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Abstract: - Travel-time statistics of backscattered pulses from Gaussian and non-Gaussian (Rayleigh and 

Exponential) surfaces are studied and compared in this paper. It is found that in both cases (the Gaussian and 

non-Gaussian surfaces), the probability distributions of the first and the second travel times are all only 

determined by a dimensionless parameter. Moreover, this study also found that the proportional relations 

between the dimensionless parameter and the median values of the first and the second travel times are 

remarkably different for Gaussian and non-Gaussian cases. Then the statistical parameters of the rough surface 

can be estimated from travel-time statistics of backscattered pulses above if the probability distributions of the 

surface elevation and slope (PDSES) are known in advance. However, PDSES are often unknown in most of 

practical applications, and little work has been applied to the problem of specifying the statistical characteristic 

of the rough surface in advance (Gaussian or non-Gaussian). To solve this problem, on the basis of the relations 

between the median values of travel times and the altitude of source, a new theoretical method is proposed to 

judge the rough surfaces with Gaussian, Rayleigh and Exponential distributions. It is believed that the method 

proposed in this paper will be helpful to improve the estimate accuracy the parameters of a rough surface. 
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1 Introduction 
Travel times of backscattered waves from a random 

rough surface, especially the first arrivals of the 

backscattered signals play an important pole in a 

variety of applications to infer information about 

surface roughness and properties of the propagation 

medium [1]. For example, geophysical applications 

that employ the first arrivals include airborne laser 

altimetry [2], seismic and ocean acoustic 

tomography [3], satellite radar altimetry [4], etc.  

In general, if a rough surface is random, travel 

time of a backscattered short pulse from the surface 

must be random too. Therefore, the statistics 

properties of travel-time have been the object of 

theoretical analyses by various authors. Frolov [5,6] 

studied the travel-time statistics of the signal 

backscattered from a rough surface in the limiting 

cases of large-scale roughness. Elfouhaily
[7][8]

 

solved the problem of the travel-time statistics in 

small-scale limit. Godin and Fuks [9] extended the 

results above to the three-dimensional problem. 

Recently on the basis of the mathematical theory of 

excursions of random functions[10,11], Fuks, Godin, 

et. al [12-14] obtained the probability distributions 

of travel times and intensity of the first and second 

arrivals of a short pulse backscattered by a rough 

surface with a Gaussian statistics, within the 

geometrical optics approximation. GAO and 

WANG [15] then investigated the corresponding 

inverse problem for the Gaussian case.  

In the present paper, the problem of the first and 

the second travel times of a pulse backscattered by 

non-Gaussian rough surfaces (Rayleigh and 

Exponential distribution) is first studied and 

compared to the Gaussian case. The probability 

distributions, the median values of the travel times 

of the first and the second arrivals and the time 

delay between the first and the second arrivals are 

investigated theoretically and numerically. And the 

comparison of the results between Gaussian and 

non-Gaussian cases and many new, different 

conclusions are also shown in this article. 

Furthermore, to improve the estimation accuracy of 

the parameters of a rough surface, a new theoretical 

method based on travel-time statistics of 

backscattered pulses is presented to judge the rough 

surfaces with Gaussian, Rayleigh and Exponential 

distributions.  

Arrangement of the paper is as follows. In section 2, 

we briefly recall some fundamental ingredients of 

the theory of Fuks and Godin [12] on probability 

distribution functions of the first and the second 
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Fig. 1. Problem geometry and notation. A point source located at (0, )H . ),( 11 tx  and 2 2( , )x t  are the first and 

the second points of contact between the wave front ( , )Z x t  and the rough surface ( )xξ , respectively. 

 

travel times of backscattered pulses from a rough 

surface. In section 3.1, these equations are applied 

to the case of rough surfaces with non-Gaussian 

(Rayleigh and Exponential) statistics. In section 3.2, 

the median values of travel times of the first and the 

second arrivals are discussed. In section 3.3, we 

investigate the probability distributions of time 

delay between the first and the second arrivals. Our 

summaries are presented in section 4. 

