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Abstract: - This paper mainly deals with the issue of incipient fault diagnosis for rolling element bearing. 

Firstly, an envelope demodulation technique based on wavelet packet transform and energy operator is applied 

to extract the fault feature of vibration signal. Secondly, the relative spectral entropy of envelope spectrum and 

the gravity frequency are combined to construct two-dimensional features vector that characterizes each fault 

pattern. Furthermore, K-nearest neighbors (KNN) is used to perform faults identification automatically. The 

experimental results prove that the method could avoid inaccurate diagnosis which only depends on the 

recognition of characteristic frequency, while the effectiveness of the method in the automatic fault diagnosis of 

bearing has been proved. 

Key-Words: - wavelet packet transform; energy operator; rolling element bearing; incipient fault; envelope 
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1 Introduction 
Rolling element bearing is widely used in 

industrial equipment, and fault diagnosis of such 

bearing is very important to improve reliability and 

performance of mechanical equipment. Generally 

speaking, the faults of rolling element bearing 

mainly include irregular damage (such as spalling, 

pitting, cracks, etc.) of inner race, outer race, balls 

and cage. Due to the affect of the impact force, the 

vibration signal often displays a complex 

modulation wave [1-3].  

Currently, resonance demodulation is a widely 

used method of fault diagnosis for rolling element 

bearing. It mainly adopts envelope analysis through 

the band pass filter, and then extracts the time-

domain characteristics of envelope signal to perform 

fault diagnosis. One of the key factors to constrain 

the success of this method is how to select the center 

frequency and the bandwidth of envelop analysis 

properly [4-6]. Wu et al. [7] developed an energy 

operator demodulation method which had been 

proved better than Hilbert transform, but it still 

needed to choose rational parameters for band-pass 

filter. However, because the incipient fault signal of 

rolling element bearing is weak and is often 

submerged in noise, it is usually difficult to find out 

the characteristics of the carrier frequency band for 

band-pass filter in advance. Therefore, its practical 

significance is limited. Considering the high 

precision and speed of wavelet multi-resolution, 

time-frequency localization and energy operator 

demodulation, Lei et al. [8] presented the wavelet-

energy operator demodulation method. The energy 

concentration of high frequency modulation was 

extracted using wavelet transform, and the fault 

characteristic frequency was obtained through the 

energy operator demodulation. This method could 

reduce the interference of noise to some extent. 

However, because the results of envelope 

demodulation have multiple spectrum lines, the 

characteristic frequency of fault may not be obvious, 

which might cause difficulty to precision of 

diagnosis.  

In general, the incipient fault signal of rolling 

element bearing is often weak and modulated. In 

view of both accuracy and fastness of signal 

envelope demodulation, this paper studies the 

demodulation method using energy operator. In the 

pre-processing of signal, wavelet packet transform 

technique was used to avoid characteristic band 

selection. Then the relative spectral entropy of 

envelope spectrum and the gravity frequency are 

calculated, forming the two-dimensional features to 

characterize each fault type. Finally, K-nearest 

neighbors (KNN), which is a very simple but 

effective method for pattern recognition, is used to 

identify the fault pattern. The experimental results 

prove that the method could obtain good 
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performance in incipient fault recognition of rolling 

element bearing. 

 

2 Mathematical model of vibration 

signal for rolling element bearing  
 The modulation phenomenon of vibration 

acceleration signal acquired from rolling element 

bearing is quite obvious. Impulse response will be 

generated due to the fault of rolling element bearing. 

Assuming that transmitting path from the impact 

point of fault to the sensor installation position is 

unchanged, the function of impulse response is 

expressed as ( )h t , the vibration signal acquired 

from the bearing is expressed as ( )x t , and then the 

following formula can be obtained [9]: 

( ) ( ) ( )Tx t x t n t= +         

    
0

( ) ( )k

k

D h t kT n t
+∞

=

= − +∑            （1） 

Where: ( )Tx t is the vibration impact response signal 

under fault conditions. 

           kD is the strength coefficient of impact 

response. 

