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Abstract: - Artificial intelligent techniques have been widely used in high voltage insulation technology 
application. In this paper, the effectiveness of artificial intelligent technique to apply for pattern recognition and 
classification of Partial Discharge (PD) is presented. Partial discharge signal was generated and measured by 
using an artificial partial discharge source. Characteristics of PD signal for pattern recognition and 
classification were determined by using statistical and fractal methods from relationship among the voltage 
phase angle, the discharge magnitude and the repeated existing of partial discharges. The simplified fuzzy 
ARTMAP (SFAM) was used as artificial intelligent technique for pattern recognition and classification. PDs 
characteristic quantities were used as input parameters for Simplified Fuzzy ARTMAP to train pattern 
recognition and classification system. Pattern recognition and classification results were obtained. The results 
demonstrated the high effectiveness of the purpose technique applied for pattern recognition and classification 
of partial discharge. 
. 
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1 Introduction 

 Generally, partial discharge (PD) is electrical 
discharges that do not completely bridge the 
distance between two electrodes under high voltage 
stress. Partial discharges are small electrical sparks 
that occur within the imperfect insulation system of 
electrical apparatus. Although the magnitude of 
such discharges is usually small, it causes 
progressive deterioration and may lead to ultimate 
failure [1],[2]. 

Partial discharge is one of the factors that could 
lead to failure of electrical apparatus. Also, partial 
discharges could destroy insulation and cause 
ageing of insulation. Occurrence of partial discharge 
in electrical insulation is always associated with 
emission of several signals (i.e. electrical signal, 
acoustic pulses and chemical reactions). 

Recently, artificial intelligent techniques have 
been widely adopted to many applications in 
electrical engineering field[3]–[8]. The objectives of 
this work are to apply an artificial intelligent 
technique, simplified fuzzy ARTMAP (SFAM), as 
well as to classify and recognize partial discharge. 
In this paper, classification of partial discharge is 

given in Section 2, detection techniques for partial 
discharge are given in Section 3, characteristics of 
partial discharge quantities are given in Section 4, 
and the detail of SFAM is given in Section 5.  In 
addition, experimental results and PDs pattern 
recognition are illustrated in Section 6 and Section 
7, respectively. Finally, discussion and conclusion 
are provided.  

 

2 Classification of Partial Discharge 

Basically, partial discharges are divided into four 
types: (i) internal discharges, (ii) corona discharges, 
(iii) surface discharges and (iv) discharges in 
electrical trees, as shown in Fig. 1 [1],[9]. 

2.1 Internal Discharges 

Internal discharges occur in inclusions of low 
dielectric strength. These discharges usually occur 
in gas–filled cavities, but oil – filled cavities can 
also break down and cause gaseous discharges 
afterwards. Internal discharges are capable of 
degrading the insulation depends on the field 
strength, the kind of material and the discharges 
magnitude. (Fig. 1.a) 
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2.2 Corona Discharges 

Corona discharges occur at sharp points in the 
electrical field. These discharges may occur in gases 
and in liquids. They occur usually at the high-
voltage side, but at sharp edges at earth potential, or 
even at half- way the electrodes also may cause 
corona discharges. (Fig. 1.b) 

2.3 Surface Discharges 

Surface discharges may occur in gases or in oil if 
there is a strong stress component parallel to the 
dielectric surface. These discharges are known to 
cause deterioration of dielectrics by heating the 
dielectric boundary, through charges trapped in the 
surface and through the formation of chemicals such 
as nitric acid and ozone. (Fig. 1.c) 

2.4 Discharges by Electrical Treeing 

Electrical trees can start from defects in the solid 
insulation. After treeing has started a hollow stem 
and several branches are generated. (Fig. 1.d) 
 

Fig. 1  Types of Partial Discharges. 
 