 

 

2 Fundamental equations 
Let us consider two-dimensional problem of a 

backscattered short pulse from a random rough 

surface, and do not concern the propagation effects 

of the medium between the source and the surface. 

The random surface is characterized by the 

equation )(xz ξ= , (see Figure 1). A point source is 

located in the Cartesian coordinates 0(0, )H  and 

emits a short pulse at the moment of time 0t = . 

The wave front makes the first contact with the 

surface at some point ),( 11 tx . The first point of the 

contact must be a specularly reflecting point, 

namely the tangent plane to the surface at ),( 11 tx  is 

perpendicular to the ray connecting the source and 

the reflecting point. According to [12], within the 

interval ),( LLx −∈  the probability of the absence 

of crossings between the random surface and the 

wave front satisfied the equation:  

 

]),(exp[}{ 1 ∫−−=>Ρ
L

L
dxtxtt λ                            

(1) 
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ɺ

ɺɺɺɺ

(2b) 

where )(xZ denoting the equation of the wave 

front, ),( ξξω ɺ  is the joint probability density 

function (PDF) of the surface elevation )(xξ  and 

slopes dxxdx /)()( ξξ =ɺ . Namely, Equation (1) 

represents the probability of the event (there is not a 

specularly reflecting point at the interval 

),( LLx −∈ ). It is noted that Equation (2a) is the 

approximation given by Fuks and Godin [12]
 
and 
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Equation (2b) is another different approximation 

result obtained by Smith [16].  

For the reader’s convenience, we introduce the 

dimensionless travel time difference 
σ

τ
RH −

= , 

(where ctR = , c is the signal propagation speed, 
σ  is the root of mean square (rms) of the elevation, 

H  is the distance between the source and the mean 

surface) and investigate the statistical properties of 

τ . It is obvious that the relation between H  and 

0H  satisfies the following form: 

 

0H H ζ= +                                                         (3

) 

 

where, ζ  is the mean of the elevation ξ  of the 

surface. 

Then the probability distribution functions )(1 τF  

of the normalized time 1τ  of the first arrival and 

)(2 τF  of the second arrival satisfy:  

 

}{}{)( 111 ttF >Ρ=<Ρ= τττ                               

(4) 

}{1}{)( 222 ttF <Ρ−=<Ρ= τττ          .              

(5) 

 

 

3 Comparison between Gaussian and 

non-Gaussian surfaces 
Refs.[12] and [15] have studied the case of the 

backscattering surface with Gaussian distribution. In 

this section, we should apply the mathematical 

theory of excursions of random functions to 

investigate the problems of two specific random 

surfaces satisfied the non-Gaussian distributions: 

Rayleigh or Exponential distribution, and give the 

comparison between Gaussian and non-Gaussion 

cases in the following paper. 

 

3.1 The first and second travel time 
Firstly, we study the case of Rayleigh surfaces. 

When the surface is a Rayleigh distribution (RD), 

the PDFs of surface elevation ξ  and slope ξɺ  can be 
written: 

 
2

2 2

1 1

exp( )
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ξ ξ
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It is noted that the variances of the elevations and 

slopes are 
2

1
2

4
σ

π−
 and 

2

1
2

4
γ

π−
, respectively. 

And the means of ξ  and ξɺ  equal to 1
2
σ

π
 

and 1
2
γ

π
.  

For simplifying analysis, we consider the surface 

elevation and slope are independent statistically at 

the same point as considered by Fuks and Godin 

[12]. Then the cumulative PDF of the surface 

elevation and slope can be written:  

 

)()(),( ξωξωξξω ɺɺ ×=                                          (8

) 

 

When the inequality )(tRLx <<≤  holds, the 

wave front equation can be represented 

approximately in the following form:  

 
2

2 2

0 0( , ) ( ) ( )
2 ( )

x
Z x t H R t x H R t

R t
= − − ≅ − +  

(9) 

Substituting (6)-(9) into (1), (2) and (4), we obtain 

the probability function )(1 τ ′F : 
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1
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′
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( )1

1
1 2
( ) exp 2

( 2)
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τ
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    (10b) 

where 

4

2 2

π π
τ τ

−
′ = + , 
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where, 
2σ  and 

2

0γ  are variances of the elevations 

and slopes, respectively. And the definitions of τ  

and T  are the same with Fuks and Godin [12]. It is 

clearly that the probability of the travel time of the 

first arrival is only the function of the dimensionless 

parameter T , which depends on the height of the 

source and variances of the surface statistics.   

