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Abstract: Bifurcation theory deals with the change of qualitative behavior in a parameter space of dy-
namical systems. This paper provides a numerical approach to better understand the dynamic behavior
of an indirect field oriented control (IFOC) of a current-fed induction motor. The focus is on bifurcation
analysis of the IFOC motor model parameters, with a particular emphasis on the change that affects
the dynamics and stability under small variations of Proportional Integral controller (PI) parameters. In
fact, the dynamical properties of this electrical machine exhibit a rich behavior. Indeed equilibrium point
and complex oscillatory phenomena such as limit cycle and chaos are observed. Since a perturbation of
PI control gains led to the existence of regular behavior and region where chaotic phenomena may occur.
Properties of both parametric and phase plane singularities are carried out by using numerical simu-
lations. Furthermore, bifurcation diagrams for the equilibrium points and the 2-parametric bifurcation
curves are computed based on continuation methods for solving differential equations. This paper also
attempts to discuss various types of the transition to chaos in the induction motor model. The analysis
of the obtained bifurcation simulations gives useful guidelines for adjusting both motor model and PI
controller parameters.
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1 Introduction

The application of bifurcation theory to areas out-
side of mathematics is currently a field of ac-
tive research. This theory has recently spread
to various and interdisciplinary domains includ-
ing physics, biology, mechanical and electrical en-
gineering. The aim of bifurcation theory is that
its analysis methods make essentially possible to
qualitatively discuss about the behavior of a non-
linear dynamical system at close to critical values
of control parameters called also singular points.
Generally, nonlinear dynamical systems undergo
abrupt qualitative changes when crossing bifur-
cation points. For a more exhaustive investiga-
tion of mechanism responses of such nonlinear dy-
namic system it is compulsory to identify both
singularities of the parameter plane (bifurcation
points, chaos, ...) and singularities of the phase

plane (fixed or equilibrium points, cycles, invari-
ant closed curves, ...) [1],[2].
Recently, a highly interesting consideration has
been conducted by design engineers to the results
derived from a qualitative investigation of real
systems such as electrical circuits and machines.
In particular, qualitative bifurcation analysis has
since been successfully employed as a useful tool
to better understand the dynamical behavior of
induction motors [3], [4],[5]. Generally, bifurca-
tion phenomenon is a dynamic behavior associ-
ated with loss of stability. At the bifurcation
point, multistability propriety can be detected,
i.e. existence and uniqueness of solutions is not
guaranteed and a change in the number of solu-
tions occurs.
Frequently, the field-oriented controllers (FOC) is
used as nonlinear controllers to achieve high dy-
namic performance in induction machines. This
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technique performs asymptotic linearization and
decoupling [6]. Stability of FOC is generally in-
vestigated regarding errors in the estimate of the
rotor resistance. An analysis of saddle-node and
Hopf bifurcations in indirect field-oriented control
(IFOC) drives due to errors in the estimate of the
rotor time constant provides a guideline for set-
ting the gains of PI speed controller in order to
avoid Hopf bifurcation [7]. An appropriate set-
ting of the PI speed loop controller permits to
keep the bifurcations far enough from the operat-
ing conditions in the parameter space [8]. It has
been proven the occurrence of either codimension
one bifurcation such as saddle node bifurcation
and Hopf bifurcation and codimension two such
as Bogdanov-Takens or zero-Hopf bifurcation in
IFOC induction motors [9],[10],[11]. Other stud-
ies were concerned with the cancelation of sus-
tained oscillations which are, in general undesir-
able. Some of such studies proposed an ’oscilla-
tion killer’ method dedicated to control machine
parameters in order to get rid of limit cycles [12].
In [13], chaotic rotation can promote efficiency or
improve dynamic characteristics of drives. An ad-
equate combination between analytical and nu-
merical tools may provide a deep understanding
of some nontrivial dynamical behavior related to
bifurcation phenomena in a self-sustained oscil-
lator [14]. The robustness margins for IFOC of
induction motors can be deduced from the anal-
ysis of the bifurcation structures identified in pa-
rameter plane [15], [16]. Since the self-sustained
oscillations in IFOC for induction motors may be
due to the appearance of Hopf and Double Hopf
bifurcation [17],[18]. An exhaustive study of the
bifurcation structures is mainly devoted to pre-
serve the local stability of the desired equilibrium
point.
The aim of this work is to discuss some ba-
sic results regarding the qualitative study of the
dynamic behavior of an IFOC induction motor
where a PI controller takes place, with particu-
lar reference to bifurcation analysis. More impor-
tantly, we investigate the influence of PI controller
parameters on the bifurcation scenarios under a
small variation of its gains. In the literature such
scenarios have not received much attention so far.
The remainder of the paper is effectively split into
three parts. The section 2 contains a brief descrip-
tion of electrical model of IFOC induction model.
Basic remainders are then obtained in Section 3.
In second part, section 4 presents multistability
propriety in the IFOC induction motor. Finally,
the remaining part of the paper concentrates sim-
ulations results on the study of the model: In Sec-