3 Detection Techniques for Partial 
Discharge 

     Occurrence of PDs in electrical insulation is 
always associated with emission of several signal 
electrical signal, acoustic signal and chemical 
reactions, i.e. heat, sound, light and gas. The method 
to detection PD signal can be grouped into three 
categories, based on the PD manifestation that they 
measure: chemical, acoustic and electrical 

detections [9].  
Chemical detection: One of the consequences of 

PDs is chemical change of material. (i.e. oil, solid 
and gas)[10]. 

Acoustic detection of PD is based on the 
detection of the mechanical waves propagated from 
the discharge site to the surrounding medium. 
Acoustic detection has been widely used in 
diagnostics of transformers. The primary advantage 
of using acoustic detection is position information is 
readily available from acoustic systems using 
sensors at multiple locations [11]-[13].  

Electrical partial discharges detection methods 
are based on the appearance of a partial discharges 
pulse at the terminals of a test object. Electrical 
detection includes two methods: Pulse Current 
Method and Ultra High Frequency Method (UHF).  

Pulse Current Method: This method gets the 
apparent charge by detecting the PD current in 
detecting impedance [9],[14]. Pulse Current Method 
is easy for quantitative measurement and it has high 
sensitivity. 

Ultra High Frequency Method (UHF): UHF 
detection which is based on the detection of 
electrical resonance at ultrahigh frequencies can be 
applied to realize not only the phenomena but also 
the location of a PD source [15] – [17]. 

In this paper, electrical detection technique was 
adopted to measure partial discharges signal. Most 
partial discharges detection systems are integrated 
into the test circuit in accordance with the diagram 
shown in Fig. 2. 

 
      

 
 
 
   
 
 
 
 
 

 
Fig. 2  Basic Partial Discharge Test Circuit  
U high-voltage supply 
Zmi input impedance of measuring system 
CC connecting cable 
Ca test object 
Ck coupling capacitor  
CD coupling device  
MI measuring instrument 
Zf filter  

 

(a) (b)

(c) (d)
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The coupling capacitor, Ck, shall be low of 
inductance design and should exhibit a sufficiently 
low level of partial discharges at the specified test 
voltage to allow the measurement of the specified 
partial discharge magnitude. 

The high voltage power supply shall have 
sufficiently low level of background noise to allow 
the specified partial discharge magnitude to be 
measured at the specified test voltage.  

4 Characteristics of Partial Discharge 

Characteristics of partial discharges for pattern 
recognition and classification are computed from the 
relation of the voltage phase angle, the discharge 
magnitude and the repeated existing of partial 
discharges by using statistical and fractal methods 
[1],[9],[14]. 

4.1 Basic Quantities   

Quantities of the first group will be termed basic 
quantities. For their registration, the momentary 
values of the test voltage and the discharge signal 
are registered. The electrical activity of partial 
discharges can be represented by two independent 
quantities: 

   (a)  Discharge magnitude 
   (b)  Discharge timing 

4.2 Deduced  Quantities 

Quantities of the second group will be termed 
deduced quantities. For their registration, the basic 
quantities have to be observed during a time span 
that is much longer than the duration of one voltage 
cycle. These quantities can be analyzed as a 
function of time and a function of the phase angle. 

The quantities as function of time describe the 
changes of the basic quantities in the course of time.  

The quantities as function of the phase angle 
represent the recurrence of partial discharges related 
to their phase angle. The voltage cycle is divided 
into phase window representing the angle axis (0–
360°). The four quantities can be determines in each 
phase window. 

(1) The sum of the discharge magnitudes 
observed in one phase window (discharge amount). 

(2)  The number of discharges observed in one 
phase window (pulse count). 

(3)  The average value of discharges observed in 
one phase (mean pulse height). 

(4)  The maximum value of discharge observed in 
one phase window (maximum pulse height). 
 

4.3 Statistical Operators 
Quantities of the third group will be termed as 

statistical operators. They provide the analysis of the 
deduced quantities from the second group. 

The pulse count distribution, Hn(ϕ),  represents 
the number of the observed discharges in each phase 
window as a function of the phase angle. 

The mean pulse height distribution, Hqn(ϕ),  
represents the average amplitude in each phase 
window as a function of the phase angle. Hqn(ϕ) is 
derived from the total discharge amount in each 
phase window divided by the number of discharges 
in the same phase window. 

