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Abstract: This paper presents a method of design of a sensor faults tolerant control. The method is
presented for the case of linear systems and then for the case of non linear systems described by Takagi-
Sugeno models. The faults are initially estimated using a proportional integral observer. A mathematical
transformation is used to conceive an augmented system in which the sensor fault appear as an unknown
inputs. The synthesized control depends on the estimated faults and the error between the state of
a reference reference and the faulty system state. The fault tolearnt control is conceived using the
augmented state. The conditions of the observer convergence and of the control existence are formulated
in terms of Linear Matrix Inequalities (LMI). The formulation in LMI shows that the synthesis of the
control and the observer can be independently made. For both cases (linear and non linear) The theoretical
results are validated by their application to a noisy system affected by sensor faults.

Key–Words: multiple model, estimation, proportional integral observer, sensor faults, faults tolerant
control.

1 Introduction

Physical processes are generally subjected to dis-
turbances affecting their inputs or their outputs.
The evolution in time of these disturbances is un-
known and can damage the smooth running of
the system. The consideration of the disturbances
during the modelling and the state estimation be-
comes necessary to establish diagnosis procedures
allowing faults detection and localization.

Faults estimation can be made using a pro-
portional integral state observer in the case of
non linear systems represented by multiple mod-
els [12, 16]. PMI Observers can also be used for
faults estimation [6]. That kind of observers gives
some robustness property of the state estimation
with respect to the system uncertainties and per-
turbations [2, 6, 13, 17, 21]. Once the fault is es-
timated, its effect can be limited or eliminated
using a fault tolerant control strategy.

The objective of a fault tolerant control is to
find a control strategy which can limit or cancel,
the fault effects on the system performances [18].
There are two approaches of faults tolerant con-
trol synthesis: the passive approach and the active
approach.

In the passive approach, the faults are taken
into account during the design of the control. The

method considers faults as disturbances which the
control has to consider from its initial conception
[4, 15].

The active approach reacts ”actively” on the
faults in on-line reconfiguration of the control so
as to keep the stability and the nominal perfor-
mances of the system [3, 20]. This approach al-
lows then to treat unforeseen faults but requires
an effective method of faults detection and iso-
lation allowing giving exactly information about
the faults.

Our contribution in this paper lies in the syn-
thesis of an active sensor fault tolerant control.
For faults estimation, a mathematical transforma-
tion is used. It allows conceiving an augmented
system in which the initial sensor fault appears as
an actuator fault. By considering the augmented
system, a proportional integral observer is con-
ceived to estimate the faults [11]. It is possible
to estimate simultaneously actuator and sensor
faults using this approach [8,10]. The fault toler-
ant control is then synthesized. By being inspired
of the works of Witczak and al. [22] made in the
context of the discrete systems affected by actua-
tor faults, and works presented in [5, 23] treating
linear systems, Khedher and al. [9] have proposed
an approach to conceive a fault tolerant control
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for actuator faults. this work is interested to the
case of nonlinear systems described by Takagi-
Sugeno fuzzy models affected by sensor faults.

The paper is structured in the following way.
The section II presents the proposed method for
the case of linear systems, the obtained results
is applied to a numerical example. The sec-
tion III recalls the Takagi-Sugeno models and de-
tails the proposed method for the multiple models
case. An example of application of the proposed
method to the Takagi-Sugeno models showing the
efficiency of the method is presented in the section
IV.

2 Proposed method for the lin-

ear system case

2.1 Problem formulation

The main objective of this part is to synthesize
an active sensor fault tolerant control for the case
of linear systems. The application of this control
to a linear system presenting sensors faults allows
to restore its original behaviour. A linear system
can be described by the following state equation:

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where x(t) ∈ IRn represents the system state,
y(t) ∈ IRm is the measured output, u(t) ∈ IRr

is the system input. A, B and C are known con-
stant matrices with appropriate dimensions.

Let consider a linear system with sensor fault
described by the following state equation:

{
ẋf (t) = Axf (t) +Buf (t)
yf (t) = Cxf (t) + Ef(t) +Dw(t)

(2)

where xf (t) ∈ Rn represents the system state,
yf (t) ∈ Rm is the measured output, uf (t) ∈ Rr is
the system input, f(t) represents the fault which
is assumed to be bounded and w(t) is the mea-
surement noise. E and D are respectively the
fault and the noise distribution matrices which
are assumed to be known.

