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Abstract: - Automatic modeling system using Matlab-Simulink software package applies the Cohen-Coon 
method for determining the closed loop PID parameters and plotting the system response clue. Implementing 
the same system in closed loop PID adjustment using LabVIEW software package, requires, at first, an 
additional procedure, namely, the use of transfer functions in Z domain, that means the use of sampling signal. 
The study from this paper intends to determine the parameters of a PID regulator using two software packages - 
MATLAB-Simulink and LabVIEW. As a mathematical pattern a DC machine has been used. To exemplify 
regulators PID, LQR (Linear Quadratic Regulator) and PI-MIMO (PI – Multiple Input Multiple Output) were 
used. The application is easy to be implemented, the inverted pendulum being used to emphasize the results. 
The closed loop system and its evolution over time are easily implemented. This software package offers an 
easy user interface, which means that is convenient to introduce the program functions. 
 
Key-Words: - Inverted pendulum, PID regulator, LQR regulator, PI-MIMO regulator. 
 
1 Introduction 
MATLAB is a tool with high performance in 
technical estimations. It integrates the calculation, 
visualization and programming in an easy to use 
environment where problems and solutions are 
expressed in familiar mathematical notation. Using 
MATLAB software package has the following main 
purposes: mathematical calculation, the 
development of algorithms, data acquisition, 
modeling, simulation and prototype development, 
visualization, exploration and data analysis, 
scientific graphics and engineering, application 
development graphical user interface . MATLAB is 
an interactive system whose basic element to define 
data is the string that do not require sizing [1], [3]. 

With LabVIEW virtual instruments are built 
(VI), having the appearance of instruments or 
physical systems. Virtual instruments have an 
interactive user-interface front panel - and one part 
for the programmer - block diagram. For 
identification and use in other applications, each 
virtual instrument is an icon with a specific entries 
and exits. 

Automatic systems modeling using Matlab-
Simulink software package applied the Cohen-Coon 
method for determining the closed loop PID 
parameters and plotting the system response clue. 
The limit of the over adjustment was found to be 
20%, the timing of the transitional regime - 3 

seconds, and maximum response time is 10 seconds. 
Also, one represented the chart of the evolution over 
time, in closed loop system, to unit step input. 

This software package offers an easy user 
interface, which means that is convenient to 
introduce the program functions. The application 
has implemented the conversion done from a field 
of definition of transfer functions to another (ex. 
obviously c2d function transforming the transfer 
function of s field in Z domain, using a sampling 
period by the user), and includes Simulink tool that 
greatly facilitates user's work as the user wants to 
consider in detail the operation of each block, and 
many other features in the field of automation and 
theory systems. 
 
 
2 Example using PID Regulator 
At first, the problem of control design it is shaped 
by the transfer application as having a single input 
and a single output (Single Input Single Output, 
SISO) of third order, where a1 = 43 and a1=3 with an 
approximation of ± 0.8 and a non-linear saturation ± 
2.  

In addition, due of design tolerances, the current 
dynamics presents suggestive variations from the 
base model. Specifically, the denominator 
coefficient a2 varies between 40 and 50 and 
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coefficient a1 between half and 1.5 times the 
nominal value of 3 [4] and [15]. 

 

 

 
Fig. 1 NCD block attached to the result of the plant 
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A PID regulator is it designed so that closed-

cycle system to meet the following specifications 
for tracking: 
• Maximum Oscillation 20%; 
• Up to 10 seconds for the propagation; 
• Maximum response time of 30 seconds [4], [15]. 

It results that the answer of the closed cycle be 
resistant to uncertainty in installation’s dynamics. 

The SIMULINK ncddemo1 system contains the 
application and the control structure. It is noted that 
non-linearity and saturation speed are included in 
the model plant. An input step drives the system. 
NCD block is attached to the outlet installation 
(Figure 1) because is the signal which will be 
restricted. Checking System's Parameters dialog box 
is noted that each simulation lasts 100 seconds. 
Tunable and uncertain variables are initialized. The 
uncertain variables a1 and a2 are initialized at 
nominal values at 40 and 3, respectively. Tunable 
parameters Kp, Ki and Kd are initialized at 0.6323, 
0.0493, respectively at 2.0272. These values result 
from the use of Ziegler-Nichols method for PID 
regulators. 

Ziegler-Nichols method for PID regulators grant 
can be summarized as: 
• The entire amplification and derivative is 
established to zero and the amplify is increased 
proportionally, until the system becomes unstable; 
• This amplification is defined as Ku ; the measure 
of the oscillation period is Pu; 
• The coefficients are established one by one 
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Then, the limitations of time are defined. Upper 
and lower restriction limits define oscillation, 
propagation time and response time [4], [15]. 

