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Abstract: - Interval DEA frontiers are here used in situations where one input or output is subject to uncertainty 
in its measurement and is presented as an interval data. We built an efficient frontier without any assumption 
about the probability distribution function of the imprecise variable. We take into account only the minimum 
and the maximum values of each imprecise variable. Two frontiers are constructed: the optimistic and the 
pessimistic ones. We use fuzzy relationships to introduce a new efficiency index based on a set of some Fuzzy 
T Norms. We will explore only the case where only one single variable presents a certain degree of uncertainty. 
 
Key-Words: - Data Envelopment Analysis; Fuzzy Sets; Interval Data; T Norms; optimistic evaluation; 
pessimistic evaluation 
 

1 Introduction 
Classic Data Envelopment Analysis (DEA) 

models [1] estimate a non-parametric linear 
piecewise frontier determined by efficient Decision-
Making Units (DMUs). Such models assume that 

the values involves are known with absolute 
precision. However, such hypothesis might not be 
true either due to uncertainty hidden in the 
measurements or because the data are given in 
interval format [1].  
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This paper proposes a method to evaluate 
efficiency in the case where the data are in interval 
form. The method uses a geometrical approach in 
order to build a fuzzy efficient frontier sets. Instead 
of efficiency score we will attribute to each DMU a 
membership degree to the frontier which will 
become a fuzzy set [2].  

Alternative solutions for interval data in DEA 
models can be found in the literature with Fuzzy 
Linear Programming Problems. Yet another 
approach found is to present the efficiency 
measurements in terms of fuzzy functions. We 
emphasize that the approach followed in this paper 
uses only the concept of fuzzy sets and T Norms. 
The scores obtained herebellow are based mainly on 
geometrical considerations. 
 

 

2 Literature Review in DEA Models 

with Uncertainties  
A comprehensive literature review on methods used 
to deal with imprecise DEA data can be found in  
[3], where data uncertainties are classified into three 
types: interval data, ordinal data and interval data 
ratios. The author uses a model called Imprecise 
Data Envelopment Analysis (IDEA) [4] which 
treats the three types of data uncertainties using 
scale transformations.  

The IDEA model was used by [5] to deal with 
uncertain data of two types: interval data and 
ordinal data. The use of such a linear model is 
carried out through a change of variable scales 
turning the non-linear model into a linear 
programming model. As a result, upper and lower 
bounds are obtained for the efficiency of each 
DMU. According to the authors, the use of post 
DEA models allows a better discrimination among 
DMUs.  

In [6] an extended IDEA model is proposed, 
which enables not only the use of imprecise data but 
also the use of weight restrictions in the form of 
assurance regions or cone-ratios. In that case, the 
variable limits are changed to data adjustments. 
Such a model was applied to the efficiency 
evaluation of a Korean mobile telecommunication 
company. 

In [7] uncertain inputs and outputs are 
considered as fuzzy sets. Efficiency computations 
are then carried out by means of linear fuzzy 
programming. As an alternative approach, the same 
authors proposed the use of possibility DEA 
models. A fuzzy variable is associated to a 
possibility distribution [8] where the fuzzy-DEA 

scores, although not unique, depend on the level of 
possibility used. 

In [9] the authors employed a DEA model to 
assess DMUs optimistically. These results were 
used to determine interval efficiencies by means of 
new DEA models.  Consequently, the efficiency 
score is not represented by a number, but by an 
interval. On the other hand, the authors of [10] 
assessed each DMU pessimistically based on the 
Inverted DEA model and calculated interval 
efficiency scores. The authors still considered 
interval data and proposed a model to evaluate 
interval efficiency and inefficiency as carried out 
using crisp data. 

In [11] a performance evaluation of University 
academic departments is carried out. The DEA 
results on teaching, research and quality are fuzzy 
numbers. A unique performance score for each 
department was built using a weighted ordered 
aggregator. A performance evaluation in the 
educational field using DEA and Fuzzy sets is done 
in [12]. 

The authors in [13] extended the DEA CCR 
model with fuzzy inputs and outputs to a model 
named DEARA. This model uses regression 
analysis concepts and a Fuzzy-DEA model in which 
the resulting efficiency scores are interval fuzzy 
evaluations. 

In [14], authors proposed a method to measure 
DMUs efficiencies with fuzzy variables. The fuzzy 
model then turns out to a family of conventional 
DEA models based on crisp data using the a-cut 
approach. According to the authors, the fuzzy 
efficiency scores obtained are given by interval 
functions yielding more information to the decision-
maker. This approach uses Fuzzy Linear 
Programming. A similar approach has been used by 
[15]. 