tion 5, the bifurcation scenario under small vari-
ation of both parameters motor and PI controller
gains are discussed, and Section 6 is devoted to
study some cases of chaos detection in the model
equations.

2 Equations model

In this section we consider the electrical model
of an indirect field oriented control (IFOC) of
a current-fed induction motor. A proportional-
integral controller (PI) is employed in this model
to act on the control of stator current input (isq).

isq = kpωe + ki

t∫

0

ωe(θ)dθ (1)

The set of differential equations that describe
the dynamics of motor with a null friction coeffi-
cient can be formulated in the following form:

˙ϕrd = −
1

τr

ϕrd +
k

τr . i∗sd

ϕrqisq +
Lm

τr

i∗sd (2)

˙ϕrq = −
1

τr

ϕrq +
k

τr . i∗sd

ϕrdisq +
Lm

τr

isq (3)

ω̇e = −
np

J
[δ(ϕrdisq − ϕrqi

∗

sd) − TL] (4)

˙isq = −kp

np

J
[δ(ϕrdisq − ϕrqi

∗

sd) − TL] + kiωe (5)

where ϕrd and ϕrq stand for the direct and
quadrature axis components of the rotor flux, re-
spectively. The state variable ωe = ωref − ω rep-
resents the difference between the reference and
the real mechanical rotor speeds. τr = Lr/Rr be-
ing the rotor flux time constant. Lm denote the
mutual inductance and Lr the rotor inductance,
whereas Rr stand for the resistance in the rotor.
J is the moment of inertia and np is the pole pair
number. The parameter k = τr/τe, the ratio of
the rotor time constant τr to its estimate τe and
i∗sd = u0

1 is a design parameter. Finally, TL is the
load torque.
In the next sections we introduce the fol-
lowing notations of the state vector variable:
(ϕrd, ϕrq, ωe, isq) = (x1, x2, x3, x4).

3 General reminders

An autonomous system is generally described by a
system of ordinary differential equations (ODEs)
of the form:

dX

dt
= f(X, λ); t ∈ IR, X ∈ IRn, λ ∈ IRp (6)
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where f is smooth. A bifurcation occurs at pa-
rameter λ = λ0 if, crossing this value, the system
behaviour undergo an abrupt change affecting
the number or stability of equilibria or periodic
orbits of f . As mentioned in previous papers
[19], a two-parameter plane can be considered
as made up of sheets (foliated representation),
each one being associated with a well defined
behaviour such as a fixed point, or an equilibrium
or a periodic orbit.

