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Abstract: In this paper, the problem of synthesis of a multiple observer for a class of uncertain nonlinear
system represented by a Takagi-Sugeno multiple model is studied. The measure’s uncertainties are con-
sidered as unknown outputs. To conceive the observer a mathematical transformation is considered to
conceive an augmented system in which the unknown output appear as an unknown input. Convergence
conditions are established in order to guarantee the convergence of the state estimation error. These
conditions are expressed in Linear Matrix Inequality (LMI) formulation. An example of simulation is
given to illustrate the proposed method.
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1 Nomenclature

x(t) ∈ Rn: the state vector
x̂(t) ∈ Rn: the estimate state vector
u(t) ∈ Rm: the input vector
y(t) ∈ Rp: the measured output
Ai ∈ Rn×n: are the state matrices
Bi ∈ Rn×m: are the matrices of input
C ∈ Rp×n: is the output matrix
ξ(t): the vector of decision
M : is the number of local models.

2 Introduction

The state reconstruction of an uncertain system
is a traditional problem of the automatic. The
observer of Luenberger is not always sufficient for
the fault detection, because the state estimation
error given by this observer for an uncertain sys-
tem or with unknown inputs does not converge
inevitably towards zero.

In the case of linear systems, observers can
be designed for uncertain system with time-delay
perturbations [8] and unknown input systems [6].
Many researchers have paid attention to the prob-
lem of state estimation of dynamic linear sys-
tems subjected to both known and unknown in-
puts [6, 23]. These works can be gathered into
two categories [2]. The first one supposes an a

priori knowledge of information on these nonmea-
surable inputs; in particular, Johansen [16] pro-
poses a polynomial approach and Meditch [19]
suggests approximating the unknown inputs by
the response of a known dynamic system. The
second category proceeds either by estimation of
the unknown inputs, or by their complete elimi-
nation from the equations of the system [11].

However, in the majority of real cases the non-
linear nature of the process cannot be neglected.
The assumption of linearity is checked only in a
limited vicinity of a particular operating point.
Indeed, the physical systems present complex be-
haviours utilizing nonlinear laws. As, it is delicate
to synthesize an observer for a nonlinear system,
the multiple model approach constitutes a tool
which is largely used in the modeling of nonlin-
ear systems [20]. The idea of the multiple model
approach is to apprehend the total behavior of a
system by a set of local models. Each local model
can be for example a linear time invariant system
valid around an operation point. The relative con-
tribution of each submodel is quantified with the
help of a weighting function. Finally, the approx-
imation of the system behaviour is performed by
associating the submodels and by taking into con-
sideration their respective contributions.

The choice of the structure used to associate
the submodels constitutes a key point in the mul-
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tiple modelling framework. Indeed, the submod-
els can be aggregated using various structures [9].
Classically, the association of submodels is per-
formed in the dynamic equation of the multiple
model using a common state vector. This model,
known as Takagi-Sugeno multiple model, has been
initially proposed, in a fuzzy modelling frame-
work, by Takagi and Sugeno [24] and in a multi-
ple model modelling framework by Johansen and
Foss [15].

In the case of nonlinear systems, various stud-
ies dealing with the presence of uncertainties were
published [1, 21]. The problem of state esti-
mation of nonlinear systems submitted to un-
known inputs has received considerable attention
[3, 12, 17, 18]. The recourse to the use of an un-
known input observer is necessary in order to be
able to estimate the state of the nonlinear sys-
tem [1]. For state estimation, the suggested tech-
nique consists in associating to each local model a
local unknown input observer. The considered ob-
server is then a convex interpolation of these local
observers. This interpolation is obtained through-
out the same activation functions as the Takagi-
Sugeno model.

Our contribution lies in the design of ob-
servers for nonlinear systems using Takagi-Sugeno
models. This paper proposes a method to ex-
tend the approach of synthesis of observers with
unknown outputs to taking into account, on the
one hand, the unknown outputs, and on the other
hand, the measures uncertainties. A mathemat-
ical transformation, proposed in the linear case
in [7] and used in [13, 17, 28], is used allowing
us to consider unknown outputs in the form of
unknown inputs. So, one gets to the conception
of multiple observers based on the elimination of
these unknown inputs.