In the case of a single defect, discharge quantities 
can be fairly well described by a normal distribution 
process. To get a better evaluation of Hqn(ϕ) and 
Hn(ϕ) quantities, several statistical parameters can 
be used. They are here termed as statistical 
operators. For a discrete distribution function, f(x), 
the operators can be express as: 

 

ii pxXPxf === )()(                    (1) 

where P is the probability: xi is the discrete value: 
pi is the probability value for xi. The following 
moments uk of a distribution can be defined: 

 

∑ ⋅−= i
k

ik p)ax(u                      (2) 

First moment: u - mean value of a distribution; 
k=1, a=0 

 

∑ ⋅= ii pxu                                 (3) 

Second moment: 2σ - variance value of a 
distribution;   k =2, a =u  
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Third moment: skewness sk - indicator of the 
asymmetry of a distribution as compared to a 
normal distribution; k=3, a = u  
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Fourth moment: kurtosis uK  - indicator of the 

sharpness of a distribution as compared to a normal 
distribution; k =4, a = u  
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The third moment and the fourth moment about 
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the mean are significant with respect to the shape of 
the distribution. 

The skewness,sk, indicates the asymmetry of the 
distribution. sk will be zero for asymmetric 
distribution, positive when the distribution is 
asymmetric to the left and negative when the 
distribution is asymmetric to the right. 

The kurtosis, Ku, indicates the degree of 
sharpness of the distribution. Kurtosis Ku will be 
zero for a normal distribution. If the distribution is 
sharper than the normal distribution, Ku is positive 
while if that is flatter than the normal distribution, 
Ku is negative.  

The discharges during a voltage cycle occur in 
two sequences. For each half of the voltage cycle 
separate discharge patterns can be found. Thus, the 

)( ϕnqH  and )(ϕnH quantities are characterized by 

two distributions. For the positive half of the voltage 
cycle )(ϕ+

qnH , )(ϕ+
nH  and for the negative half of the 

voltage cycle )(ϕ−
qnH , )(ϕ−

nH .  

Both the Hqn(ϕ) and Hn(ϕ) quantities can be 
described by two skewness, Sk+, Sk-,  and two 
kurtosis Ku+, Ku-. The distributions Hqn(ϕ) and 
Hn(ϕ) are also characterized by their 
mean value, their inception phase and the number of 
peaks. Therefore more statistical parameters can be 
defined, enabling us to compare the mean value, the 
inception phase and the number of peaks in the both 
positive and the negative half of the voltage cycle. 
The distributions Hqn(ϕ) and Hn(ϕ) both positive and 
negative half of the voltage cycle the following 
statistical operators have been introduced by 
discharge asymmetry, Q , as the quotient of the 
mean discharge level in the positive and in the 
negative half of the voltage cycle. 
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 The cross-correlation factor, cc, can be expressed 
as: 
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     The modified cross-correlation factor, mcc, 
which is used to evaluate the difference between 
discharge patterns in the positive and the negative 
half of the voltage cycle is given in (9).  

   
ccQmcc ⋅=                                  (9) 

5 Simplified Fuzzy ARTMAP   

     In 1976, Adaptive Resonance Theory (ART) 
was invented by Grossberg, as a theory of human 
cognitive information processing [18]. Carpenter 
and Grossberg introduced the ART family in the 
form of a wide variety of supervised and 
unsupervised NNs [19]–[22]. The most advanced 
model of the ART family, fuzzy ARTMAP (FAM), 
could handle both binary and analogue data in a 
supervised manner [23]. The main drawback to the 
ART family networks, which prevented others from 
using them, was their intricacy: the inventors had 
introduced complicated architectures for their 
networks instead of presenting them as simple 
algorithms. This problem later was recognized by 
the inventors and they presented the modified model 
or simplified model of ART family networks [24].  