             ( )n t  is the vibration signal other than the 

impact response caused by the fault. 

             T is the duration of impact response of the 

fault. 

From formula (1), it can be seen that the impact 

response of vibration signals expressed as ( )Tx t is 

feeble, since the strength coefficient expressed as 
kD  is weak when incipient fault occurs. Therefore, 

in order to diagnose incipient fault accurately, it is 

critical to eliminate the influence of other vibration 

response signal expressed as ( )n t while separating 

the weak impact response from original signal.  

 

 

3 Envelope demodulation based on 

wavelet packet transform and energy 

operator 
3.1 Energy operator demodulation 

Energy operator (EO) is a powerful nonlinear 

operator proposed by Teager, and it is able to extract 

the signal energy based on mechanical and physical 

considerations. It has been successfully used in 

various applications. Energy operator is generally 

denoted as Ψ , which can be used very well in 

analyzing and tracking the energy of narrowband 

signals [8]. Assuming a continuous signal is 

expressed as: 

0
( ) ( )cos[ ( ) ]

t

ix t a t dω τ τ= ∫  

Then the continuous energy operator can be defined 

as [7]: 

2 2[ ( )] [ ( )] ( ) ( ) [ ( ) ( )]c ix t x t x t x t a t tωΨ = − ⋅ ≈ɺ ɺɺ （2） 

According to literature [10], two key formula of 

energy operator can be obtained: 

[ ( )]
( )

[ ( )]
c

c

x t
a t

x t

Ψ=
Ψ ɺ

         （3） 

[ ( )]
( )

[ ( )]
c

i
c

x t
t

x t
ω Ψ= Ψ

ɺ
                 （4） 

 

Formula (3) and formula (4) show that energy 

operator can be used to demodulate the amplitude 

and instantaneous frequency of signal.  

Compared to the envelope demodulation of 

Hilbert transform, the speed and accuracy of 

envelope demodulation using energy operators is 

better [11]. Therefore, it is adopted in this paper to 

improve discrete-time energy operator demodulation 

algorithm. 

 

3.2 Analysis of envelope demodulation based 

on wavelet packet transform and energy 

operator 

Wavelet packet transform is essentially the 

bandwidth and multi-band filter for the signal, and it 

can make good performance in signal denoising [12-

16]. To select indicators of fault diagnosis for 
rolling element bearing, we not only need to 

consider the optimal criteria of wavelet packet basis, 

but also need to take the best decomposition level of 

wavelet packet into account[2, 17]. 

Supposing there is a vibration signal with the 

sampling length expressed as N , and the sampling 

frequency expressed as sF , and then the vibration 

signal is decomposed by J layer wavelet packet 

transform, while the J th layer wavelet packet 

coefficient can be expressed as , ( )J kc i . 

Where 0,1, , 2 1Jk = −⋯ , 0,1, , 1Ji N= −⋯ ,

2J

JN N= , and the bandwidth of each band is 

expressed as
12J

b sF F += . If the maximum cut-
off frequency of the envelope signal is expressed 

as JF , then the sF , JF and bF must satisfy formula 
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(5), which is determined by the characteristics of 

the envelope signal. 

12 2
2

s
Jb J J

F
F F F+≥ ⇔ ≥         （5） 

Based on formula (5), the upper bound of the 

maximum decomposition level J  can be derived; 

it also needs to meet 2JN > . Therefore, it needs 

to calculate the upper bound of J based on formula 
(6). 

2

2

log 1

log 1

s

J

F
J

F

J N

 ≤ −

 < −

               （6） 

After confirming the maximum decomposition 

level J , the selection criteria of optimal wavelet 
packet basis can be analyzed. The energy value 

denoted by wavelet packet transform coefficients 

, ( )J kc i  of each layer is used to evaluate the best 

choice of the wavelet packet basis. Energy 

expressed as ,J kE  is calculated by formula (7). 