The paper is organized as follows. Section 3
presents an overview of the multiple model ap-
proach. Section 4 describes the principle of the
synthesis of a multiple observer with unknown in-
puts. In section 5, the main results to design ob-
servers under LMI formulation are given. Finally,
in section 6, a simulation example is given to show
the validity of the proposed method.

3 Multiple model approach

The principle of the multiple model approach is
based on the reduction of the system complex-
ity by the decomposition of its operation space in
a finished number of operation zone. Each zone
is characterized by a local model or sub-model.

Each sub-model is a simple and linear system
around an operation point. The total behavior
of the nonlinear system is obtained thus by the
sum of the local models balanced by weighting
functions associated to each of them.

Two main structures of multiple models, un-
coupled structure and coupled structure, can be
distinguished according to nature from the cou-
pling between local models. The coupled struc-
ture or the Takagi-Sugeno structure provides a
useful tool to represent with a good precision a
large class of nonlinear systems [25]. The main ad-
vantage of T-S structure is its simplicity because
it originates from the interpolation between lin-
ear systems. Thus, analysis and design methods
developed for linear systems can be generalized to
nonlinear systems.

The Takagi-Sugeno multiple model represen-
tation is given by:

{
ẋ(t) =

∑M
i=1 µi(ξ(t))(Aix(t) + Biu(t) + Di)

y(t) =
∑M

i=1 µi(ξ(t))(Cix(t) + Eiu(t) + Ni)

(1)
where µi(ξ(t)) are the activation functions. ξ(t)
may depend on the known input and/or the mea-
sured state variables.

If Ei = Ni = 0 and the output y(t) is linear,
i.e. (C1 = C2 = ... = CM = C) , the structure of
the Takagi-Sugeno multiple model becomes:

{
ẋ(t) =

∑M
i=1 µi(ξ(t))(Aix(t) + Biu(t) + Di)

y(t) = Cx(t)
(2)

where Di is introduced to take into account
the operating point of the system. M is the num-
ber of local models. It depends on the precision
of desired modeling, the complexity of the nonlin-
ear system and the choice of the structure of the
weighting functions.

Matrices Ai, Bi, Di and C can be obtained
by using the direct linearisation of an a priori
nonlinear model around operating points, or al-
ternatively by using an identification procedure
[4, 10, 14].

The weighting functions µi(ξ(t)) are associ-
ated to each operating zone. They are nonlinear
in ξ(t). They satisfy the following convex sum
properties:

M∑
i=1

µi(ξ(t)) = 1 , 0 ≤ µi(ξ(t)) ≤ 1 (3)

WSEAS TRANSACTIONS on SYSTEMS
Wafa Jamel, Nasreddine Bouguila, 
Atef Khedher, Kamel Ben Othman

ISSN: 1109-2777 805 Issue 7, Volume 9, July 2010



4 Multiple observer with un-

known inputs

This part is dedicated to the state estimation of a
nonlinear system perturbed by unknown inputs.
The design of this multiple observer is based on
the elimination of these unknown inputs.

The following Takagi-Sugeno multiple model
representing a nonlinear system with unknown in-
puts is considered:




ẋ(t) =
M∑
i=1

µi(ξ(t))(Aix(t) + Biu(t) + Rū(t)

+Di)
y(t) = Cx(t)

(4)

where ū(t) ∈ Rq, q < n represents the vec-
tor of unknown inputs and R is the distribution
matrix of unknown inputs.

Consider the global multiple observer de-
scribed as follows [3]:




ż(t) =
M∑
i=1

µi(ξ(t))(Niz(t) + Gi1u(t) + Gi2

+Liy(t))
x̂(t) = z(t) − Ey(t)

(5)

Ni ∈ Rn∗n, Gi1 ∈ Rn∗m, Li ∈ Rn∗p is the gain
of the ith local observer, Gi2 ∈ Rn is a constant
vector and E is a matrix transformation. All these
matrices or vectors have to be determined in order
to guarantee the asymptotic convergence of x̂(t)
towards x(t).