Secondly, when the surface satisfies Exponential 

distribution (ED), the PDFs of the surface elevation 

ξ  and slope ξɺ  are written: 
 

2 2

1
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where, 
2

2σ  and 
2

2γ  are the variances of the 

elevations and slopes, respectively. The mean value 

of ξ  and ξɺ  are 2σ  and 2γ . 

At this case, the cumulative PDF also satisfied 

Equation (8). Substituting (8)-(12) into (1), (2) and 

(4), yields the probability function )(1 τ ′′F : 

 

2

2

1 2

2 exp( )

( ) exp
exp[ ( ) ]

L

L

T

F y
y dy

T

π τ
τ

π

″

″−

 ′′ ′′− −
 ′′ = ′′ 

′′ ′′− + ′′ 
∫

 

(13a) 

2

2

2
1

2

2 exp( )

( ) exp exp[ ( )

]
1 exp[ ( )]

L

L

T

y
F y

T
dy

y

π τ

τ
π

τ

″

″−

 ′′ ′′− −
  ′′′′ = ′′− + 

′′ ′′
 ′′ ′′− − + 
∫

(13b

) 

 

Where 

 

1+=′′ ττ ,  

T T′′ = ,  

22 σH

x
y =′′ ,  

2

2
2 σH

L
L =″

. 

The PDFs of the first and the second travel times are 

given by: 

 

2,1,
)(

)( == n
d

Fn
n τ

τ
τω                      (14) 

 

We conclude from (13) that the probability 

distribution of the travel time of the first arrival is 

only determined by the dimensionless parameter T . 

Furthermore, the discrepancy between (10a) and 

(10b) or between (13a) and (13b) can be neglected 

for any 0τ >  when 1T >>  in terms of our 

numerical results. Therefore, it is reasonable that we 

only apply the Equation (a) in the following 

analysis. 

In Figure 2, the probability distribution functions 

of )(1 τF *
, and the corresponding PDFs are shown 

for a set of T  parameters for the surfaces with 

Gaussian (solid), Rayleigh (dotted) and Exponential 

(dashed) distributions, respectively. 

According to [12], the probability distribution 

function )(2 τF of the travel time of the second 

arrival satisfies the following equation: 

                                                 
*
 From equations (10) and (13), we may obtain 

1 1

2
( ) ( )

4 4
F F

π
τ τ

π π
′= −

− −
 for Rayleigh 

distribution and )1()( 11 −′′= ττ FF  for Exponential 

distribution 
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2 1 1( ) [1 ln ( )] ( )F F Fτ τ τ= − ×                                

(15) 

 

Then the probability functions 2F , the PDFs 

)(2 τω  of the second travel time are easily obtained 

by using Equations (10)-(15), as shown in Figure 3. 

The parameters are taken same as that in Figure 2. 

From Figure 2 and 3, it is seen that for a given T 

)(1 τF  and )(2 τF  are different for three rough 

surfaces. For the peak values of PDFs of travel 

times of the first and second arrivals, the Gaussian 

surface correspond to the maximum, and the 

Exponential surface is minimum. The maximums of 

PDFs of travel times increase with T  increasing for 

Rayleigh and Gaussian surfaces and are not related 

with T  approximately for Exponential distributions. 
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Fig. 2. Comparison of probability distributions of travel time of the first arrival of a short pulse backscattered 

by Gaussian (solid lines), Rayleigh(dotted lines) and Exponential(dashed lines) surfaces. 
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Fig.3. Comparison of probability distributions of travel time of the second arrival of a short pulse backscattered 

by Gaussian (solid lines), Rayleigh(dotted lines) and Exponential(dashed lines) surfaces. 