Let us define the following states [5] :

ż(t) = ĀCx(t) − Āz(t)
żf (t) = ĀCxf (t) − Āzf (t) + ĀEf(t) + ĀDw(t)

(3)
where −Ā is a stable matrix.

Defining X and Xf as: X =
[
xT zT

]T
and

Xf =
[
xT

f zT
f

]T
, these two state vectors can be

written:

{
Ẋ(t) = AaX(t) +Bau(t)
Y (t) = CaX(t)

(4)

and:

{
Ẋf (t) = AaXf (t) +Bauf (t) + Eaf(t) + Faw(t)
Yf (t) = CaXf (t)

(5)
with:

Aa =

[
A 0
ĀC −Ā

]
, Ba =

[
B
0

]
, Ca =

[
0 I

]

Fa =

[
0
ĀD

]
and Ea =

[
0
ĀE

]
(6)

where I is the identity matrix with appropri-
ate dimensions.

A proportional integral observer which per-
mits the estimation of Xf and f is considered:




˙̂
Xf (t) = AaX̂f (t) +Bauf (t) + Eaf̂(t) +KỸ (t)
˙̂
f(t) = LỸ (t)

Ŷf (t) = CaX̂f (t)
(7)

where X̂f (t) is the estimated state, f̂(t) rep-

resents the estimated fault, Ŷf (t) is the estimated
output, K is the proportional observer gain and L
is its integral gain which must be computed and
Ỹ (t) = Yf (t) − Ŷf (t). The control uf (t) is given
by [22]:

uf (t) = −S ˆf(t) +N(X(t) − X̂f (t)) + u(t) (8)

where S andN are two constant matrices with
appropriate dimensions.
The objective is to find the matrices S and N
which permit to the state Xf to converge to X.

Let define X̃(t) the error betweenX(t) andXf (t),

X̃f (t) the estimation error of the state Xf (t) and

f̃(t) the fault estimation error.

X̃(t) = X(t) −Xf (t) (9)

X̃f (t) = Xf (t) − X̂f (t) (10)

f̃(t) = f(t) − f̂(t) (11)

The dynamics of X̃(t) can be written:

˙̃X(t) = Ẋ(t) − Ẋf (t) = (Aa −BaN)X̃(t)

+BaSf̂(t) −BaNX̃f (t) − Eaf(t) − Faw(t)(12)
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S is chosen so that Ea = BaS, The dynamics
of X̃(t) becomes:

˙̃X(t) = (Aa −BaN)X̃(t) −BaNX̃f (t)

− Eaf̃(t) − Faw(t) (13)

The dynamics of X̃f (t) can be written:

˙̃Xf (t) = Ẋf (t) −
˙̂
Xf (t)

= (Aa −KCa)X̃f (t) + Eaf̃(t) + Faw(t) (14)

The dynamics of f̃ is written:

˙̃
f(t) = ḟ(t) −

˙̂
f(t)

= ḟ(t) − LCaX̃f (t) (15)

The following vectors are introduced:

ϕ(t) =


 X̃(t)

X̃f (t)

f̃(t)


 and ψ(t) =

[
w(t)

ḟ(t)

]
(16)

(13), (14) and (15) can be written as:

ϕ̇(t) = A0ϕ(t) +B0ψ(t) (17)

with:

A0 =


 Aa −BaN −BaN −Ea

0 Aa −KCa Ea

0 −LCa 0




and B0 =


 −Fa 0

Fa 0
0 I


 (18)

In order to analyse the convergence of the gen-
eralized error ϕ(t), let us consider the following
quadratic Lyapunov candidate function V (t):

V (t) = ϕ(t)TPϕ(t) (19)

where P denotes a symmetric positive matrix.
The problem of robust state and fault estima-

tion is to find the gains K and L of the observer
to ensure an asymptotic convergence of ϕ toward
zero when ψ(t) = 0 and to ensure a bounded error
when ψ(t) 6= 0. This problem is reduced to find

P verifying V̇ < 0, ie. AT
0 P + PA0 < 0.