Generally, the equation (6) can present
multiple attractors as a single parameter varies.
A local bifurcation at an equilibrium happens
when some eigenvalues of the parameterized
linear approximating differential equation cross
some critical values such us the origin or the
imaginary axis. Self-sustained oscillations in
IFOC of induction motors can be originated by
a codimension one bifurcation namely the Hopf
bifurcation (H). Such kind of bifurcation can be
computed from differential system(6), when a
pair of complex conjugate eigenvalues among the
eigenvalues set of the associate linearized system
change from negative to positive real parts or
vice versa. Therefore the Hopf bifurcation results
from the transversal crossing of the imaginary
axis by the pair of complex conjugate eigenvalues.
Such bifurcation is said to be supercritical if the
periodic branch is initially stable and subcritical
if the periodic branch is initially unstable. The
singularities of the phase plane are the solutions
of 4th order autonomous ODEs describing the
IFOC induction motor (Equilibrium points,
limit cycles, chaotic orbits,...), each solution
involves four eigenvalues describing its stability.
A Saddle-node bifurcation (Fold (F)), or a limit
point (LP)is a codimension one bifurcation which
occurs when a single eigenvalue is equal to zero.

Some codimension two bifurcation points are
considered in this paper such as the cuspidal point
(CP), the Bogdanov-Taken bifurcation (BT) and
the Generalized Hopf bifurcation (GH).
In a two parameter plane, a Bogdanov-Takens bi-
furcation happens for the assumption of an al-
gebraically double zero eigenvalue, therefore, in
a (k,TL)-plane , a Bogdanov-Takens (BT) bifur-
cation occurs when an equilibrium point has a
zero eigenvalue of multiplicity two. In the neigh-
borhood of such bifurcation point, the system
has at most two equilibria (a saddle and a non
saddle) and a limit cycle. The limit cycle re-
sults from a non saddle equilibrium which un-
dergoes an Andronov-Hopf bifurcation. Numer-

ically, the normal Lyapunov exponents calculated
in the Hopf bifurcation point are negative which
means that these periodic orbits are born stable
[20]. The saddle and nonsaddle equilibrium col-
lide and disappear via a saddle-node bifurcation.
This cycle degenerates into an orbit homoclinic to
the saddle and disappears via a saddle homoclinic
bifurcation.

A generalized Hopf (GH) bifurcation or
Bautin bifurcation appears when a critical equi-
librium has a pair of purely imaginary eigenval-
ues. The singular curves of the parameter plane
corresponding to codimension-1 bifurcations may
contain singular points of higher codimension.
The simplest one located on a fold curve has the
codimension-2, a fold cusp. It is the meeting point
of two fold arcs. A Bogdanov-Taken bifurcation
point (BT) will be identified on a saddle-node bi-
furcation curve, and a generalized Hopf bifurca-
tion (GH) on a Hopf bifurcation curve.

4 Detection of multistability

propriety
It is becoming increasingly clear that multista-
bility is a major property of non linear dynam-
ical systems and means the coexistence of more
than one stable behavior for the same parameters
set and for different initial conditions. Solving
the differential system equation of IFOC model,
the trajectory in state space will head for some
final attracting region, or regions, which might
be a point, curve, area, and so on. Such an ob-
ject is called the attractor for the system. For
the parameters k = 4, kp = .4, ki = 1 and
TL = 0.5, two different equilibrium points are
identified :The first one is (x∗

10, x
∗

20, x
∗

30, x
∗

40) =
(0.2764,−0.1383, 0, 1.309), solution of the dif-
ferential system (2) for the initial conditions
set (x10, x20, x30, x40) = (1, 1, 0.1, 0.1) whereas
(x∗

10, x
∗

20, x
∗

30, x
∗

40) = (0.7236,−0.3618, 0, 0.191)
is the second one, and similarly a solution
of (2) for the following initial conditions set
(x10, x20, x30, x40) = (1,−1, 0.1, 0.1). The phase
trajectories converging to equilibrium points are
given in both of phase planes (x1, x2) and (x3, x4)
see figures 1 and 2. In figure 3 both of the
red and the blue limit cycles coexist for the the
parameters k = 0.02017; kp = 0.15; ki = 1.01
and TL = 10.1, but for different initial con-
ditions sets (x10, x20, x30, x40) = (0.19, 0.5, 0, 0)
and (x10, x20, x30, x40) = (2.2, 7.5, 0.5, 7.5) respec-
tively.
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Figure 1: Equilibrium Point EP1 in phase planes
(x1, x2) and (x3, x4)