 

 

3.2 The median value of travel time 
The median values of the first and second travel 

times are defined as the following forms:  

 

2

1
)( 11 =mF τ , 

2

1
)( 22 =mF τ                                  

(16) 

 

In the limiting case 1>>τ , the equations (10) and 

(13) have the following simple expressions 
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)]exp(2exp[)(1 τπτ ′′−′′−=′′ TF                       

(18) 

 

Accepting the equations (17) and (18), in term of the 

definitions of median value of travel times of the 

first and the second arrival, the median values m1τ ′  

and m1τ ′′  should satisfy the following equations 
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mT
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1
)]exp(2exp[ 1 =′′−′′− mT τπ                ED       
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When 1ln >>T , applying the similar method in 

[12], the asymptotic solution to (19) is given 

 

1

2
(ln 5.98)

4 4
m T

π
τ

π π
≈ × + −

− −
     RD       

(21) 

 

We may easily obtain the solution to (20) 

 

2.2ln
2

1
1 +≈ Tmτ                                 ED          

(22) 

 

Then the median value m2τ ′  and m2τ ′′  of the second 

arrivals takes the form similar to (21) and (22): 
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2

2
(ln 4.21)

4 4
m T

π
τ

π π
≈ + −

− −
     RD         

(23) 

32.1ln
2

1
2 +≈ Tmτ                               ED          

(24) 

 

At the case of 1ln >>T , the difference between the 

median values is given 

 

12 1 2

1.34

ln
m m

T
δτ τ τ= − ≈                  RD                

(25) 

88.02112 ≈−= mm ττδτ                   ED                 

(26) 

 

Table 1 shows the median values and time delay 

of travel times of the first and the second arrivals for 

the Gaussian, Rayleigh and Exponential cases. It 

can be seen from Table 1 that for the Rayleigh 

distribution, the median values of the travel times of 

the first and second arrivals are proportional to 

Tln , and the difference between m1τ  and m2τ  

are inversely proportional to Tln . There exits 

similar relation in the case of Gaussian 

distribution
[12]

, but these proportional constants are 

all different to the that of Gaussian surface. For 

example, the proportional constant between m1τ  (or 

m2τ ) and Tln  is 
π−4

2
at the case of Rayleigh 

surface, but 1 for the Gaussian surface. And for the 

Exponential distribution, it is found that the mean 

values m1τ , m2τ  are proportional to Tln , and 12δτ  

is a constant and not associated with the parameter 

T .  

 

3.3 Relations between the median values of 

travel times and the altitude of source 

The dimensionless parameter T  can be written as: 
 

T H S= ×                                                                (27) 

 

where H is the altitude of source, 

2

0

2
S

γ
πσ

= . As is 

known that ln( ) ln lnH S H S× = + , the relations 

between the median values of travel times and the 

altitude of source are given 
 

lnHΖ = Κ × + Β                                                  (28) 

 

where Ζ  is the function of m1τ (or 2mτ ), which is 

different for the Gaussian, Rayleigh and 

Exponential surfaces cases (see Table 2), Κ is the 

slope, Β  is a constant. The relations between the 

median values of travel times and the altitude of 

source for the Gaussian, Rayleigh and Exponential 

cases are shown in Table 2. Ζ  and Κ  are 

calculated in terms of the analytical expresses 

shown in Table 1. 1Κ , 2Κ  and 3Κ are the 

numerical results when H  is varying in the range 

[ ] 41,1.5 10× ,
710 and

1010 , respectively. It can be 
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Fig. 4. The probability distributions and corresponding PDFs of the travel time delay between the first and the 

second arrivals of a short pulse backscattered by Gaussian (solid lines), Rayleigh (dotted lines) and Exponential 

(dashed lines) surfaces. 

 

 

seen from Table 2 that there is the linear relation 

between Ζ  and Κ . And the values of Κ are almost 

a constant. It is clear that the relations between the 

median values of travel times and the altitude of 

source are different for the Gaussian, Rayleigh and 

Exponential surfaces cases. Therefore, the results 

shown in Table 2 suggest that the relation between 

m1τ  ( m2τ ) and the altitude of source can be used to 

judge whether the scattering surface is Gaussian 

distribution or not. After the statistical characteristic 

of the rough surface is specified in advance, we may 

apply the similar method in Refs.[] to obtain the 

parameters of the rough surface. 