To measure technical efficiency of DMUs, the 
authors of [16] relaxed the concept of production 
frontier and proposed a pair-wise comparison, 
checking the dominance or non-dominance of each 
DMU when compared to any other. The use of 
fuzzy variables to take into account imprecise data 
yields a fuzzy pair-wise comparison. Such results 
are represented in matrix form that shows two-way 
dominance. In other words, efficiency scores are not 
actually obtained, but only an indication of 
domination among DMUs. 

In [17] fuzzy intervals are used to combine the 
information given by DEA analytical efficiency 
scores with subjective efficiency scores. Qualitative 
and organizational aspects are in fuzzy intervals 
format. The relationship between this information is 
given by a fuzzy interval function. Ideally, the two 

WSEAS TRANSACTIONS on SYSTEMS
Luiz Biondi Neto, Joao Carlos Correia Baptista Soares De Mello, 
Lidia Angulo Meza, Eliane Goncalves Gomes, Nissia Carvalho Rosa Bergiante

ISSN: 1109-2777 128 Issue 5, Volume 10, May 2011



sources of information related to the performance of 
a DMU can be joined in such a way that the 
objective DEA aspect is used to control the 
subjectivity in the expert point of view, and vice-
versa. That leads to a modified score set in terms of 
a fuzzy interval.  

The authors [18] suggested a three-stage 
approach to measure technical efficiency in a fuzzy 
environment. This approach uses classic DEA 
techniques and is built on fuzzy parametric 
programming concepts [19]. 

In [20] fuzzy sets theory is used in a DEA 
context. The author uses three types of fuzzy 
statistics (fuzzy mathematical programming, fuzzy 
regression and fuzzy entropy) to illustrate the types 
of decision and solution that can be reached when 
we have imprecise data and a priori information is 
uncertain and imprecise. The same author [21] 
generalizes the nonparametric approach of DEA in 
both static and dynamic directions by incorporating 
uncertainties. He addresses an extension of the 
convex hull method of DEA for determining a 
production frontier in the presence of demand and 
supply uncertainty of outputs and inputs. 

The authors of [22] used DEA, Fuzzy Sets and 
AHP for making rankings with incomplete and 
confidential information. Another work dealing 
with ranking in a fuzzy context is presented by Wen 
and Li [23].  

An approach based on randomised ranks is 
presented by [24]. 

When applications are concerned we may cite a 
study on the location for the geographic situation of 
hydroelectric plants [25], the study on the efficiency 
of Taiwan hotels [26] and a performance 
assessment of manufacturing enterprises [27]. 
 
 

3 Fuzzy Efficient Frontier  
The approach developed here makes no assumption 
regarding the way each input or output varies. Only 
maximum and minimum values for each output and 
each input are required. To obtains the membership 
degree of each DMU to the fuzzy frontier only 
geometric relationships are required. The algebraic 
calculation of those relations uses only classic DEA 
models. If the variables are in interval form, the 
exact location of the efficient frontier is unknown. It 

may be placed between upper and lower bounds. In 
other words the frontier is not a piecewise linear 
surface but a region of the space. In the case of one 
single input and one single output, such a frontier 
would be a strip. In other words, this frontier is a 
fuzzy set [2]. To such sets, instead of stating that a 
single element belongs or not to the set, we consider 
that all elements belong to it with a certain degree 
of membership.  

In the absence of objective reason to choose 
among one of the various classical membership 
functions we will use some geometric 
measurements in the fuzzy efficient frontier. To do 
so we need to introduce some concepts: 

1. Upper frontier: It is the frontier obtained by 
a classic DEA model (CCR or BCC) that considers 
the maximum value of the imprecise output for each 
DMU. As in terms of production this is the most 
desirable situation for all DMUs, the frontier so 
obtained may also be named Optimistic Frontier.    

2. Lower frontier: It is the frontier obtained by 
a classic DEA model (CCR or BCC) that considers 
the minimum value of the imprecise output for each 
DMU. Since in terms of production this is the least 
favourable situation for all DMUs, the frontier so 
obtained may also be named Pessimistic Frontier.  

The definitions hereabove are concerning to the 
case when the variable in interval form is an output. 
Moreover, these concepts are similar to those 
defined by [14]. Those authors have used Fuzzy 
Linear Programming, and we will use a geometrical 
approach. The relations derived from our 
geometrical approach are a generalization of those 
obtained in [28]. 