Note that the uncertainty in the parameters a1 and 
a2 is defined and that the restrictions are applied to 
the installation only nominal. After running 
optimization, the time, the cost function evolution 
and the final values for tunable parameters vary 
depending on computer’s performance. 
Optimization should provide a regulator to satisfy 
any restrictions [22], [23], [24] and [25]. 

The lower and superior limits are restricted and 
the optimizing process is started with uncertainty. 
One can consider that these restrictions can not be 
satisfied, but the result shows a maximum violation 
of the restriction under the value of 0.01. 

One can experiment by moving the limits of 
restriction to achieve better performances of the 
system. For example, one can reduce the time 
spread or may decrease the restrictions of oscillation 
(Figure 2.) 

 

 
 

 
Fig. 2 Moving the limits of restriction to achieve 

better performance of the system 
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3 Example using LQR Regulator 
(linear quadratic rules) with Feed-
forward Controller 
The second problem requires Control System 
Toolbox since it is an extended version of the 
problem from SIMULINK demo lqgdemos file.  

The SISO application can be modeled as a linear 
ranking 4 system with an enlarging saturation by ± 5 
and a nonlinear limit of error of by ± 10.  

The equations are [4], [15], [22], [23], [24] and 
[25]:  
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They define the nominal plant model. One allows 
the installation’s Matrix to vary between half to two 
times of its nominal value. 

Using LQG / LTR techniques, one can design a 
Kalman state estimator and a k amplifier regulator 
for the linear system. Add an integrator to ensure a 
zero steady error.  

To achieve an increased time response one adds 
a feed-forward amplifier (FF).  

In the demo SIMULINK Iqgopt system, the 
control parameters k and FF are granted by "the 
method of the least squares”.  

These parameters can be accorded using the 
NCD Blockset.  

In particular the control parameters K and FF are 
granted, so that the closed-cycle system to meet the 
following specifications: 

• Maximum oscillation - 20%; 
• Propagation time - one second; 
• Response time - three seconds [4], [15], 

[22], [23], [24] and [25]. 
SIMULINK system contains the application and 

the control structure below.  
After starting the system, it is noted that the non-

linearity error (± 10) and the saturation (± 5) are 
included in the model’s installation. 

Using the From Workspace block, one 
introduces a step that goes from zero to one in one 
second. NCD block is attached to the result of the 
installation because there is a restricted signal. 
Checking the System’s Parameters one observes 
that each simulation lasts, always, 10 seconds. 

 
Fig. 3 NCD block attached to the result of the plant 

 
 

 
Fig. 4 Plant & Actuator 

 
Tunable and uncertain variables are initialized. 

Domain restrictions for this demonstration are 
defined. Upper and lower restriction limits of the 
oscillation, propagation time and response time are 
defined. As described above, an initial design 
regulator using the LQG / LTR methods is designed 
starting from a linear application. For non-linear 
control optimization the feed-forward amplifier FF 
and regulatory matrix amplifier k are tunable [4], 
[15], [22], [23], [24] and [25]. 

Note how the installation (reaction) matrix A is 
defined and also that the optimization restrictions 
are applied only on nominal installation (reaction). 
Now starts the optimization.  

We monitor the response evolution in time. The 
optimization time, the cost function evolution and 
final values for tunable parameters vary depending 
on computer.  

Optimization should produce a regulator which 
satisfies any restrictions. 

Now, we restrict the upper and lower limits. One 
starts the optimization with uncertainty. Considering 
that these restrictions can be satisfied, the result 
shows a maximum violation of the restriction under 
0.01 (1%). 
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One can experiment, by moving the limits of 
restriction to achieve better performances of the 
system; for example, reducing the propagation time 
or using less restrictions of oscillation (Figure 5). 

 

 
Fig. 5 Moving the limits of restriction to achieve 

better performances of the system 
 
 

3.1 Results and Simulation after Using LQR 
Simulation using the optimal LQR has been 
implemented. Figure 6 shows the unit step system 
response. As shown from the figure the 
displacement reaches its final value in 3*10-6 sec., 
gives zero tracking error and the system has better 
stability. Comparing, that, with the results have been 
obtained previously. It is quit clear using LQR has 
much better response [9] and [17]. 

Figure 7 and figure 8 show unit ramps and unit 
acceleration system response. As shown from the 
figure the displacement reaches its final value in few 
microseconds, and gives zero tracking error, which 
means much better sensitivity and accuracy for the 
micro accelerometer compared to previous 
approaches. 

The speed of reaching the final values depends 
on choosing the values of matrix Q, as choosing 
high values of Q as having faster response for any 
input signal and having better stability. 