The state estimation error is given by:

e(t) = x(t) − x̂(t) = (I + EC)x(t) − z(t) (6)

and its dynamic is:

ė(t) =
M∑
i=1

µi(ξ(t))(Nie(t) + (PAi − Ni − KiC)x(t)

+(PBi − Gi1)u(t) + (PDi − Gi2) + PRu(t))
(7)

with Ki = NiE + Li.

The state estimation error between the mul-
tiple model (4) and the unknown input multiple
observer (5) converges towards zero, if all the pairs
(Ai, C) are observables and if the following con-

ditions hold ∀i ∈ {1, ..., M} [3]:

NT
i X + XNi < 0 (8a)

Ni = PAi − KiC (8b)

P = I + EC (8c)

PR = 0 (8d)

Li = Ki − NiE (8e)

Gi1 = PBi (8f)

Gi2 = PDi (8g)

where X ∈ Rn∗n is a positive definite sym-
metric matrix.

5 Main results

5.1 Multiple observer of a system with

unknown outputs

This section addresses the design of a multiple
observer with unknown outputs.

In the case of linear systems affected by un-
known outputs [7], a mathematical transforma-
tion is used to consider these unknown outputs
in the form of unknown inputs of an augmented
system. This result is then extended to nonlinear
systems represented by multiple model [13,17]. In
so doing, a multiple observer based on the elimi-
nation of these unknown inputs is conceived.

5.1.1 Linear system case

Consider the linear model affected by a sensor
fault described by:

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Dū(t)

(9)

where ū(t) ∈ Rr represents the sensor fault.
D is of full column rank.

Consider a new state z(t) [7, 28] that is a fil-
tered version of y(t):

ż(t) = −Āz(t) + ĀCx(t) + ĀDū(t) (10)

where −Ā is a stable matrix, Ā ∈ Rp×p.
Denote

X(t) =
[

x(t)T z(t)T
]T

(11)

The augmented system X(t) is given by the
following expression:
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{
Ẋ(t) = AaX(t) + Bau(t) + Daū(t)
Y (t) = CaX(t)

(12)

where Aa ∈ R(n+p)×(n+p), Ba ∈ R(n+p)×m,
Da ∈ R(n+p)×r and Ca ∈ Rp×(n+p).

These matrices are described as follows:

Aa =

[
A 0

ĀC −Ā

]
, Ba =

[
B
0

]

Ca =
[

C 0
]

and Da =

[
0

ĀD

]

Sensor fault of (9) appears as an actuator fault
of the augmented system (12).

The structure of the chosen observer is de-
scribed as follows:

{
Ż(t) = NZ(t) + Gu(t) + LY (t)

X̂(t) = Z(t) − EY (t)
(13)

where X̂(t) is the augmented estimated state,

Ŷ (t) is the estimated output. N , G, L is the
gain of the local observer and E is a matrix of
transformation.

• Exemple

Consider a linear system described by the follow-
ing matrices:

A =


 −1 .2 −.3

−0.1 −0.2 −0.3
0.25 0.35 0.1


 , B =


 0.1

0.2
0.3




D =


 0.2

0.35
0.55


 and C =


 1 1 0

0 1 0
1 0 1




The new state z(t) is defined in (10) with Ā =
25 ∗ I.
The sensor fault is defined by ū(t) =
0.1sin(.25πt).
The computation of the matrices of the multiple

observer (13) gives:

N =




31.57 49.48 75.38 ...
35.33 15.34 73.36 ...
9.29 25.74 −2.76 ...

−35.21 −20.90 −18.76 ...
−149.34 −72.06 −44.16 ...
−204.52 −261.52 −32.78 ...