Figure 1 illustrates these concepts considering 
the BCC DEA model [29]. The interval data DEA 
frontier comprises the region between the lower and 
the upper frontiers. In opposition to classic DEA 
frontier, a DMU cannot be represented as a point in 
a multidimensional space. Its geometric 
representation must be a line segment (even in 
multidimensional cases). In Figure 1, the DMU C is 

represented by the segment P1P2 . The point P2 
corresponds to the lower value of the imprecise 
output and the point P1 corresponds to the upper 
value of the imprecise output. 
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Figure 1: Optimistic and pessimistic frontiers 

 

Also in Figure 1, OPo and OPp are the 
projected output on the optimistic and pessimistic 
frontiers; c is the DMU length, i.e., the difference 
between the optimistic and pessimistic values of the 
output; l is the width of the strip connecting the 
DMU projections on both frontiers; p is the 
difference between the optimistic output of each 
DMU and its projection on the pessimistic frontier. 

To determine the DMU’s membership degrees 
to the frontier we consider the following cases.  

1. Figure 2 shows that DMUs A and F are 
totally inside the region defining the fuzzy frontier. 
Such DMUs must have a unitary membership 
degree the fuzzy frontier. 
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Figure 2: Interval data DEA frontier in a BCC model. 
 

2.  DMUs B and C slightly touch the frontier 
and so their membership degrees are zero.  

3. Between those extreme situations, DMUs 
would have intermediate membership degrees.  

a) The segment that represents DMU G covers 
all the length of the fuzzy frontier. However, its 
membership degree cannot be one, as it still has a 
strip outside the fuzzy frontier, i.e., although this 
DMU totally includes the frontier, it is not totally 

included there. The ratio cp  is adequate to 

evaluate the membership degree in situations 
similar to that of DMU G. 

b) An inverse situation is presented by DMU 
E, which is fully contained in the fuzzy frontier, but 
does not entirely cover it. Like DMU G, this DMU 
cannot present a unitary membership degree to the 

frontier. For such situation the ratio lp  adequately 
represents the membership degree. 

Both ratios above are only adequate in 
particular situations and lead to meaningless results 
when used in a different situation. In order to obtain 
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a membership function with properties required in 
items 1, 2 and 3 (a and b), we need to combine the 
two ratios.  

Properties 1, 2 and 3 are satisfied if we define a 
T Norm between the Fuzzy Set defined by the 

membership lp  and the fuzzy set defined by the 

membership function cp . 

We will use three T Norm to evaluate the 
membership degree of a DMU to the Fuzzy 
Frontier: i) The Product, ii) the Drastic Product and 
iii) the Min. The graphic representations of these 
three T Norms can be seen in Figure 3, 4 and 5, 
respectively. 
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Figure 3. Representation of the T Norm “Product” 
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Figure 4. Representation of the T Norm “Drastic 

Product” 
 

0
0.2

0.4
0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

p/c

MINIMUM

p/l

 
Figure 5. Representation of the T Norm “Min” 

 
Expression (1) ℘P is the membership degree 

using the Product: 
 

2

P

p

lc
℘ =     (1) 

 
Expression (2) ℘D is the membership degree 

using the Drastic Product: 
 

D

0, if p<c  and  p<l

p c , if p=l

p l , if  p=c




℘ = 



 (2) 

 
Expression (3) ℘M is the membership degree 

using the Min: 
 

( )M Min p c , p l℘ =   (3) 

 
These expressions may be used only if the 

uncertainty of the output is not null, to avoid 
division by zero. In other words, expression (1), (2) 
and (3) are not valid if a DMU has no uncertainty in 
its output. 

Table 1 shows the results of membership 
degrees calculations for the DMUs of Figure 2, 
where Op and Oo are the output values for the 
pessimistic and optimistic frontiers and I is the 
input value. 

 
 

Table 1: Membership degrees regarding the fuzzy DEA frontier. 
DMU I Op Oo c l p ℘P ℘D ℘M 

A 1 1 2 1 1 1 1,00 1,00 1,00 
B 2 1 2 1 2 0 0,00 0,00 0,00 
C 4 2 4 2 4 0 0,00 0,00 0,00 
D 4 2 6 4 4 2 0,25 0,00 0,50 
E 4 4 6 2 4 2 0,50 0,50 0,50 
F 5 5 10 5 5 5 1,00 1,00 1,00 
G 6 4 10 6 5 5 0,83 0,83 0,83 
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From the algebraic properties of the T Norms 

follows that d P M℘ ≤℘ ≤℘ . 

From now on we will only use the T Norm 
Product. The reason for this choice is that the value 
of ℘P is not largest nor the smallest value of the 

membership degree. In other words, is not too much 
benevolent, neither very aggressive. 