 

3.4 Time delay between the first and the 

second arrival 
In [12], Fuks and Godin think the scale of time 

delay τ  being sensitive only to σ . Thus, we should 

discuss the statistical properties of the time delay 

between the first and second arrival in this 

subsection. It is helpful to determine the parameters 

of surface with non-Gaussian distributions under our 

considering circumstance. 

 

Table. 1. The median values and time delay of the first and the second arrivals of a short pulse backscattered by 

Gaussian (GD), Rayleigh (RD) and Exponential surfaces (ED) 

 GD RD ED 

1mτ ≈  ln 0.73T +  
2

(ln 5.98)
4 4

T
π

π π
× + −

− −
 

1
ln 2.2

2
T +  

2mτ ≈  ln 1.04T −  
2

(ln 4.21)
4 4

T
π

π π
+ −

− −
 

1
ln 1.32

2
T +  
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12δτ ≈  
0.88

lnT
 

1.34

lnT
 0.88  

 

 

Table. 2. The relations between the median values of travel times and the altitude of source for Gaussian (GD), 

Rayleigh (RD) and Exponential cases (ED) 

 GD RD SD 

Ζ  
2
1m

τ 、 2
2m

τ  

2

1
4

m

π
τ

π

 
+  − 

、
2

2
4

m

π
τ

π

 
+  − 

 1mτ 、 2mτ  

Κ  1 2.33 0.5 

1Κ  0.95 2.40 0.5 

2Κ  0.97 2.38 0.5 

3Κ  0.98 2.36 0.5 

 

 

 

The probability distribution function of the time 

delay between the first and second arrivals is also 

derived: 

 

ττδττωδτ dFCF )()(1)( 2
0

1∫
∞
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)(xθ is the unit step function: 

 





<

≥
=

0,0

0,1
)(

x

x
xθ                                                   

(31) 

 

Figure 4 is the probability distributions and 

corresponding PDFs of the travel time delay 

between the first and second arrivals for Gaussian 

(solid lines), Rayleigh (dotted lines) and 

Exponential (dashed lines) surfaces. The values of 

T  in Figure 4 are chosen to
310 , 

410 and
510 , 

respectively. 

From Figure 4, the PDF of time delay between 

the first and second arrivals is determined by the 

parameter T  for Rayleigh surfaces. At the case of 

Exponential distributions, the PDFs of time delay 

are holding constant for different values of T . 

When δτ  is small, the PDF of the case of Gaussian 

is maximum, Rayleigh is following and Exponential 

is minimum, while for the large δτ , on the 

contrary, that is, Exponential is the maximum and 

Gaussian is the minimum. 

 

 

4 Conclusion 
We have considered the problem of travel time of a 

short pulse backscattered from rough surface with 

special non-Gaussian (Rayleigh and Exponential) 

distributions, which are different from [12]. The 

main results obtained are summarized below: 

(1) For all consider cases, the probability 

distributions of travel times of the first and 

second arrival are only the function of the 

dimensionless parameter T . 

(2) For the Rayleigh distribution, the median values 

of the travel times of the first and second 

WSEAS TRANSACTIONS on SYSTEMS Gao Wei, She Huqing

ISSN: 1109-2777 67 Issue 3, Volume 10, March 2011



arrivals are proportional to Tln , and the 

difference 12δτ  between m1τ  and m2τ  are 

inversely proportional to Tln . The 

proportional constants of these relations above 

are all different to that of Gaussian surface. For 

the Exponential distribution, m1τ  and m2τ  are 

proportional to Tln , and 12δτ  is independent 

approximately with the parameter T . 

(3) It is confident that we are able to distinguish 
surfaces among Gaussian, Rayleigh and 

Exponential by use of the results in Table 2 in 

section 3.3. After the statistical characteristic of 

the rough surface is specified in advance, the 

results of this paper can be applied to retrieve 

the parameters of the non-Gaussian (Rayleigh 

and Exponential) random surface. 
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