5 Numerical computation of bi-

furcations sets

5.1 Hopf bifurcation detection

The detection of Hopf bifurcations in IFOC of in-
duction motor is analyzed in both cases, zero load
torque value (TL = 0) and full load torque value
(TL = 10). for these two cases, phase trajecto-
ries undergo important qualitative changes under
the variation of the parameter k. In the case of
a load torque value TL = 0, and k = 1.65, fig-
ure 4.a shows an equilibrium point illustrated
by two phase trajectories in phase planes (x1, x2)
and (x3, x4). However, for k = 1.8 the equilib-
rium point disappears and a limit cycle appears
instead of it see figure 4.b. One can guess the
existence of a Hopf bifurcation for 1.65 < k < 1.8
which can be preciously computed using an ad-
equate continuation program. For a load torque
value TL = 10, and for k = 0.1, figure 5.a presents
a limit cycle illustrated by two closed trajectories
in phase planes (x1, x2) and (x3, x4). Then for
k = 0.18 the limit cycle disappears and an equi-
librium point occurs instead of it see figure 5.b.
One can guess the existence of a Hopf bifurcation
for 0.17 < k < 0.18. The Hopf bifurcation phe-
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Figure 2: Equilibrium Point EP2 in phase planes
(x1, x2) and (x3, x4)

nomenon, being one of the possible reasons for
the oscillatory behavior, is an abrupt qualitative
change that can be accompanied by a ’quantita-
tive’ change namely the spectral reorganization
of the oscillating state variables. For example, an
oscillatory regime is detected for the following pa-
rameter set k = .1, kp = .1, ki = 1 and TL = 10.
The figure 6.(b) and 6.(c) show the direct and
quadratic fluxes waveform, respectively, under the
above parameter values. The corresponding phase
trajectory is shown in the figure 6.(a), which illus-
trate the periodic nature of system. The spectral
analysis of periodic solutions, by means of Fourier
Transform, was employed in [19] to characterize
a succession of saddle-node bifurcation in a two
parameter plane. Thus, the spectral approach
applied to periodic solutions in nonautonomous
systems may be extended to limit cycles in au-
tonomous case.

5.2 Limit point and Hopf bifurcation

points

Starting from a located initial equilibrium or a
periodic orbit,numerical continuation is devoted
to follow such special behavior as a single active
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Figure 4: Hopf Bifurcation :phase trajectories
in phase planes (x1, x2) and (x3, x4). for kp =
.1, ki = 1 and TL = 10. (a)k = 1.65,(b)k = 1.8.

parameter varies. The starting point is an equi-
librium point
(x∗

10, x
∗

20, x
∗

30, x
∗

40)=(0.2764,-0.1383,0,1.309) com-
puted for the parameters k = 4, kp = .4, ki = 1

(b)x1

x1

x3

x2

x2 x4

x4

x3(a)

x4

Figure 5: Hopf Bifurcation :phase trajectories
in phase planes (x1, x2) and (x3, x4). for kp =
.4, ki = 1 and TL = 10. (a)k = 0.17,(b)k = 0.18.