The matrix A0 can be expressed as:

A0 =

[
Aa −BaN E1

0 Ã− K̃C̃

]
(20)

where:

Ã =

[
Aa Ea

0 0

]
, K̃ =

[
K
L

]

E1 =
[
−BaN −Ea

]
, C̃ =

[
Ca 0

]
(21)

Assuming that P has the block diagonal form
P = diag(P1, P2), it can be observed from the
structure of A0 that the eigenvalues of the ma-
trix A0 are the union of those of Aa − BaN and
Ã − K̃C̃. This indicates that the design of the
control v(t) and the observer can be carried out
independently (separation principle). Thus, it is
clear from the expression of P that ϕ converges
to zero if there exist matrices P1 > 0 and P2 > 0
such that these inequalities are satisfied:

(Aa −BaN)TP1 + P1(Aa −BaN) < 0 (22)

(Ã− K̃C̃)TP2 + P2(Ã− K̃C̃) < 0 (23)

By multiplying (22) from left and right by
W = P−1

1 one obtains:

W (Aa −BaN)T + (Aa −BaN)W < 0 (24)

The inequalities (23) and (24) are not linear.

Substituting U = NW , and G = P2K̃, they be-
come:

WAT
a +AaW − UTBT

a −BaU < 0 (25)

ÃTP2 + P2Ã−GC̃ − C̃TGT < 0 (26)

After the resolution of the linear matrices in-
equalities (LMI) (25) and (26), N and K̃ are com-
puted using the equations:

N = UW−1 (27)

K̃ = P−1
2 G (28)

2.2 Example

Consider the linear systems described by the
equations (1) and (2) with C = I and:

A =




−0.2 −3 −0.6 0.3
−0.6 −4 1 −0.6

3 −0.9 −7 −0.2
−0.5 −1 −2 −0.8


 , B




1 2
5 1
4 −3
1 2




D =




0.5 0.5
0.2 0.2
0.1 0.1
0 0.1


 , E =




2.5 4
2.5 0.5
0 −0.5
4 4




The system input u(t) =
[
u1(t)

T u2(t)
T

]T

with:
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u1(t) is a telegraph type signal varying between
zero and one, u2(t) = 0.3 + 0.1 sin(πt)

The fault f(t) =
[
f1(t)

T f2(t)
T

]T

with :

f1 =

{
0, t ≤ 4sec
0.1 ∗ sin(πt), t > 4sec

and f2 =

{
0, t ≤ 1.5sec
0.4, t > 1.5sec

The computation of the matrices K, L and N
gives :

L =

[
65.0202 66.3220 3.9470 100.6591
98.0943 10.9744 −19.4836 100.0499

]

K =




27.8211 −3.0638 19.3552 −3.9180
−5.2349 17.8149 −5.8514 −3.0006
−0.2878 −0.4806 24.4244 −0.1831
−2.3542 −8.6612 12.0768 20.7143
−26.6008 −0.0654 1.2754 0.4694
−0.2478 −17.8359 0.9772 0.8980
0.8879 0.9559 −20.9804 −1.6446
0.0411 0.5892 −1.4298 −18.0905




N =

[
−0.9721 −0.6599 −5.2898 1.3076 ...
1.1387 −10.6258 3.0007 0.1747 ...

... 0.7685 6.0930 6.8601 0.8939

... 7.0937 9.0879 −6.2236 6.5954

]

The simulation results are shown in the figures (1)
to (3) :

0 10 20 30 40 50 60 70 80 90 100
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−0.5

0

0.5

Figure 1: Error between x and xf

The input uf (t) is computed using the equation
(8), this input permits to the system (2) to have
the same behaviour with the system (1). This
input is shown in figure (4).

The conceived observer allows to estimate the
state xf and the control uf (t) is a fault tolerant
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Figure 2: Estimation error of xf
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Figure 3: Faults and their estimations

control applied to the system (2). The effect of
the conceived fault tolerant control is clear be-
cause the faulty state converge to the state of the
reference model even the fault exists.

2.3 Conclusion

A method which permits simultaneously the fault
estimation and the conception of the fault tolerant
control is proposed in this section. This control is
computed using the fault estimate and the error
between the faulty system state and a reference
model state. In the next section the proposed
method will be extended to nonlinear systems de-
scribed with multiple models.
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Figure 4: fault tolerant control uf

3 Extention to multiple models

case

3.1 On the multiple model representa-

tion

Multiple model approach is considered by many
researches as an approach giving a simple struc-
ture for control or diagnosis of nonlinear systems
[1,14]. This approach has been initially proposed,
in a fuzzy modelling framework, by Takagi and
Sugeno [19] and in a multiple model modelling
framework by Johansen and Foss [7]. This model
has been largely considered for analysis, mod-
elling, control and state estimation of nonlinear
systems.