Finally, for all inputs, the mass speed when using 
the LQR is faster and almost has no oscillations, for 
example, for unit step input the average speed is 
1.824*10-3 m/sec, compared to 1.7111*10-4 m/sec 
after some authors. That makes, the mass reaches its 
final position faster with no oscillations.  

Using LQR has increased and improved the 
accelerometer bandwidth, stability, accuracy and 
response time [7] and [9]. 

 
Fig.6 State variables versus time for unit step input 

tracking 

 
Fig.7 State variables versus time for unit ramp input 

tracking 

 
Fig.8 State variables versus time for unit 

acceleration input tracking 
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4 Example using PI-MIMO Regulator 
(Multiple Input Multiple Output)  
The third problem of control design involves 
designing a centralized PI-MIMO regulator for a 
turbine engine of LVI00 fuel. One models the 
application as a system with two inputs, two outputs 
and a minimum of five phase states. Inputs are fuel 
flow and variable area turbine nozzle. The outputs 
are speed coil generator fuel and temperature. The 
five stages are speed spool generator, the output 
power, temperature, driving level of the fuel flow 
and the driving level of the turbine nozzle. A system 
model is given by the next equation [4], [15], [22], 
[23], [24] and [25]: 
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To compare with previous results, none 

nonlinearities is not modeled in this problem. 
Saturation nonlinearities exist in the system as 
limited efforts and maximum temperatures.  

These nonlinearities can be included in the 
problem formulation as in previous examples.  

Also, for the demonstration plant will exaggerate 
uncertainty of installation.  

More precisely, one permits a variation of a 
matrix A between half and twice of its nominal 
value. 

We want to design a centralized controller 2-by-
2 PI for the application so that the system closed 
cycle track to meet the following specifications: 

- Maximum propagation delay time of one 
second; 
- 0 oscillation in the first channel and less than 
10% in one second; 
- less than 5% across the channel coupling. 

SIMULINK system contains software and 
control structure below (Figure 9).  

To open the system can be written in MATLAB 
prompt or double-click on the NCD block 3 Demo 
SIMULINK system.  

One model the PI regulator as a state-space 
system with the value 0 for matrix A and the 
identical matrix B.  

The C and D matrix are variable tunable K, and 
Kp, for a total of eight tunable variables. 

 
Figure 9 Control structure of the system 
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Double click on the ncd3init block is executed to 

load data installation, the signal inputs, the initial 
values of tunable parameters and previous values of 
regulators obtained by other methods. With double 
click on the ncd3init block one defines the 
restrictions of time domain responses of this 
demonstration. Note that there are two optimization 
NCD blocks that can be displayed simultaneously. 

The approach suggested for MIMO regulator 
design requires the sequencing of input steps. When 
the first channel entering, the first result should 
follow up the step and other channels must reject 
signal. When the second channel entering, the 
second signal must follow up the step and the other 
channels must eject the signal etc. [4], [15], [22], 
[23], [24] and [25]. 

Note that we used the From Workspace block to 
enter the sequential steps inside the system. Double-
click on NCD blocks to open the restriction NCD 
images and to display all the other restrictions. It is 
noted that restrictions for the first result define the 
limits step response as shown above. Meanwhile, 
the output restrictions limits make that the signal 
stay near to ± 0.05 value. 

Before starting the optimization, the 
Optimization Parameters dialog box opens by 
selecting Parameters ... from Optimization menu 
and it noticed that how is defined the Parameters 
Optimization. It is opened, also, the Uncertain 
Variables and one observe how is defined the A 
matrix installation and also notes that optimization 
restrictions are only nominal applied on installation. 
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One press Start or one can hold down the 
acceleration key and t to start optimizing process. It 
follows the time response evolution during the 
optimizing process. Optimization time, cost function 
evolution and final values for tunable parameters 
vary depending on the computer. Optimization 
should produce a regulator that satisfies all 
restrictions [4], [15], [22], [23], [24] and [25]. 

Now, one return to Uncertainty Variables dialog 
box and one restrict the lower and upper limits. 
Press Start to begin optimizing with uncertainty. We 
can consider that these restrictions can not be 
satisfied, since the result appears to show a 
maximum restraint violation less than 0.01. 

We can experiment by moving the restriction 
limits to achieve a higher system performance. For 
example, one reduces the propagation time or less 
oscillation restrictions (Figure 10). 

