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1 Introduction 
Comb filter is the filter that delays a signal and adds 
it to itself, causing signal assembly and disassembly 
interference. Comb Filters have frequency response 
of a series of regularly spaced spikes (like a 
“Comb”). 2-D and 3-D comb filters have been 
introduced recently in PAL and NTSC television 
decoders. 2-D and 3-D Filters Comb Filters are used 
to separate the encoded signal of the color from the 
luminance signal when receiving an analog video 
signal. A Comb Filter enhances, cleans and clarifies 
the image colors [1].  In [2], the authors presented a 
framework for temporal analysis of left ventricular 
(LV) endocardial wall motion they use 2-D 
recursive comb filtering. In [3] the author presents a 
special category of 2-D comb filters with fourfold 
symmetry. In [4], the authors present a design 
procedure of comb-line bandpass filter with 
asymmetrical coupled-lines, which has small size in 
comparison with other planar type filters to take full 
advantage of reducing the size of RF and microwave 
components. In [5], the authors propose a flexible 
hardware-friendly architecture to perform 2-D  
upscaling and downscaling.  

   All the previous 2-D designs can be considered as  
special cases of the new proposed 2-D comb filters 
while until now there does not exist any systematic 
way of 2-D comb filter design. The present brief try 
to cover this blank in the technical literature.  

   So, in this brief, a new transformation is 
introduced for the 2-D and 3-D comb filters design. 
This paper is organized as follows: Section II 
presents  First-Order 2-D IIR Comb Filters 
design together with a numerical example. In 
Section III, the design of a family of Second-Order 
2-D IIR Comb Filters is presented. Our conclusion 
and some remarks for multiple Comb frequencies 
can be found in Section IV. 
 

 

2 The Proposed Method for First-

Order  IIR 2-D Comb Filters 

Consider the 1-D transfer function 
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with 1 j Tz e ω− =  π ω π− ≤ ≤ ,  T is the Sampling 
Period,   and 0 1rρ<< < <   

 

 
Fig. 1.a     Plot of ( )H ω  vs ω  for 

0.899, 0.900rρ = =  
 

It is apparent that for 0ω ≈ ( )
1
1

H
r

ρ
ω

−
≈

−
 while for 

all the other frequencies ( ) 1H ω ≈ .  So, this filter is 

an all-pass filter that offers a remarkable 
amplification the for 0ω =  (e.g. DC frequency).  
The magnitude response is illustrated in Fig.1.a in 
the case of 0.899, 0.900rρ = =  (T =1 without loss of 
generality). 
 

 

Fig. 1.b   Group Delay for the particular 1-D Comb 
Filter 
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depicted in Fig. 1.b and shows almost linear 
behavior in a big part of the frequency domain. The 
Comb filter  of (1) is presented in [1].   All the 
previous 2-D designs are special cases of 2-D comb 
filters while there does not exist any systematic way 
of 2-D comb filter design. In this section, we extend 
it to 2-D case as follows: 
    For the first-order Comb filter of (1) conside the 
transformation 
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with 1 11
1

j Tz e ω− =  1π ω π− ≤ ≤ ,  2 21
2

j Tz e ω− = , 

2π ω π− ≤ ≤  

1 2,T T  are the sampling periods to horizontal and 
vertical direction whereas:  0 1rρ<< < <  
 

 
Fig. 2.a:   Magnitude Response 2-D Comb Filter (1st 

Order) 
 
 
Transformation (2) can be easily extended to a 
family of transformations:   
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simply 
 
    1 1 1

1 2(1 )z z zλ λ− − −= + −   with 0 1λ< <  
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with 1 11
1

j Tz e ω− =  1π ω π− ≤ ≤ ,  2 21
2

j Tz e ω− = , 

2π ω π− ≤ ≤  

( 0 1rρ<< < < ) 

The stability of the final 2-D filter can be proved 
using the following Theorem. The Theorem claims 
that if our 1-D prototype filter is Stable (like in (1)) 
then the  transformation 1 1 1

1 1 2 2z C z C z− − −= +  with 

1 2 1C C+ =  and 1 2 0C C >  yields a 2-D stable filter.  
 

Theorem. Consider a prototype 1-D BIBO 

(Bounded Inputer Bounded Output) stable filter with 

transfer function    
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Under the transformation 1 1 1
1 1 2 2z C z C z− − −= +  with 

1 2 1C C+ =  and 1 2 0C C > , the prototype 1-D BIBO of 
(1) gives the 2-D filter 
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which is also stable in BIBO sense. 
 