The multiple model approach constitutes a
tool which is largely used in the modelling of
nonlinear systems [14]. The basis of the multi-
ple model approach is the decomposition of the
operating space of the system into a finite num-
ber of operating zones. Hence, the dynamic be-
haviour of the system inside each operating zone
can be modelled using a simple submodel, for ex-
ample a linear model. The relative contribution
of each submodel is quantified with the help of a
weighting function. Finally, the approximation of
the system behaviour is performed by associating
the submodels and by taking into consideration
their respective contributions. The choice of the
structure used to associate the submodels consti-
tutes a key point in the multiple modelling frame-
works. This model has been largely considered for
analysis, modelling, control and state estimation
of nonlinear systems. The structure of a Takagi-

Sugeno model is:




ẋ(t) =
M∑
i=1

µi(ξ(t)) (Aix(t) +Biu(t))

y(t) =
M∑
i=1

µi(ξ(t))Cix(t)

(29)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr

control vector, y(t) ∈ Rm vector of measures and
Ai, Bi and Ci are known constant matrices with
appropriate dimensions.

The membership functions µi(ξ(t)) assure a
progressive passage between the local models.
These have the following proprieties:

M∑
i=1

µi(ξ(t)) = 1,∀t (30)

and 0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1...M,∀t (31)

The variable of decision ξ(t) is accessible in real
time and it depends of measurable variables like
system inputs or outputs.

Let’s remark that state matrix of this kind of
multiple model are built by the made of a level-
headed sum, with variable weight of different ma-
trix of local models. One can also make a sim-
ilarity between multiple model and system with
variables parameters in time.

If, in the equation which defines the output,
we impose that C1 = C2 = ... = CM = C, the
output of the multiple model (29) is reduced to :
y(t) = Cx(t) and the multiple model becomes:




ẋ(t) =
M∑
i=1

µi(ξ(t))(Aix(t) +Biu(t))

y(t) = Cx(t)

(32)

3.2 Problem formulation

In this section the method proposed for linear
system will be extended to nonlinear system de-
scribed by multiple models. Suppose that the ma-
trices Bi are equals.

Consider the nonlinear system described by
the following multiple model structure:




ẋ(t) =
M∑
i=1

µi(ξ(t))Aix(t) +Bu(t)

y(t) = Cx(t)

(33)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr

control vector, y(t) ∈ Rm vector of measures and
Ai, B and C are known constant matrices with
appropriate dimensions. The scalar M represents

WSEAS TRANSACTIONS on SYSTEMS
Atef Khedher, Kamel Ben Othman, 
Didier Maquin, Mohamed Benrejeb

ISSN: 1109-2777 798 Issue 7, Volume 9, July 2010



the number of local models. ξ(t) is the variable
of decision which can depend on the input and/or
the output and/or the system state.
Consider the following Takagi-Sugeno model af-
fected by sensor faults and measurement noise:


ẋf (t) =

M∑
i=1

µi(ξ(t))Aixf (t) +Buf (t)

yf (t) = Cxf (t) + Ef(t) +Dw(t)

(34)

where xf (t) ∈ Rn is the state vector, uf (t) ∈
Rr is the input vector, yf (t) ∈ Rm the output vec-
tor. f(t) represents the fault which is assumed to
be bounded and w(t) is the measurement noise.
E and D are respectively the fault and the noise
distribution matrices which are assumed to be
known.