... −43.11 92.39 75.68

... −38.23 53.77 73.66

... 11.90 13.48 −2.86

... −4.75 −3.48 −3.94

... 2.79 −15.18 −18.23

... −2.06 −87.11 −42.04




G =




0.10
0.20
0.30
−0.50
−0.875
−1.375




, E =




0 0 0
0 0 0
0 0 0

−1.25 0 −0.31
−2.18 0 −0.54
−3.43 0 −0.85




L =




451.51 −92.39 26.41
361.29 −53.77 7.10
22.63 −13.48 11.50
−16.13 3.48 4.97
−40.51 −9.81 8.80
−249.67 87.11 −45.88




The known input is shown in Figure (1). Figure

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: The known input

(2) presents the states and their estimations.
The proposed method provides good esti-

mates of the system state.
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Figure 2: States and their estimates

5.1.2 Nonlinear system case

The aim in this part is to extend the method de-
scribed above to be employed to nonlinear sys-
tems represented by Takagi-Sugeno models. Let
us consider the following Takagi-Sugeno model af-
fected by a sensor fault:

{
ẋ(t) =

∑M
i=1 µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t) + Dū(t)
(14)

where ū(t) ∈ Rr represents the sensor fault.
The matrix D is of full column rank.

Using the property given by (3), the new state
z(t) given in (10) can be rewritten:

ż(t) =
M∑
i=1

µi(ξ(t))(−Āz(t) + ĀCx(t) + ĀDū(t))

(15)
where −Ā is a stable matrix, Ā ∈ Rp×p.
Denote

X(t) =
[

x(t)T z(t)T
]T

(16)

This augmented state X(t) can be expressed
as:




Ẋ(t) =
M∑
i=1

µi(ξ(t))(AaiX(t) + Baiu(t) + Daū(t))

Y (t) = CaX(t)
(17)

where

Aai =

[
Ai 0
ĀC −Ā

]
, Bai =

[
Bi

0

]
,

Da =

[
0

ĀD

]
and Ca =

[
C I

]
.

From the obtained results, sensor fault of the
system (14) appears as an actuator fault of the
augmented system (17). This fault is considered
as an unknown input. In so doing, fault estima-
tion method is similar to the method of concep-
tion of multiple observer with unknown inputs.

The structure of the multiple observer is cho-
sen as follows:




Ż(t) =
M∑
i=1

µi(ξ(t))(NiZ(t) + Gi1u(t) + Gi2

+LiY (t))

X̂(t) = Z(t) − EY (t)
(18)

where X̂(t) ∈ Rn is the state vector, Y (t) ∈

Rp is the measured output. Ni, Gi1, Li is the
gain of the local observer, Gi2 ∈ Rn is a constant
vector and E a matrix of transformation.

Let us consider the augmented state estima-
tion error:

X̃(t) = X(t) − X̂(t)

= PX(t) − Z(t) (19)

with:
P = I + ECa

By direct time derivative, the dynamic evolu-
tion of X̃(t) is given as follows:

˙̃X(t) = Ẋ(t) −
˙̂

X(t) (20)

that can be expressed as:

˙̃X(t) =
M∑
i=1

µi(ξ(t))(P (AaiX(t) + Baiu(t)+

Daū(t)) − NiZ(t) − Gi1u(t) − Gi2 − LiY (t)) (21)

Replacing Z(t) and Y (t) by their expressions,
(21) becomes:

˙̃X(t) =
M∑
i=1

µi(ξ(t))(NiX̃(t) + (PAai − Ni)X(t)

−KiCaX(t) + (PBai − Gi1)u(t) − Gi2 + PDaū(t))
(22)
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with: Ki = NiE + Li.
If the following conditions are fullfilled:




PDa = 0
P = I + ECa

Ni = PAai − KiCa

Li = Ki − NiE
Gi1 = PBai

Gi2 = 0∑M
i=1 µi(ξ(t))Ni stable

(23)

The reconstruction error of the augmented
state tends asymptotically towards zero and (21)
is reduced to:

˙̃X(t) =
M∑
i=1

µi(ξ(t))NiX̃(t) (24)

• Global convergence of the multiple observer

The augmented state estimation error con-
verges towards zero, if all the pairs (Aai, Ca) are
observables, and if the following conditions are
checked ∀i ∈ {1, ..., M}:

NT
i X + XNi < 0 (25a)

Ni = PAai − KiCa (25b)

P = I + ECa (25c)

PDa = 0 (25d)

Li = Ki − NiE (25e)

Gi1 = PBai (25f)

Gi2 = 0 (25g)

where X ∈ Rn∗n is a positive definite sym-
metric matrix.