 

4 Algebraic Calculation of the 

Membership Degree 
The previous calculations are based on a 
geometrical definition, which is feasible only for 
very simple models. In order to obtain an 
expression that might be used for multidimensional 
general models, in which only one output is 
imprecise, it is essential to change the geometric 
terms in equation (1) into variables that might be 
derived from the classic DEA models.  

For the case of one imprecise output, 
considering the classic DEA definitions for output 
oriented models and also remembering that for that 
case the efficiencies are greater than one (BCC 
DEA model), equations (4) and (5) can be rewritten 
for Op and Oo, that are the output values for the 
pessimistic and optimistic frontiers, where  

· POp and POo are the output targets on the 
pessimistic and optimistic frontiers, i.e., the 
projected output on the optimistic and pessimistic 
frontiers;  

· Effp is the efficiency calculated using the 
lower output values, i.e., the efficiency related to 
the pessimistic frontier; 

· Effo is the efficiency calculated using the 
upper output values, i.e., the efficiency related to 
the optimistic frontier. 

 

  
p

p

p
O

PO
Eff =   (4) 

 

  
o

o
o

O

PO
Eff =   (5) 

 

With the purpose of avoiding misunderstandings, 
Effo and Effp should not be named optimistic and 
pessimistic efficiencies, as there is no guarantee that 

po EffEff ≥ . 

From the geometrical representation we easily 
obtain 

ppoopo EffOEffOPOPOl −=−=  and 

po OOc −= . In a situation where the DMU is 

partially contained by the fuzzy frontier, p is the 
difference between the optimistic output and the 
output target on the pessimistic frontier, which is a 
positive number. If the DMU is totally outside the 
fuzzy frontier (except by a possible single point), 
the difference above is negative or zero. In this 
situation the membership degree must be zero, and 
to obtain this result p must also equal zero. 
Expression (6) formalizes the equation for p. 
 

 o p p o p p
O O Eff ,   if O O Eff 0

p
0,   otherwise

− − ≥
= 


  (6) 

 
From the previous equations, it is possible to derive 
the expression that represents algebraically the 

membership degree P℘ , which is shown in (7).  

 

( )
( )( )

2

o p p

o p p
P o o p p o p

O O Eff
,   if O O Eff 0

O Eff O Eff O O

0,   otherwise

 −
 − ≥

℘ = − −



 (7) 

Expression (7) is valid when we deal with only one 
output and this output is uncertain. 
Multidimensional models should be developed in 
future works. 

Table 2 details the algebraic calculation of℘P. It 
should be noticed that, due to the output orientation 
model, the inefficient DMUs produce an efficient 
score greater than one.  

 

 
Table 2: Computed values based on expressions (4) to (7). 

DMU I Op Oo Effp Effo C l p ℘ 

A 1 1 2 1,00 1,00 1 1 1 1,00 
B 2 1 2 2,00 2,00 1 2 0 0,00 
C 4 2 4 2,00 2,00 2 4 0 0,00 
D 4 2 6 2,00 1,33 4 4 2 0,25 
E 4 4 6 1,00 1,33 2 4 2 0,50 
F 5 5 10 1,00 1,00 5 5 5 1,00 
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G 6 4 10 1,25 1,00 6 5 5 0,83 

 
 

5 Comparing this approach with 

Despotis and Smirlis Model 
Despotis and Smirlis [5] model, that we call from 
now on D&S model, has one common point with 
our model: it also deals with upper and lower 
bounds for data. For that reason, we will compare 
our model only with the D&S model. Such a model 
defines upper and lower bounds for the efficiency, 
but does not define a Fuzzy Frontier. Model (8) and 
(9) show the linear programs for these two 
efficiency bounds. 

 
 
(8)  

(9) 
 

For comparison between the D&S  model 
and our model in models (8) and (9) we will assume 
that only the output is imprecise and the input is an 
exact one.  

In these models, to calculate efficiency 
upper bounds, the outputs are adjusted at the upper 
bound of the interval for the observed DMU and 
they are adjusted at the lower bounds for other 
DMUs. To calculate efficiency lower bounds, the 
outputs are adjusted at the lower bound of the 
interval for the observed DMU and at the upper 
bound for other DMUs. 

As in our model the upper frontier is 
defined by all the upper bound of the output, D&S 
model is more benevolent than our model, when 
regarding the upper bounds. For lower bounds, we 
have an inverse situation. 
 