The weighting functions must verify∑M
i=1 µi(ξ(t)) = 1, so, the states z and zf

defined in (3) can be written :

ż(t) =
M∑
i=1

µi(ξ(t))(−Āz(t) + ĀCx(t))

żf (t) =
M∑
i=1

µi(ξ(t))(−Āzf (t) + ĀCxf (t)

+ĀEf(t) + ĀDw(t))

(35)

The two augmented state vectors X and Xf

are:


Ẋ(t) =
M∑
i=1

µi(ξ(t))AaiX(t) +Bau(t)

Y (t) = CaX(t)

(36)

and :


Ẋf (t) =
M∑
i=1

µi(ξ(t))AaiXf (t) +Bauf (t)

+Eaf(t) + Faw(t)
Yf (t) = CaXf (t)

(37)
with :

Aai =

[
Ai 0
ĀC −Ā

]
(38)

The Other matrices are given in (2.1).
The structure of the proportional integral ob-

server is chosen as follows:


˙̂
Xf (t) =

M∑
i=1

µi(ξ(t))(AaiX̂f (t) +Ki(Ỹ (t)))

+Bauf (t) + Eaf̂(t)

˙̂
f(t) =

M∑
i=1

µi(ξ(t))Li(Ỹ (t))

Ŷf (t) = CaX̂f (t)
(39)

where X̂f (t) is the estimated state, f̂(t) rep-

resents the estimated fault, Ŷf (t) is the estimated
output, K is the proportional observer gain, L
is its integral gain which must be computed and
Ỹ (t) = Yf (t) − Ŷf (t). Ki are the local model
proportional observer gains and Li are the local
model integral gains to be computed. The control
strategy is conceived using the following form of
uf (t):

uf (t) = −Sf̂(t) + u(t) (40)

Using the same notations given in (9), (10)
and (11), the following is obtained:

˙̃X(t) =
M∑
i=1

µi(ξ(t))AaiX̃(t) +BaSf̂(t)

−Eaf(t) − Faw(t) (41)

If S verify Ea = BaS, ˙̃X becomes :

˙̃X(t) =
M∑
i=1

µi(ξ(t))AaiX̃(t) − Eaf̃(t) − Faw(t)

(42)

The dynamics of the error X̃f (t) described
by the equation (10) is written in multiple model
case:

˙̃Xf (t) =
M∑
i=1

µi(ξ(t))((Aai −KiCa)X̃f (t))

+Eaf̃(t) + Faw(t) (43)

The dynamics of the fault estimation error is:

˙̃
f = ḟ(t) −

M∑
i=1

µi(ξ(t))LiCaX̃f (44)

The equations (42), (43) and (44) can be writ-
ten:

ϕ̇(t) = Amϕ(t) +Bmψ(t) (45)

where ϕ and ψ are given in (16) and:

Am =
M∑
i=1

µi(ξ(t))Ami (46)

where:

Ami =


 Aai 0 −Ea

0 Aai −KiCa Ea

0 −LiCa 0




and Bm =


 −Fa 0

Fa 0
0 I


 (47)
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Considering the Lyapunov fonction given in
(19), the errors converge to zero if V̇ < 0. V̇ < 0
if AT

miP+PAmi < 0, ∀i ∈ {1, ...,M}. The matrix
Ami can be written:

Ami =

[
Aai E1

0 Ãi − K̃iC̃

]
(48)

with:

Ãi =

[
Aai Ea

0 0

]
, K̃i =

[
Ki

Li

]

E1 =
[

0 −Ea

]
, C̃ =

[
Ca 0

]
(49)

Assuming that P has the block diagonal form
P = diag(P1, P2), ϕ converges to zero if there ex-
ist matrices P1 > 0 and P2 > 0 such that following
inequality is satisfied:

[
AT

aiP1 + P1Aai E1P2 + P1E1

P2E
T
1 + ET

1 P1 Ξ

]
< 0 (50)

with :

Ξ = (Ãi − K̃iC̃)TP2 + P2(Ãi − K̃iC̃) (51)

Substituing Gi = P2K̃i, (51) becomes:

Ξ = ÃTP2 + P2Ã−GiC̃ − C̃TGT
i (52)

The resolution of the linear matrix inequality
(LMI) (50), which is now linear, permits to find
the matrices P1, P2 and Gi.
The matrices K̃i are computed using
K̃i = P−1

2 Gi.

Summarizing the following theorem can be
proposed:

Theorem 1 The system (45) describing the evo-

lution of the errors X̃(t), X̃f (t) and f̃(t) is stable
if there exist symmetric definite positive matrices
P1 et P2 and matrices Gi, i ∈ {1...M}, so that
the following LMI are verified :

[
AT

aiP1 + P1Aai E1P2 + P1E1

P2E
T
1 + ET

1 P1 Ξ

]
< 0 (53)

where

Ξ = ÃTP2 + P2Ã−GiC̃ − C̃TGT
i (54)

The observer gains (proportional and integral)

are obtained by : K̃i = P−1
2 Gi.