1
2

, ,

0

( )
JN

J k J k

i

E c i
−

=

= ∑               （7） 

Through the wavelet packet transform, J  layer 
decomposition can be finished, which satisfies 

formula (8); and the wavelet packet transform 

coefficients can be reconstructed as below: 

max 0 1

min 0 1

max min

max( , )

min( , )

j j j

j j j

j th j

E E E

E E E

E K E

=

=

>

           （8） 

Where thK  is generally 1.5 or 2. 
Therefore, based on the criteria of wavelet 

packet transform, and according to formula (1), the 

m th frequency band component of vibration 
signals can be easily obtained [9]: 

0

( ) ( )m k m

k

x t D h t kT
+∞

=

= −∑          （9） 

Where ( )mh t is the impact response function in 

the m th sub-band weight, ( )n t is zero in relation 

to high frequency sub-band component. Using the 

narrow scale to analysis, we can separate the 

vibration signal from the noise. Therefore, the 

characteristic function of rolling bearing fault 

signal can be defined as ( )s t : 

  
0 1

( ) ( )
i

N

k m

k i

s t D h t kT
+∞

= =

= −∑ ∑         （10） 

Where im  is the i th sub-band number of the 
impact response function distribution.  

According to formula (10), the characteristic 

function is acquired to avoid the interference of low 

frequency noise, which can reflect the degree of 

impact distribution of the fault of rolling element 

bearing very well. Therefore, higher signal-to-noise 

ratio (SNR) can be obtained. 

 

 

4 Experimental data analysis 
This study makes use of experimental data from 

the bearing data center of the Case Western Reserve 

University(CWRU)(http://www.eecs.case.edu/labor

atory/bearing/download.htm). At first, the test-bed 

of simulating fault of rolling element bearing is 

shown in Figure 1. 

 

 

 

Fig.1 The test-bed to simulate the fault of 

rolling element bearing  

 

The data acquisition system is used to acquire the 

data from the drive end bearing on which 

acceleration sensors are installed. The type of drive 

end bearing is SKF6205-2RS, the speed is 

1796r/mim, the sampling frequency is 12KHz, and 

the collected data size is 10240. We are concerned 

with normal, inner race fault, outer race fault and 

ball fault, which are the four main kinds of fault 

patterns of rolling element bearing. The radiuses 

expressed as r  of fault damage include 7mils, 

dynamometer  torque transducer/encoder motor 
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14mils, 21mils, 28mils and 40mils, each of which 

shows varying degree of damage. This paper selects 

the smallest damage radius to simulate the case of 

incipient fault, that is to say, we use fault data with 

7mils damage degree for research. 

According to the specifications of the bearing, 

we can calculate that the characteristic frequency of 

inner race fault is 162.1Hz, the characteristic 

frequency of outer race fault is 107.3Hz, and the 

characteristic frequency of balls fault is 141.1Hz. As 

shown in Figure 2, they are the spectrogram of 

vibration signals under the four operating conditions. 

 

 

Fig.2 The spectrograms under different fault 

conditions  
 

It can be seen from Figure 2 that the spectrums 

of vibration signals under the four operating 

conditions are rather complicated, which cause 

difficulty in judging and classifying the fault 

patterns. According to the range of characteristic 

frequency of bearing fault, when the working speed 

is 1796r/mim, the maximum frequency of the 

envelope signal is 6 times the speed of working 

frequency, that is to say, the maximum of frequency 

is 180Hz. According to formula (6), the maximum 

decomposition level of wavelet packet transform is 

7 by calculation, where the decomposition level of 

the wavelet packet energy operator is chose to 4, 

and this paper selects the db4 wavelet. The energy 

operator and the wavelet packet energy operator are 

both used to analyze the envelope of the signal. As 

shown in Figure 3, for inner race fault, comparison 

between the time-domain envelope waveform using 

energy operator and that using the wavelet packet 

energy operator envelope is made. 

 

Fig.3 Comparison of envelope waveform with inner -

race fault 

 

We can find that there is a lot of clutter when 

using the energy operator envelope by comparing 

the time-domain waveforms, and it may bring about 

a lot of inconvenience to the analysis of signals. 

