is applied in MORCS-1

successfully, and the mobile robot can predict fault in

real time, so the satisfactory application results are

obtained.

6 Conclusion and prospective
Algorithm 1 is based on the traditional particle filter

prediction framework whose extracted characteristic

parameter is the weighted fault probability, and its

output accuracy is basically stable for nearly all the

testing data; algorithm 2 has a relatively higher fault

prediction accuracy than algorithm1, indicating that

the construction of SVM model to replace the fixed

setting of threshold of algorithm 2 is efficient.

However, both of these two algorithms cost too

much runtime for the extracting of weight fault

probability. Algorithm 3 uses residual error to

simplify the computation, thus improves algorithm

runtime. Algorithm 3 is not only simple and easy to

realize but also fast to operate with lower false rate

of alarming. But compared with algorithm 4, time

step for fault prediction of algorithm 3 is relatively

imprecise because it mainly depends on variation

tendency of data. Algorithm 4 improves algorithm

1, 2 and 3 respectively by integrating all of their

advantages. Algorithm 4 can calculate the time step

of fault prediction with the highest accuracy and

speed. Furthermore, if a little bit weaker was shown

in stability of algorithm 4, we could solve the

problem by improving the sets of training samples

or even retrain for the Support Vector Machine.

At last, we list some needed improvements of these

experiments as following:

a) Firstly, in this article, the experiments supposed

that the robot did not moved on complexity terrain

for the purpose of simplifying the model;

b) Secondly, when applying the basic algorithm of

particle filter to fault-proneness prediction, the

problems of particle degeneracy and its efficiency

should be taken into consideration.

c) Thirdly, the fault-proneness prediction often

lacks a universal type. In this article, we utilize the

SVM to improve particle filter of fault-proneness

prediction for the purpose of generalization. In the

future, other techniques of machine learning will be

taken into consideration to complete a generalized

fault prediction framework.

In brief, research of the fault-proneness prediction

for hybrid systems is still in full swing and problems

mentioned above need to be solved a step further.

Acknowledge
The authors would like to acknowledge the

postdoctoral granted financial support from China

postdoctoral science foundation (20110491272),

National Natural Science Foundation (61104014)

and Education Department of Hunan research

project (11B070).

References:

[1] Zhijie Zhou, Changhua Hu, Hongdong Fan, et

al. Fault Prediction of the Nonlinear System

with Uncertainty, Simulation Modeling

Practice and Theory, Vol.16, 2008, pp.690-

703.

[2] Hu Chang Hua, Zhang Qi, Qiao Yu Kun.

Strong Tracking Particle Filter with

Application to Fault Prediction. Acta

Automatica Sinica, Vol.34, No.12, 2008,

pp.1522-1528.

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 374 Issue 11, Volume 10, November 2011

[3] Catal Cagatay, Software Fault Prediction: A

Literature Review and Current Trends. Expert

Systems with Applications, Vol.38, No.4, 2011,

pp.4626-4636.

[4] Hamdi-Cherif, A.. Intelligent control and

biological regulation for bioinformatics,

International Journal of Mathematical Models

and Methods In Applied Sciences, Vol. 4, No.2,

2010, 93-104.

[5] Di Martino Sergio, Ferrucci Filomena, Gravino

Carmine, Sarro Federica. A Genetic Algorithm

to Configure Support Vector Machines for

Predicting Fault-Prone Components. Lecture

Notes in Computer Science. Vol.6759, 2011, pp

247-261.

[6] Zhang Qi, Hu Chang Hua, Qiao Yu Kun, Cai

Yan Ning. Fault Prediction Algorithm Based

on Stochastic Perturbation Particle Filter,

Control and Decision, 2009, Vol.24, No.2,

pp284-288.

[7] Chen Chaochao, Zhang, Bin, Vachtsevanos

George, Orchard, Marcos. Machine Condition

Prediction Based on Adaptive Neuro-Fuzzy and

High-order Particle Filtering. IEEE

Transactions on Industrial Electronics, Vol.58,

No.9, 2011, pp4353-4364.

[8] Li Baoan, Liu Zhihua, Li Xinjun. Research of

UAV Engine Fault Prediction Based on Particle

Filter. Proceedings of the 9th International

Conference on Electronic Measurement &

Instruments (ICEMI 2009), 2009, pp.4/813-17.

[9] Zhengguo Xu, Yindong Ji, Donghua Zhou. A

new real-time reliability prediction method for

dynamic systems based on on-line fault

prediction, IEEE Transactions on Reliability,

Vol.58, No.3,2009,pp.523-538.

[10] Iker Gondra, Applying Machine Learning to

Software Fault-Proneness Prediction, The

Journal of Systems and Software, Vol.81, 2008,

pp.186-195.

[11] Ni J., Zhang C., Yang S. X., An Adaptive

Approach Based on KPCA and SVM for Real-

Time Fault Diagnosis of HVCBs, IEEE

Transactions on Power Delivery, Vol.26 ,

No.3, 2011, pp.1960-1971.

[12] Yan Zhang, Bide Zhang, Yuchun Yuan, Zichun

Pei, Transformer Fault Prediction Based on

Support Vector Machine, International

Conference on Computer Engineering and

Technology (ICCET), 2010, Vol. 3, 2010, pp.

513-516.

[13] Qin Li-Na, Software Reliability Prediction

Model Based on PSO and SVM. International

Conference on Consumer Electronics,

Communications and Networks (CECNet),

2011, pp.5236-5239.

[14] Adrian Smith, Sequential Monte Carlo

Methods in Practice, New York: Springer-

Verlag, 2001.

[15] M. S. Arulampalam, S. Maskell, N. Gordon,

and T. Clapp, A Tutorial on Particle Filters for

Online Nonlinear/Non-Gaussian Bayesian

Tracking, IEEE Transactions on Signal

Processing, vol.50, No. 2, 2002. pp.174-188.

[16] Byoung Wook Choi, Dong Gwan Shin, Jeong

Ho Park, Soo Yeong Yi, Seet Gerald. Real-time

control architecture using Xenomai for

intelligent service robot in USN environment,

Journal of Intelligent Service Robotics, Vol. 2,

No.2, 2009, pp.139-151.

[17] Zhang Lei, Li Xingshan, Yu Jinsong, Liao

Canxing. A Fault Prognostic Algorithm Based

on Hybrid System Particle Filter and Dual

Estimation, Acta Aeronautica Et Astronautica

Sinica, Vol.30, No.7, 2009,pp.1277-1283.

[18] Chih Chung Chang, Chih Jen Lin, LIBSVM: a

Library for Support Vector Machines, 2001.

Software Available at: http://www.csie.ntu.edu.

tw/~cjlin/libsvm.

[19] Neri F.. Software agents as a versatile

simulation tool to model complex systems.

WSEAS Transactions on Information Science

and Applications, Vol. 7, 2010, pp. 609-618.

WSEAS TRANSACTIONS on SYSTEMS Lingli Yu, Min Wu, Zixing Cai, Yu Cao

ISSN: 1109-2777 375 Issue 11, Volume 10, November 2011