     Originally, ART networks were defined in 
terms of differential equations, but in practice they 
are implemented using approximations or analytical 
solutions to these equations, in the limit. ART 
networks have their own special terminology. The 
main idea of unsupervised ART networks is as 
follows: 

(1) Find the nearest cluster prototype that 
‘resonates’ with the input pattern. 

(2) Update this cluster prototype to be closer to 
the input. 

     Kasuba have been developed simplified fuzzy 
ARTMAP (SFAM) and details are illustrated in 
[24]. Kasuba’s Simplified fuzzy ARTMAP which is 
a vast simplification of Carpenter and Grossberg’s 
fuzzy ARTMAP has reduced computational 
overhead and architectural redundancy when 
compared to its predecessor. Also, the model 
employs simple learning equations with a single 
user selectable parameter and can learn every single 
training pattern within a small number of training 
iterations. So, the SFAM is much faster than the 
FAM and easier to understand and simulate. 
However, it should be made clear that the SFAM 
can be used only for classification. The SFAM 
consists of a two layer net containing an input and 
an output layer. Figure 3 illustrates the architecture 
of simplified fuzzy ARTMAP. 

The main idea of SFAM is as follows[25]: 
(1) Find the nearest subclass prototype that 

‘resonates’ with the input pattern (winner). 
(2) If the labels of the subclass and the input 

pattern match, update the prototype to be closer to 
the input pattern. 
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Fig. 3  Architecture of SFAM Network  

(3) Otherwise, reset the winner, temporarily 
increase the resonance threshold (r), and try the next 
winner. 

(4) If the winner is uncommitted, create a new 
subclass (assign the input vector to be the prototype 
pattern of the winner, and label it as the class label 
of the input). 

The input to the network flows through the 
complement coder where the input string is 
stretched to double the size by adding its 
complement also. The complement codes input then 
flows into the input layer and remains there. 
Weights (w) from each of the output category nodes 
flow down to the input layer. The category layer 
merely holds the names of the M number of 
categories that the network has to learn. Vigilance 
parameter and match tracking are mechanisms of 
the network architecture which are primarily 
employed for network training. 

ρ  is the vigilance parameter which can range 
from 0 to 1. It controls the granularity of the output 
node encoding. Thus, while high vigilance values 
make the output node much fussier during pattern 
encoding, low vigilance renders the output node to 
be liberal during the encoding of patterns. 

The match tracking mechanism of the network is 
responsible for the adjustment of vigilance values. 
Thus, an error occurs in the training phase during 
the classification of patterns. 

The SFAM algorithm is as follows [25]: 
Step 1:  Set the vigilance factor to be equal to its 

baseline value :  
ρρ =                              (10) 

Step 2: Insert input, and calculate second layer 
activities:  

 

j

j
j

w

wI
)I(T

+α

∧
= for j = 1,…, N-19        (11) 

and for the uncommitted neuron: TN = T0 
Step 3: Find the winner  

 

( )








=

j

TMax
argJ j                             (12) 

If the winner neuron is uncommitted, go to Step 
7. 

Step 4: Check the resonance condition, i.e. if the 
input is similar enough to the winner’s prototype: 

 

ρ≥
∧

=
∧

M

wI

I

wI jj                          (13) 

If this condition is fulfilled, go to Step 5. 
If this condition is not fulfilled, reset the winner 

(Tj = -1), go to the Step 3, and check the next 
winner. 

Step 5: If the class label of the winner matches 
with the class label of input, update the prototype 
pattern to be closer to the input pattern: 

 
)old(

j
)old(

j
)new(

j w)()wI(w β−+∧β= 1                    (14) 

and go to Step 9, otherwise reset the winner (Tj = 
-1), temporarily increase the vigilance factor so as to 
violate the condition of Equation (9), i.e. set ρ equal 
to : 

 

ε+
∧

=ρ
M

wI j                                   (15) 

(where ε is a small positive number, i.e. ε ≈ 
0.001). 

Step 6: If ρ > 1, terminate the training for this 
input pattern in the current epoch (data mismatch), 
and go to Step 9, otherwise go to Step 3, and try the 
next winner. 