However, in view of time-domain waveform, the 

clutter of envelope domain waveform using wavelet 

packet energy operator was comparatively less. We 

can also find that the features are more conspicuous. 

Envelope spectrum analysis is often used in 

analyzing the fault of rolling element bearing 

because it is essentially the peak value detector, 

which is also called peak energy spectrum. As the 

high-frequency amplitude of envelope spectrum is 

very small, the low frequency below 180Hz of 

envelope spectrum would be analyzed. The 

envelope spectrum of vibration signals under the 
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normal, inner race fault, outer race fault and ball 

fault condition are shown in Figure 4, 5, 6 and 7. 

 

Fig.4 Envelope spectrum of vibration signal of 

normal state 

 

Fig.5 Envelope spectrum of vibration signal of inner 

race fault 
 

 

Fig.6 Envelope spectrum of vibration signal of outer 

race fault 

 

 

Fig.7 Envelope spectrum of vibration signal of ball 

fault 
 

Based on the comparisons of the envelope 

spectrum of the four operational conditions, we can 

find that the differences among them are obvious. 

As shown in Figure 6, the characteristic frequency 

of outer race fault was more obvious by envelope 

demodulation using wavelet energy operator. 

However, there are a number of envelope lines 

under the normal condition and fault condition, 

especially under the ball fault condition. The 

envelope spectrum is more complex, because the 

incipient fault signal of rolling element bearing was 

feeble, so that the feature of fault is not very clear, 

which makes the envelope spectrum relatively 

complex. It is relatively difficult to pinpoint fault 

characteristic frequency only relying on the 

characteristic frequency of spectrum by the 

envelope spectrum analysis, and it is also difficult to 

get satisfactory results. In order to identify the fault 

pattern accurately, it is very important to select the 

appropriate spectral characteristics of the envelope. 

The spectral entropy and the gravity frequency are 

commonly used as the features of faults [18-20]. 

Literature [21] pointed out that the spectrum of one-

dimensional spectrum entropy had some limitations, 

and a two-dimensional vector named spectral 

entropy and spectral entropy arm was used as the 

feature parameter, both of which were associated 

with analysis. 

Spectral entropy expressed as H  is defined by 

formula (11), which reflects the concentration of 

spectrum. The smaller the spectral entropy is, the 

more concentrated the spectral will be. To compare 

the spectral entropy of signals with different lengths, 

the relative spectral entropy expressed as rH  is 

used as the feature parameter; the relative spectral 

entropy is calculated by formula (12). The physical 

significance of spectral entropy arm is the gravity 

frequency of the spectral entropy. In this paper, the 

gravity frequency of spectrum expressed as Fc  is 
used directly to replace the spectral entropy arm, 

and the gravity frequency is calculated by formula 
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(13). The relative spectrum entropy rH and the 

gravity frequency Fc of envelope spectrum are used 
as two-dimensional feature indexes. 

( ) ( ( )) log( ( ( )))H X X K X Kµ µ= −∑   （11） 

Where X is the spectral sequence of the time 

series of { ( )}x n , while in this study it is the 

envelope sequence. And ( ) ( ) / ( )t X K X jµ = ∑  

( ) ( ) / log( / 2)rH X H X N=               （12） 

Where N is the length of time series. 

/ 2

1

( ) ( ( ))
/ 2

N

k

K
Fc X X K

N
µ

=

=∑            （13） 

Under the four operational conditions of rolling 

element bearing, including the normal operation, 

inner race fault, outer race fault and ball fault, eight 

sets of data are selected to calculate the 

characteristic index of envelope spectrum, the 

results of which are shown in Table 1, and the two-

dimensional vectors are drawn in Figure 8. As can 

be seen from Figure 8, the difference between the 

normal condition and the other three fault condition 

could be distinguished clearly. 

 

 

 

Table.1 The calculation results of two-dimensional vectors under the four conditions. 