Table 3: Calculated values for both models 
DMU I Op Oo c l p 

P℘  d℘  M℘  
Upper Lower  

A 1 1 2 1 1 1 1 1 1 1,000000 1,000000 

B 2 1 2 1 2 0 0 0 0 1,000000 0,500000 

C 4 2 4 2 4 0 0 0 0 1,000000 0,250000 

D 4 2 6 4 4 2 0,25 0 0,5 1,000000 0,250000 

E 4 4 6 2 4 2 0,5 0,5 0,5 1,000000 0,500000 

F 5 5 10 5 5 5 1 1 1 1,000000 0,575000 

G 6 4 10 6 5 5 0,83 0,83 0,83 1,000000 0,33333 

 
 
Furthermore, D&S model defines as E++ DMU 
every DMU efficient in the upper and lower bound. 
A DMU efficient in the upper bound but inefficient 
in the lower bound is an E+. DMUs not efficient in 
any frontier are called E- DMU. 

According to these definitions DMU A is E++ and 
all the others are E+. We shall note that this model 
does not rank DMUs directly. We may rank E+ 
DMUs using their lower bound efficiency. Our 
model directly ranks all DMUs using a membership 
function. Nonetheless, in our model ties may occur. 

Table 4 shows a comparison between the 
rankings by our model and the ranking by D&S 
model. 

 
Table 3: Comparing the models 

DMU Ranking using 

 
P℘  d℘  M℘  

D&S 

A 1 1 1 1 

B 6 5 6 3 

C 6 5 6 6 
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D 4 5 4 6 

E 4 4 4 3 

F 1 1 1 2 

G 3 3 3 5 

 
When comparing the two models some conclusions 
arise. Our model has a geometric and an algebraic 
approach. D&S has only an algebraic approach.  

On the other hand, D&S model may deal with 
interval and precise data in all output and inputs. At 
the moment our model allows only one output, or 
input (see next section) to be imprecise. 
Furthermore, in our model the imprecise variable 
cannot have any precise value.  

From an algebraic point of view, our model may 
be solved using a DEA solver twice. We have used 
SIAD [30]. In D&S model we need to use a DEA 
solver 2n times, n being the number DMUs.  

 

6 Fuzzy Frontier with One Imprecise 

Input 
The case of one imprecise input may be analysed in 
a way similar to that of one imprecise output. In that 
case, the optimistic input, Io, is the smallest value of 
the input, and the pessimistic input, Ip is the largest 
one. An optimistic frontier is obtained when 
optimistic inputs are considered for all DMUs and, 
conversely, a pessimistic frontier is characterized 
when pessimistic inputs are assumed for all DMUs. 
Figure 3 depicts the optimistic and pessimistic 
frontiers for the case of one imprecise input. In this 

figure, oI , pI , oPI  and pPI  represent, 

respectively, the imprecise input optimistic and 
pessimistic values and the input target values on the 
optimistic and pessimistic frontiers. Conversely for 
the output-oriented situation, now the line segment 
representing the DMU with imprecise input value 
lies in the horizontal position.  
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Figure 3: Optimistic and pessimistic frontiers for the input oriented BCC model. 

 
  
We will use a membership degree based on the T 
Norm Product, in a similar way to the case of an 
imprecise output. Expression (10) presents the 
membership degree for that situation. 
 

( )
( ) ( )

2

p p o

p p o

p p o o p o

I Eff I
,   if I Eff I 0

I Eff I Eff I I

0,   otherwise

 −
 − ≥

℘= − −



  (10) 

 
 

7 Conclusion 
The approach proposed in this paper in order to 
incorporate uncertainties in classic DEA models has 
the advantage of neither using any particular 
probability distribution for the variable uncertainties 
nor a fuzzy function for them. Besides, it is at the 
same time mathematically simple, since the results 
are obtained by simple algebraic calculations (after 
calculating DEA classic frontiers, in opposition to 
the change of variable used in Despotis and Smirlis 
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[5] and without the need of using fuzzy 
programming. 

The location of the interval DEA frontier allows 
the geometrically building of a membership function 
and consequently obtaining a fuzzy result that uses 
the membership concept without the need of using 
the classical membership functions. As a matter of 
fact, the geometrical considerations used to define 
the membership index implicitly employed uniform 
membership functions. Those functions have 
constant values. One of them is equal to the inverse 
of the length of the DMU representative segment. 
The other one has is value inverse to the length of 
the segment determined by the pessimistic and 
optimistic targets.  

In this paper we have dealt only with a DEA 
model with a single input and a single output. DEA 
is for its very nature a multidimensional tool. 
However, models with a single input and a single 
output are often used to derive new concepts for 
further generalizations. For instance, a general 
theorem was proved first for the single input and 
single output case in [31]. As a future work, we 
intent to generalize the model presented in this 
paper for multidimensional cases. 

A possible application of our results is for 
machine tools evaluation [32], taking into account 
uncertainties in the measurements.  
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