Step 7: Create a new subclass, i.e. assign the 
input vector as the prototype pattern of the winner 
neuron: 

IwN =                                     (16) 

and set the class label of the winner neuron to be 
as the class label of input pattern. 

Step 8: Create a new uncommitted neuron, and: 
N ←N + 1. 

Step 9: Go to the Step 1, and repeat the 
algorithm for the next input. 

The flow chart of the SFAM Algorithm is 
presented in Fig. 4. 

ρ
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Fig. 4   Flow Chart of the SFAM Training Algorithm for One Input Pattern in One Epoch of Training 

 
    Once the network has been trained, the inference 

of pattern, known or unknown, i.e. the categories to 
which the pattern belongs, may be easily computed.   
This is accomplished by passing the input pattern into 
the complement coder and then to the input layer.   All 
the output nodes compute the activation functions with 
respect to the input.  The winner, which is the node 
with the highest activation function, is chosen. The 
category to which the winning output node belongs is 
the one to which the given input pattern is classified by 
the network. The overall structure of the pattern 
recognizer is illustrated in Fig. 5. 

SFAM
Training

SFAM
Inference

Feature
Extractor

Pattern
Processor

Training
Pattern

Inference
Pattern

Outputinput

 
Fig. 5 Structure of SFAM based pattern recognizer 

 The SFAM activator functions as two modules, 
namely the training module and the interference 
module.  

Steps of SFAM algorithm for the training phase are 
as follows[26]. 
Step 1: Choose an appropriate value for the vigilance 
parameter (0≤ ρ <1) and a small value for α. Set 
NO_OF_TRAINING_EPOCHS to the desired number of 
training epochs and COUNT_OF TRAINING_EPOCHS to 0. 
Step 2: i←1;  
           COUNT_OF_TRAINING_EPOCHS = COUNT_OF     

_TRAINING_EPOCHS+1; while (COUNT_OF_TRAINING   
_EPOCHS ≤  NO_OF_ TRAINING_EPOCHS)  
         Repeat Steps 3–12; 
Step 3: Input the pattern vector   I i= (ai1,ai2,…aid)  of 
dimension d and its category Ci. 
Step 4: Compute the augmented input vector  
            )a-,...,1a-,1a-,1a,...,a,(a  AI idi2i1idi2i1i =  
Step 5: If AIi is the first input in the given category  Ci 
set the top down weight vector Wj as  AIi   
            i.e.   Wj = AIi     
           Link  Wj to the category Ci;  
                 Go to Step 12; 
Step 6: If AIi is an input pattern vector whose category 
already exists then compute the activation function  

Reset vigilance factor
ρ=ρ

Apply input pattern

Calculate activities

Find winner neuron

j

)]T(Maxarg[
J j=

Committed ?

Class match ?

Resonance ?

ρ≥
∧

M
jwI

Update winner prototype

Yes

Yes

Yes

Create a new 
Uncommitted

neuron

Create a new 
subclass
wN = I

Reset winner
Tj = 0

Reset winner
Tj = 0

Increase vigilance

ερ +
∧

=
M

jwI

Data mismatch

ρ > 1

Yes

No

No

No

No
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Tj(AIj)  for each of the existing top-down weight nodes 
jW     

             ;  
 W 

 WAI 
  )AI(T

j

jj
ij

+α

∧
=  

Step 7: Choose that top-down weight node  k which 
records the highest activation function  

             )AI(Tmax  )AI(T ij
j

ik =  

Step 8: Compute the match function )(AIMF ik  of the 

winning node  k ;  
          If  ρ>    )(AIMF ik   and  iC  is same as that 
category kC linked to kW  
          Then update weight vector 

           )W  (I  W  W  as W old
k

old
k

new
kk ∧+=  

(Here 1  =β  has been chosen in Eq.8) 
           Go to Step 12; 
Step 9: If ρ>    )(AIMF ik   and  Ci is not the category 

kC linked to kW  then 

           Undertake match tracking by setting ρ to 
)(AIMF ik  and incrementing by a small valueε . 