Data 

Normal Inner fault Outer fault Ball fault 

rH  Fc  rH  Fc  rH  Fc  rH  Fc  

 1 0.8331 0.2155 0.7368 0.1888 0.8511 0.1721 0.9390 0.2070 

2 0.8348 0.2144 0.7264 0.1770 0.8396 0.1704 0.9452 0.2184 

3 0.8421 0.2072 0.7294 0.1742 0.8487 0.1818 0.9383 0.2026 

4 0.8284 0.2112 0.7382 0.1788 0.8428 0.1651 0.9299 0.2130 

5 0.8446 0.2248 0.7252 0.1763 0.8543 0.1634 0.9266 0.1861 

6 0.8267 0.1997 0.7369 0.1805 0.8507 0.1550 0.9451 0.2153 

7 0.8384 0.2108 0.7418 0.1855 0.8456 0.1753 0.9388 0.1915 

8 0.8475 0.2223 0.7243 0.1729 0.8410 0.1643 0.9313 0.2053 

Mean 0.8370 0.2132 0.7324 0.1793 0.8467 0.1684 0.9368 0.2049 
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Through the analysis above, it has been proved 

that the good results could be achieved by wavelet 

packet transform and energy operator. After 

performing the wavelet packet transform and 

envelope demodulation of the energy operator, the 

two-dimensional vector of the envelope spectrum 

was constructed as the feature parameters, which 

can better distinguish the different fault types of 

rolling element bearing. 

 

 

 

 

Fig.8 Map of envelope spectrum eigenvalues under the four different conditions 
 

 

Because the eigenvalues of two-dimensional 

vector spaces under the four conditions differ 

greatly from each other, the standard sample 

expressed as X is constructed by the four categories 

of feature vectors above. Then, a set of fault data 

with the spectral envelope characteristics of two-

dimensional vector are selected as the test samples 

expressed as xTest , the KNN, which is the very 
simple and effective method for pattern recognition, 

is used to identify the test samples xTest . Based on 
formula (14), the standard sample X  could be 

calculated and identified for all sample points in the 

sample space distance, and its K  nearest neighbors 

could be found according to literature [22, 23]. 

 

2 2 2

1 2 2( ) ( ) ( ) ( )i i i

i i n nd x c c c c c c= − + − + + −⋯     

（14） 

Where 1,2, ,i N= ⋯  

( )id x  is the distance between the test sample 

point and the standard sample point. In this paper, 

the number of nearest neighbor is set to 5 [24, 25]. 

According to test and analysis, the identification 

result is shown in Figure 9 using the K- nearest 

neighbor recognition, and the results of automatic 

recognition is the ball fault, which is consistent with 

the actual fault type. Based on the analysis of 

multiple data measurement, the satisfactory results 

showed that the proposed method is a simple and 

effective method for the incipient diagnosis fault of 

rolling element bearing. 
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Fig.9 The result of fault Identification with the KNN method 
 

 

 

5 Conclusion 
In this paper, a method based on wavelet packet 

transform and energy operator for incipient fault 

diagnosis of rolling element bearing is proposed and 

thoroughly studied. The following conclusions can 

be achieved: 

 

(1) The paper introduces the envelope analysis 

technique which combines the wavelet packet 

transform with the energy operator demodulation. 

This technique not only avoids the need for an 

artificial carrier signal with a band-pass filtering, 

but also demonstrates excellent performance in 

constraining the noise. Through envelope 

analysis under the four kinds of conditions, the 

satisfactory results of distinguishing fault can be 

achieved. 

(2) The relative spectral entropy and the gravity 

frequency of envelope spectrum are combined as 

the two-dimensional vector feature, which is 

used to be the characteristics indicator of 

diagnosis fault for rolling element bearing. 

Meanwhile, the KNN, which is a very simple but 

effective method of pattern recognition, is used 

to identify the faults automatically. The 

experimental results shows that the technique 

could avoid only relying on characteristic 

frequency of fault, and could better distinguish 

incipient fault of rolling element bearing. 

Therefore, the method could be used to realize 

intelligent fault diagnosis and fault identification 

for rolling element bearing. Experiments have 

proved that this method has certain application 

value. 
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