Using the expression (25b), the inequality
(25a) can be written as:

(PAai − KiCa)
T X + X(PAai − KiCa) < 0,

∀i ∈ {1, ..., M} (26)

The inequalities (26) are nonlinear in X and
Ki. LMI formulation can thus be used only after
linearization of these inequalities. A technique of
change of variable is used.

• Method of resolution

Three steps are needed to resolve the system
(25):

1. rank(CaDa) = rank(Da), the matrix E
is given by using the expression (25d), where

(CaDa)
(−) is the pseudo-inverse of (CaDa):

E = −Da(CaDa)
(−) (27)

The matrix P may be deduced from (25c):

P = I − Da(CaDa)
(−)Ca (28)

2. To linearize the inequalities (26), the fol-
lowing change of variables is used:

Wi = XKi (29)

Equation (26) is rewritten:

(PAai)
T X + X(PAai) − CT

a W T
i − WiCa < 0,

∀i ∈ {1, ..., M}(30)

The inequalities (30) are of LMI type, LMI
Matlab Toolbox may be used for that resolution.
Then, one deduces:

Ki = X−1Wi (31)

3. The other matrices defining the observer
are deduced knowing E, P and Ki:

Ni = PAai − KiCa (32a)

Li = Ki − NiE (32b)

Gi1 = PBai (32c)

5.2 Multiple observers designing for

systems with measures uncertain-

ties

5.2.1 Multiple model representation of an

uncertain system

Generally, process can present uncertainties of in-
puts, measures and models. In the context of
Takagi-Sugeno fuzzy systems, the general repre-
sentation of an uncertain system is given by the
following equation :




ẋ(t) =
M∑
i=1

µi(ξ(t))((Ai ± ∆Ai)x(t)+

(Bi ± ∆Bi)u(t))
y(t) = (C ± ∆C)x(t)

(33)
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where ∆Ai are the matrices of modeling un-
certainties, ∆Bi represent the input uncertainties
of the system and ∆C represents the measures un-
certainties. The weighting functions µi(ξ(t)) are
selected in order to check the conditions (3).

In this paper, only the measures uncertainties
are considered. The modeling and inputs uncer-
tainties are supposed certains, ie. ∆Ai = ∆Bi =
0. In so doing, the system given by (33) becomes
:

ẋ(t) =
M∑
i=1

µi(ξ(t))(Aix(t) + Biu(t))(34a)

y(t) = (C ± ∆C)x(t) (34b)

By developing the expression given by the
equation (34b), one obtains:




ẋ(t) =
M∑
i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t) ± ∆Cx(t)

(35)

Noting ū(t) = ±∆Cx(t), the system (35) be-
comes:




ẋ(t) =
M∑
i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t) + ū(t)

(36)

By comparing the equation (36) with the
equation (14), one notices that the two equations
are almost identical. The only difference is that
the matrix D is replaced by the matrix identity.
It is possible under these conditions to adapte the
results obtained in the case of unknown outputs
for the design of a multiple observer in the pres-
ence of measures uncertainties.

One uses for this fact the mathematical trans-
formation given by the equation (15) allowing to
obtain a new model (37) for which the uncertainty
of measurement affecting the first system (35) ap-
pears as an unknown input.




Ẋ(t) =
M∑
i=1

µi(ξ(t))(AaiX(t) + Baiu(t) + Daū(t))

Y (t) = CaX(t)
(37)

where

Aai =

[
Ai 0
ĀC −Ā

]
, Bai =

[
Bi

0

]
, Da =

[
0
Ā

]

and Ca =
[

C I
]

5.2.2 Design of the multiple observer

The structure of the multiple observer is given by
(18). The methodology used in the case of mul-
tiple observer with unknown outputs is adapted
for the design of an observer with uncertainties
of measurement. The method of resolution allow-
ing us to determine the gains of local observers is
that given above. The deduction of the matrices
Ni and gains Li and Gi1 are given respectively by
the equations (32a), (32b) and (32c).