                  ε+=ρ )AI(MF  ik  ; 
             If some more top-down weight nodes exist 
             Then consider the next highest winner  kW  
among the top-down weight nodes; 
             Go to Step 8; 
             Else go to Step 11; 
Step 10: If  ρ>    )(AIMF ik  

   Then 
 If some more top-down weight nodes exists 
Then 
Consider the next highest winner  kW  among the 

top-down weight nodes. 
Go to Step 8; 
Else go to Step 11; 

Step 11: Create a new top-down weight node 1W   such 
that  i1 AI  W =  and link the node to the category  iC ; 
Step 12: If no more input pattern then go to Step 13; 

            Else 1ii +←  
            Go to Step 3; 

Step 13: Go to Step 2;  
END SFAM –TRAIN. 
   

Steps of SFAM algorithm for the inference phase 
are as follows[26]. 
Step 1 : Let Wj ,  j = 1,2,3…s  indicate s top-down 
weight vectors obtained after training the network with 
a given set of training patterns; 

Let Ii be the inference pattern set each of whose 
category is to be inferred by the network;  ; 1 i←  
Step 2 : Read input  I i ; 
Step 3 : Compute the augmented input AIi ; 
Step 4 : For 1j ←  to  s    

         Compute the activation functions 

  
 W 

 W  AI 
  )AI(T

j

ji
ij

+α

∧
=  

         End 
Step 5 : Choose the winner k among the s activation 
functions 

                      )AI(Tmax  )AI(T ij
j

ik =  

Step 6 : Output the category Ck linked to Tk(AIi) as the 
one to which Ii belongs to. 
Step 7 : If no more inference pattern vectors 

         Then exit 
         Else 1ii +← ; 
         Go to Step 2; 

END SFAM-INFERENCE.    
    

As illustrated in Fig. 5, the feature vectors of the 
training patterns and the categories to which they 
belong are presented to the SFAM’s training module. 
The only selectable parameter for the training session 
is the vigilance parameter, ρ, where 0 < ρ <1. Once 
the training is complete, the top-down weight vectors 
represent the pattern learnt. Next, the feature vectors 
are recognized/classified and are presented to the 
interference module. The SFAM now begins its 
classification of input data by associating the feature 
vectors with the top-down weight vector. 
 

6 Experimental  

     In this study, test arrangement is shown in Fig. 6. as 
illustrated in Fig 7, three types of partial discharge 
generation sources, including corona discharge, 
surface discharge and internal discharge, were used. 
Partial discharge signal was measured by using partial 
discharge detector (OMICRON, model MPD600). 
Typical measurement results of each partial discharge 
generation source are illustrated in Fig. 8, Fig. 9 and 
Fig. 10, respectively.   

 

 

 

 

 

 

 
Fig. 6   Test Arrangement 

 

Testing Transformer

C oupling Capacitor
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  (a)   Corona Discharge                     (b)  Surface Discharge                            (c)  Internal Discharge 

Fig. 7    Electrode Configuration for Partial Discharge Generation Source 

 

 

 

 

 

 

 

 

 

 

             (a) Display on Sinusoidal                                                          (b) Display on Elliptical 

Fig. 8 Partial Discharge Measurement Result from Corona Discharge 

 

 

 

 

 

 

 

(a) Display on Sinusoidal                                                     (b) Display on Elliptical  

Fig. 9 Partial Discharge Measurement Result from Surface Discharge
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              (a) Display on Sinusoidal                                                 (b) Display on Elliptical 

Fig. 10   Partial Discharge Measurement Result from Internal Discharge 
 

Obviously, differences in the pattern of partial 
discharge measurement results were obtained. Each 
partial discharge generation source generated 
individual partial discharge pattern. Then, these 
measurement data are used to test the purpose 
technique. Characteristics of partial discharge data 
were calculated by using statistical tools to apply for 
pattern recognition and classification. These 
characteristic of partial discharges include 

skewness, kurtosis, discharge asymmetry, the cross-
correlation factor and modified cross-correlation 
factor. Characteristics of corona discharge, surface 
discharge and internal discharge are showed in 
Table 1, Table 2 and Table 3, respectively. These 
results were used for pattern recognition and 
classification. 