and TL = 0.5, a continuation method permits to
obtain the evolution of x1 versus the values of k
(see figure 7). Three singularities are obtained on
such curve: two Hopf bifurcation points (Ns)and
a limit point F (Saddle-node bifurcation or Fold).
The Saddle-node bifurcation possesses has one of
its eigenvalue equal to zero and the following co-
ordinates in phase space :
(x10, x20, x30, x40) = (0.345,−0.219, 0, 0.817)
and the corresponding eigenvalues are:
(-4.066+i12.01,-4.066-i12.01,-0.008,-4.736e-005).
The two neutral saddles have the following coor-
dinates:
(x10, x20, x30, x40) =(0.356, -0.233, 0, 0.751) with
the associates eigenvalues:
(-4.072 + i11.079,-4.071 -i11.079, -0.179, 0.179)
and (x10, x20, x30, x40) =(0.431,-0.353, 0, 0.343)
with the eigenvalues (-4.065 + i6.629,-4.066 -
i6.629, -0.573, 0.573). The three singularities de-
tected in this section are to be used as starting
points to trace the bifurcation curves in a two
parameter plane chosen here as (k,TL)-plane de-
pending mainly on the rotor resistor and the rotor
time constant.

5.3 Cusp point and Bogdanov-Taken

bifurcation

The continuation of the limit point (LP) detected
in previous section leads to trace a saddle-node
bifurcation curve shown in figure 8, such curve
includes two branches joining in a codimension
two bifurcation point, namely cuspidal point (CP)
having the following phase space coordinates:
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Figure 8: Fold and Hopf bifurcation curves in
(k, TL)-plane

(x10, x20, x30, x40) = (0.5,−0.289, 0, 0.578).
Besides, such curve presents another codimen-
sion two bifurcation in (x10, x20, x30, x40) =
(0.266,−0.182, 0, 0.891), having two eigenvalues
equals to zero and known as Bogdanov-Taken bi-
furcation (BT). Then, using the Hopf bifurcation
points , met in the same continuation path of the
equilibrium point as the limit point (LP) in previ-
ous section, we obtain the Hopf bifurcation curve
in (k,TL)-plane, which is seemingly enclosed in
the saddle-node bifurcation curve as in figure 8.
the left branches of the two different bifurcation
curves seem to be merged together but they are
not so, several ’zooms’ of this part permits to re-
alize that there is no intersections between such
bifurcation curves, so that the Hopf bifurcation
curve is completely contained inside the quasi-lip
structure. Varying rotor time constant TL from 0.
to 1.1, the continuation of an equilibrium point
(x∗

10, x
∗

20, x
∗

30, x
∗

40) = (0.7236,−0.3618, 0, 0.191)
computed for the parameters k = 4, kp = .4, ki =
1 and TL = 0.5 is illustrated by figure 9. Such
curve includes two limit points F1 and F2 and two
Hopf bifurcation points H1 and H2, these bifur-
cation points lead to the same results obtained
above and illustrate the fact that the two saddle-
node bifurcation are the junction of three different
sheets, and the Hopf bifurcation is located on the
inner sheet between the upper and the lower ones.

5.4 Bifurcation scenario for PI con-

troller parameters

After the discussion of the effect of real parame-
ter machine k, in this subsection we aim to study
the influence of the PI controller parameters ki
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Figure 10: values of k corresponding to a Hopf
bifurcation. TL for different values of kp

and kp on the bifurcation structure in the (k,TL)-
parameter plane. Similar to the previous discus-
sion, we will discuss the appearance of Hopf bi-
furcation. Thus, a set of Hopf bifurcation curves
are traced for a small range of load torque values
TL in figure 10 for different values of kp. These
bifurcation curves were obtained for (ki = 1). For
the same range of load torque, a second set of bi-
furcation curves obtained for fixed (kp = 0.1) and
for certain values of (ki) is given in figure 11. For
a larger range of load torque values, another set of
Hopf bifurcation curves with different shapes pre-
senting an extremum computed for different val-
ues of kp in the same parameter plane (k,TL) see
figure 12. In figure 13, we trace the Hopf bifur-
cation in (kp, ki)-plane for TL=2.5-5.5-7.5 and 10.
In both cases of TL=7.5 and TL=10 a codimen-
sion two bifurcation point, namely a Generalized
Hopf bifurcation is identified. Such bifurcation
is a control bifurcation because it depends on PI
controller parameters kp and ki.
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bifurcation vs. TL for different values of ki
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6 Features of the transition to