Proof .  We have to prove that ( )1 1

2 1 2, 0B z z
− −

≠ for 

every 1
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(since 1 2 0C C > ), that makes our 1-D filter with 

transfer function  ( )
( )
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H z
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=       non-stable (in 

BIBO sense), but this contradicts the assumption 
and this completes the Proof.                                                                               
█ 
 
Numerical Example 1: 

Consider without loss of generality 1 2,T T  equal to 1. 

Then, for 0.9r = and 1
2

λ =  in (3) 

the magnitude response is depicted in Fig.2.a, 
while the Group Delays 
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are depicted in Fig.2.b and Fig.2.c. 
 
 
 
 

 
Fig.2.b 1st Group Delay Response for the 2-D Comb 

Filter 
 
 

 
   Fig.2.c 2nd  Group Delay Response for the 2-D 
Comb Filter 
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It is apparent that the family of the filters of (3) 
offers a remarkable amplification for the 2-D 
frequency. If amplification of another 2-D 
frequency 1 2 10 20( , ) ( , ) (0,0)ω ω ω ω= ≠  is necessary, a 
second-order 2-D IIR Comb filter must be used. 
 

3 The Proposed Method For Second -

Order IIR 2-D Comb Filters 
In this session, we extend (3) as follows in order to 
create a filter for remarkable amplification for the 2-
D frequency 1 2 10 20( , ) ( , )ω ω ω ω=  
Consider first 
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Two cases exist: 

a) 1c = , that means 1
2

λ =   and 

b) 1c ≠ , that means 1
2

λ ≠    

 
a) The first case yields the two equations: 
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Using  (6.1) one obtains the “comb” frequencies 

1 10 2 20,ω ω ω ω= =  
and the symmetric solution 

2 1
1 20 2 10

1 2

,
T T

T T
ω ω ω ω= =  

while from (6.2) two other couple of Comb 
frequencies, i.e. 1 10 2 20,ω ω ω ω= − = −  
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are obtained. 
 
 
b) The second case yields also  two equations: 
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with 1c ≠ . 
 
Hence, from (7.1) we find the comb frequencies 

1 10 2 20,ω ω ω ω= = , and from (7.2) the comb 
frequencies 1 10 2 20,ω ω ω ω= − = −  
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It is obvious for our 2-D IIR filter that we can use 
only the case b) since the amplification of the 

“symmetric frequencies” ( 2 1
1 20 2 10

1 2

,
T T

T T
ω ω ω ω= = ) is 

not required. 
 
Therefore the 2-D IIR Comb Filter in design is 
given by (4) that can be also rewritten as 
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with 0 1rρ<< < < , 0 1λ< < and 0.5λ ≠   
The stability of the final 2-D filter can be proved 
using the  Theorem of Section II.  

With the notation 1
c

λ

λ

−
=  now, a further 

simplification of the second-order 2-D IIR Comb 
Filter transfer function can be formulated 
 
 

 
Numerical Example 2: 

Consider the 2-D IIR Comb Filter of (8). Suppose 

that we want the amplification of 10 20,
2 4
π π

ω ω= =  

(and of course the symmetric 10 20,
2 4
π π

ω ω= − = − ).  

Choose for example c = 2, 0.9r = . Having without 
loss of generality 1 2,T T  = 1, one obtains 
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Fig.3.a  depicts the magnitude response 
while Fig.3.b and Fig.3.c depict the Group Delays 
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Fig. 3.a:   Magnitude Response 2-D Comb Filter (2nd  

Order) 
 

 
Fig.3.b 1st Group Delay Response for the 2-D 

Comb Filter (2nd order) 
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where 1c ≠  
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Fig.3.c 2nd  Group Delay Response for the 2-D 
Comb Filter (2nd order) 
 
4 Conclusion 

A method for designing 2-D comb filters has been 
presented and illustrated through specific numerical 
examples. The method is based on the appropriate 
transformation 1 1 1

1 2(1 )z z zλ λ− − −= + −   with 0 1λ< < .  
A Theorem regarding the stability of our 2-D Comb 
Filters is also stated and proven. Numerical 
examples illustrate the validity and the efficiency of 
the method. 2-D filters with several Comb 
frequencies can be easily implemented by cascade 
design, while by using further transformations like 

11
1 1

Pz z−− =  and 21
2 2

Pz z−− = where 1 2,P P  are positive 
integers, except the Comb frequencies 

1 10 2 20,ω ω ω ω= ± = ±  the following comb frequencies 

are obtained    1 2
1 10 2 20

1 2

,
k k

P P
ω ω ω ω= ± = ±  , 

1 11, 2,...,k P=  and 2 21,2,...,k P=  
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