 
 

Table 1 Characteristics of Corona Discharge  

Hqn Hn No. 
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.150 1.010 -1.680 -1.946 1.156 1.129 -1.710 -1.884 
2 1.034 1.022 -1.514 -1.953 1.120 1.092 -1.455 -1.781 
3 1.061 1.012 -1.950 -1.970 1.108 0.089 -1.638 -2.331 

 
Table 2 Characteristics of Surface Discharge 

Hqn Hn No. 
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.525 1.473 -0.390 -0.840 1.976 -0.120 1.597 -2.070 
2 1.511 1.302 -0.570 -0.560 1.977 -0.690 1.923 -2.390 
3 1.459 1.302 -0.400 -1.000 1.945 -0.630 1.647 -2.360 

 

Table 3 Characteristics of Internal Discharge 

Hqn Hn No. 
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.206 1.200 -1.470 -1.490 1.307 -0.220 -0.960 -2.38 
2 1.170 1.154 -1.570 -1.610 1.168 -0.680 -1.560 -2.33 
3 1.142 1.100 -1.630 -1.750 1.125 0.500 -1.640 -2.370 

 
The existing characteristics of the partial 

discharge signal, illustrated in [4], were used as 
reference database to train the simplified fuzzy 
ARTMAP system. Characteristics of reference 

partial discharge measurement signal (corona 
discharges, surface discharges and internal 
discharges) are illustrated in Table 4, Table 5 and 
Table 6, respectively.   
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Table 4   Characteristics of Corona Discharge 

Hqn Hn No. 
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.031 1.018 -1.92 -1.95 1.077 0.947 -1.8 2.08 

2 1.031 10.15 -1.92 -1.96 1.089 1.012 -1.77 -1.9 

3 1.028 1.006 -1.93 -1.98 1.062 0.951 -1.84 -0.72 

Table 5 Characteristics of Surface Discharge 

Hqn Hn No. 
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.493 1.471 -0.26 -0.28 1.918 -0.46 1.451 -2.3 

2 1.496 1.45 -0.27 -0.39 1.954 -0.59 1.702 -2.35 

3 1.486 1.454 -0.34 -0.41 1.919 -0.54 1.408 -2.35 
 

Table 6 Characteristics of Internal Discharge 

Hqn Hn No. 
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.115 1.153 -1.71 -1.6 1.11 -0.37 -1.73 -2.39 
2 1.141 1.152 -1.63 -1.6 1.113 -0.43 -1.71 -2.39 

3 1.133 1.153 -1.66 -1.58 1.124 -0.63 -1.68 -2.34 

 
7 Results and Discussions    

After well training the simplified fuzzy 
ARTMAP system by our reference PD 
characteristics, then PD characteristics from the 
experimental results were inputted to the SFAM 
system for a classified partial discharge generation 
source. The obtaining results confirmed the 
effectiveness of the purpose technique. The SFAM 
could correctly recognize and classify partial 
discharge generation source from PD measurement 
signal characteristics. The results are showed in 
Table 7.  

 
Table 7 Classification Results by the SFAM 

System  
No. of 
Test 
Data 

PD Generation 
Source 

Results of 
Classification 

1 corona correct 
2 corona correct 
3 corona correct 
4 surface correct 
5 surface correct 
6 surface correct 
7 internal correct 
8 internal correct 
9 internal correct 

8 Conclusions 

The experimental for PD measurement was 
conducted. Differences in PD generation source 
were used in order to characterize the partial 
discharge measurement signal. Characteristics of PD 
signal were analyzed by using statistical tools and 
were used to classify PD generation source using the 
SFAM system. Correctly classification results were 
obtained. Moreover, it is clear that the simplified 
fuzzy ARTMAP system can be applied for the 
pattern recognition and classification of PD 
generation signal. 
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