chaos

Aiming to investigate the complex chaotic phe-
nomena in the studied model, this section presents
some graphical results that illustrate the under-
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Figure 14: Transition Hopf bifurcation-chaotic
behavior

lying mechanism of the chaos generation. The
first case of the chaos detection is shown through
a transition Hopf bifurcation-chaotic attractor.
The variation of ki parameter from 0.21 to 120,
shows the appearance of equilibrium points which
undergoes a Hopf bifurcation in the ki-interval
[0.22, 0.3] giving rise to a limit cycle. The phase
portraits of the limit cycles present a cuspidal
point around which an oscillating part of the tra-
jectory is as important as ki increases. we re-
call that according to previous studies [19], this
phenomenon was related to the important role
of higher harmonics whose amplitudes become as
more important as the number of modulations
is great. But the main result to be emphasized
here is that the increasing oscillations around the
phase trajectory cuspidal point leads to a chaotic
behavior as shown in figure 14. The nature of
the possible bifurcations that may occur in ki-
interval [0.3, 75.5],and which exhibit the qualita-
tive change seemingly spectral change of behav-
iors needs to be deeply investigated. The figure
14 was obtained for the same initial conditions set
(x10, x20, x30, x40) = (0.07, 0.152, 0.953, 0.71),
for the parameter values k = 4, kp = .01, TL = .5
and for different values of ki. In addition, a transi-
tion from a simple oscillatory phenomenon (limit
cycle) to complex oscillatory phenomenon (chaos)
is identified according to the Generalized Hopf bi-
furcation occurrence. Indeed, before the GH bi-
furcation detection, the system exhibits a limit

1x

2x

Figure 15: Limit cycle generated before
Generalized-Hopf detection
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Figure 16: Chaotic torus state generated at
Generalized-Hopf

cycle ( see figure 15) for the parameter set of a
Hof bifurcation k = 7.91, ki = 2.225, kp = 0.084,
τL = 10 and with the associates eigenvalues [-
2.4-3.52e+002i; -2.4+3.52e+002i; -0.0011 - 0.677i;
-0.0012 + 0.676i]. Whereas, after the GH bifur-
cation occurrence the oscillation of the system re-
sponses became more complex and the figure 16
shows a chaotic torus generated by model equa-
tions with parameter setting k = 8.203, ki =
1.675, kp = 0.025, τL = 10 and for the initial con-
ditions set (x10, x20, x30, x40)=(1, 0.152, 0.3, 0.1).

This case presents a class of chaotic attrac-
tors with spherical patterns, where the com-
puted attractor looks like torus. The occur-
rence of this chaotic state is detected near the
codimension 2 Generalized-Hopf (GH) bifurca-
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tion point witch is a bifurcation of an equilib-
rium point at which the generated critical point
has one pair of purely imaginary eigenvalues [-4.0-
2.716e+003i;-4.0+2.7160e+003i;-0.0091- 0.351i ; -
0.0091 + 0.351i] and the first lyapunov coefficient
is equal to zero. Therefore, this bifurcation can
imply a local birth of chaotic behavior.

7 Conclusion

This paper reviews a numerical study of the
dynamic behavior of an IFOC induction motor
where a PI controller takes place, with particu-
lar reference to bifurcation analysis. Specifically,
we have investigated how the PI controller pa-
rameters influence the bifurcation sets. Compu-
tational techniques are applied to calculate the
steady states and to delineate the bifurcation
curves wich separate the regions of qualitatively
different behaviors. Based on the obtained nu-
merical results and graphical simulations, we have
shown the existence of regular behavior and region
where chaotic phenomena may occur depending
on a small variation of both motor parameters (k,
TL) and PI controller gains. The occurrence of
chaotic phenomena is detected for particular val-
ues of kp and ki. Two features of the transition to
chaos are presented. Such analysis provide useful
guidelines for the setting of tunable motor param-
eters and to practically adjust the PI controller
gains.
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