6 Simulation example

In this section, the proposed method is illus-
trated through an academic example. Consider
the Takagi-Sugeno model described in (35) with
M = 2 defined by:

A1 =


 −2 −1 −1

−1 −4 2
−3 1 −4


 , A2 =


 −4 2 −1

3 −1 −1
2 3 −2




B1 =


 0.5

1
2


 , B2 =


 1

2
1


 , C =


 1 1 1

0 1 1
1 0 1




one takes ∆C = ±0.1 ∗ C.
During simulation, one distinguishes the 2

borderline cases: +∆C and −∆C. The study of
these two cases makes it possible to give an idea
on the effectiveness of the method.

The decision vector ξ(t) is depending on the
system input. The weighting functions µi(ξ(t))
are represented on Figure (3). They can be ob-
tained from normalised Gaussian functions:

ωi(ξ(t)) = exp(
−(ξ(t) − (ξ(t))(i))2

σ2
)

µi(ξ(t)) =
ωi(ξ(t))

M∑
j=1

ωj(ξ(t))

with σ = 0.15, ξ1 = 0.25 and ξ2 = 0.81.
The known system input u(t) is shown in Fig-

ure (4).
The structure of the multiple observer is:




Ż(t) =
2∑

i=1
µi(u(t))(NiZ(t) + Gi1u(t) + LiY (t))

X̂(t) = Z(t) − EY (t)
(38)
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Figure 3: the weighting functions
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Figure 4: The known input u(t)

The matrices computation of this multiple ob-
server gives:

N1 =




−1 0.0153 0.0763 ...
−1.2653 −2.75 1.7732 ...
−0.5763 1.7268 −1.75 ...
1.8109 1.0385 −1.4005 ...
1.6737 0.9615 −0.8263 ...
1.4390 −0.7732 1.4768 ...

... 0.9391 0.0763 0.0609

... 1.2115 0.0385 −1.4768

... 0.9005 −0.1737 1.5232

... −2.7500 −0.2115 −1.4391

... −1.5385 −0.50 −0.7877

... −0.8109 0.0377 −2.75




N2 =




−2 1.2946 −0.0473 ...
1.7054 −0.50 −1.3302 ...
1.2973 2.0802 −2.50 ...
−1.5918 −3.2857 3.1225 ...
−3.2027 −1.7144 3.0473 ...
0.0918 −2.9198 2.3302 ...

... 0.3418 −1.0473 1.6582

... −0.4644 0.9644 −0.8302

... −1.1225 0.2027 0.4198

... 1 −0.2856 −1.5918

... 2.0357 −1.75 −0.2384

... 0.8418 1.2384 −2.75




G11 =




0.50
1
2

−3.50
−3

−2.50




, G21 =




1
2
1
−4
−3
−2




and

E =




0 0 0
0 0 0
0 0 0
−1 0 0
0 −1 0
0 0 −1




.

L1 and L2 are null matrices.
The simulation results are shown in Figures

(5) and (6).
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Figure 5: States and their estimates associated
for +∆C

Thus, one succeeds in estimating the system
state for nonlinear systems described by Takagi-
Sugeno models subject to measures uncertainties.
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Figure 6: States and their estimates associated
for −∆C
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Figure 7: State estimation error

The proposed method shows the good estimation
between the states of the system and their esti-
mated. At t = 0, the disparity between actual
and estimated state is due to the choice of initial
conditions.

Figure (7) shows the evolution of the state
estimation error. The two studied cases of simu-
lation are considered and it is shown that the two
errors converge towards zero. It can be conclude
that the proposed method allows to estimate well
the system state even in the presence of measure
imprecisions.

7 Conclusion

Using a Takagi-Sugeno model representation, this
paper showed a new method to design multiple
observers for nonlinear systems influenced by un-
known outputs, in the one hand, and measures
uncertainties, on the other hand. A mathemat-
ical transformation is used in order to consider-
ate these disturbances as unknown inputs. The
proposed method is based on the principle of un-
known input multiple observer which used the
principle of the interpolation of local observers.
The synthesis conditions of that observer are ex-
pressed in LMI terms. Then, the calculation of
the gains of the multiple observer is returned to
a calculation of gains of the local observers. The
simulation results show that the estimation of the
state is very satisfactory. The future works will
concern the design of multiple observers of sys-
tems subject to modelling and measures uncer-
tainties.
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