4 Illustrative example

Consider the non linear systems described by (33)
and (34) where: C = I, ξ(t) = u(t) and :

A1 =




−0.4 −2 0.8 0.3
0.6 −5 1 −0.2
−0.5 0.6 −9 0.3
0.4 3 2 −0.6


 , B =




1 1
2 1
0 2
−1 −2




A2 =



−0.7 −7 −1.5 −7
−0.2 −2 0.6 1.3

5 −1.5 −9 −3.9
−0.4 −1 0.3 −1


 , E =




1 2
5 1
4 −1
1 2




and D =

[
0.5 0.2 0.1 0
0.5 0.2 0.1 0.1

]T

The system input is: u =
[
u1

T u2
T

]T
with

: u1(t) is a telegraph type signal varying in [0, 0.5]
and u2(t) = 0.4 + 0.25 sin(πt). It is shown in the

figure (5). The fault: f =
[
f1

T f2
T

]T
with:

f1 =

{
sin(0.5πt), 15 < t < 75
0, otherwise

and f2 =



0, t < 20
0.3, 20 < t < 70
0.5, 70 < t < 100

0 10 20 30 40 50 60 70 80 90 100
0.2
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0.3
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0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100
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0.2

0.3
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0.5

0.6

0.7

0.8

Figure 5: System input

The chosen weighting functions depends on
the two inputs of the system. They have been cre-
ated on the basis of Gaussian membership func-
tions. Figure 6 shows their time-evolution show-
ing that the system is clearly nonlinear since µ1

and µ2 are not constant functions.

The computation of the matrices K1, L1, K2
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Figure 6: Weighting functions

and L2 gives:

L1 =

[
1.0794 8.1861 6.6330 0.7608
4.3498 1.5344 −3.7962 8.9428

]

L2 =

[
−2.1645 8.1289 7.0558 2.2015
−0.1195 4.2296 −5.7418 10.1167

]

K1 =




3.8612 0.2280 −1.1161 1.1617
−0.6495 0.7253 2.4040 0.4932
0.8769 2.6781 −3.4879 −0.6686
2.5354 3.3790 1.0535 5.9432
0.3170 2.0343 −9.7468 0.2042
1.2085 0.3383 −0.8709 −9.0551
−0.0015 0.0186 17.0517 0.0178
0.0808 −0.0122 0.0454 16.8713




K2 =




3.5902 1.1476 −0.6030 1.5530
−7.3246 3.7181 2.5477 0.9748
3.5981 0.0388 −3.4950 −0.5782
−5.9167 0.3522 −4.9351 5.5285
1.7989 0.0015 0.0047 −0.0007
−7.1948 0.4824 0.0018 0.0001
3.4984 −0.9159 −6.5076 0.0011
−7.3971 0.2961 −3.6144 1.5070




Simulation results are shown in figures (7) to
(9).

The figure 7 shows the sensor faults and their
estimated. It is clear that the proposed method
allows the faults estimation even in the case of the
faults varying in the time. The figure 9 shows the
evolution of the fault tolerant control, if a fault
appears the control changes in a way that the sys-
tem guards its original behaviour. This result is

0 10 20 30 40 50 60 70 80 90 100
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0
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0.4

0.6

0 10 20 30 40 50 60 70 80 90 100
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0
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Figure 7: Faults and their estimations
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Figure 8: Error between x and z

verified as shown it the figure 8 (error between the
reference state x and the state z affected by the
fault). The error is practically equal to zero and
the action of the fault tolerant control is quick.

5 Conclusion

This work has presented a method of synthesis of
active sensor fault tolerant control. The proposed
method uses the fault estimation and the error
between the reference state and the faulty system
state to synthesize the fault tolerant control strat-
egy. To estimate the sensor fault, an augmented
system is conceived, this system has the advan-
tage to let the sensor fault affecting the initial sys-
tem appears as an unknown input which make its
estimation simple. The advantage of this method
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Figure 9: fault tolerant control

is to estimate non constant faults and to conceive
the observer and the fault tolerant control inde-
pendently. An example of simulation allowing to
validate the proposed method is proposed in the
end of the paper.
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