 

 
 

 
Fig. 10 Moving the limits of restriction to achieve 

better performances of the system 
 
 
5 Application – Inverted Pendulum  
Inverted pendulum can be described as a cylindrical 
metal rod attached to a device controlled by an 
engine powered to revolve only around an axis. The 

device follows a linear track to create a stabilized 
problem (Figure 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 11 Inverted pendulum 
 
The inverted pendulum is a classic problem in 

dynamics and control theory and is widely used as a 
benchmark for testing control algorithms (PID 
controllers, neural networks, fuzzy control, genetic 
algorithms, etc). Variations on this problem include 
multiple links, allowing the motion of the cart to be 
commanded while maintaining the pendulum, and 
balancing the cart-pendulum system on a see-saw. 
The inverted pendulum is related to rocket or 
missile guidance, where thrust is actuated at the 
bottom of a tall vehicle. The understanding of a 
similar problem is built in the technology of 
Segway, a self-balancing transportation device. The 
largest implemented use is on huge lifting cranes on 
shipyards. When moving the shipping containers 
back and forth, the cranes move the box accordingly 
so that it never swings or sways. It always stays 
perfectly positioned under the operator even when 
moving or stopping quickly. 

Another way that an inverted pendulum may be 
stabilized, without any feedback or control 
mechanism, is by oscillating the support rapidly up 
and down. If the oscillation is sufficiently strong (in 
terms of its acceleration and amplitude) then the 
inverted pendulum can recover from perturbations 
in a strikingly counterintuitive manner. If the 
driving point moves in simple harmonic motion, the 
pendulum's motion is described by the Mathieu 
equation. 

In practice, the inverted pendulum is frequently 
made of an aluminum strip, mounted on a ball-
bearing pivot; the oscillatory force is conveniently 
applied with a jigsaw. 
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The equation of motion is similar to that for a 
uninverted pendulum except that the sign of the 
angular position as measured from the vertical 
unstable equilibrium position: 

                     
0sin.. =− θθ

l
g

              (6) 
When added to both sides, it will have the same 

sign as the angular acceleration term: 

                           
θθ sin..

l
g

=
                     (7) 

Thus, the inverted pendulum will accelerate 
away from the vertical unstable equilibrium in the 
direction initially displaced, and the acceleration is 
inversely proportional to the length. Tall pendulums 
fall more slowly than short ones. 

The inverted pendulum with small parametric 
forcing is considered as an example of a wider class 
of parametrically forced Hamiltonian systems. The 
qualitative dynamics of the Poincare map 
corresponding to the central periodic solution is 
studied via an approximating integrable normal 
form. At bifurcation points we construct local 
universal models in the appropriate symmetry 
context, using equi-variant singularity theory. In this 
context, structural stability can be proved under 
generic conditions [26]. 

The upper equilibrium of a pendulum can be 
stabilized by a vertical oscillation of the suspension 
point within a specific range of excitation 
frequencies and amplitudes. This follows from 
classical perturbation theory applied to the 
linearized equation of motion, e.g., according with 
van der Pol and Strutt, Stoker and Hale.  

The corresponding bifurcation is determined by 
the non-linear dynamics. Our aim is to understand 
this dynamics in a qualitative way, with special 
interest in persistence. 

Here the symmetries of the system are first 
maintained. However, we consider a system that is 
slightly more general, but still in the 1 and ½ 
degree-of-freedom Hamiltonian setting [26]. 

We study the corresponding Poincare map, 
following the approach of Broer and Vegter.  

Normal form theory yields a planar Hamiltonian 
vector field which gives an integrable 
approximation of this map, valid for every angular 
displacement and small velocity of the pendulum. 
The relation between the Poincare map and its 
approximation is briey discussed in terms of 
perturbation theory [26] and [27]. 

At each bifurcation point of the approximating 
vector field a model is constructed that is locally 
equivalent to this approximation. by performing 

small perturbations that respect the symmetries, and 
conjugating these perturbations to the model by 
symmetry-preserving local morphisms [26].  

The study of the Inverted Pendulum could be a 
collection of MATLAB functions & scripts, and 
SIMULINK models, useful for analyzing Inverted 
Pendulum System and designing Control System for 
it. 

The Inverted Pendulum is one of the most 
important classical problems of Control 
Engineering. Broom Balancing is a well known 
example of nonlinear, unstable control problem. 
This problem becomes further complicated when a 
flexible broom, in place of a rigid broom, is 
employed. Degree of complexity and difficulty in its 
control increases with its flexibility. This problem 
has been a research interest of control engineers. In 
this submission, however, we have analyzed 
Inverted Pendulum only with rigid broom [27]. 

The aim of the study is to stabilize the Inverted 
Pendulum such that the position of the carriage on 
the track is controlled quickly and accurately so that 
the pendulum is always erected in its inverted 
position during such movements. 

The inverted pendulum (IP) is among the most 
difficult systems to control in the field of control 
engineering. Due to its importance in the field of 
control engineering, it has been a task of choice to 
be assigned to Control Engineering students to 
analyze its model and propose a linear compensator 
according to the PID control law [27]. 

 
For device, a stabilized runway requires the 

existence of the initial LQR stabilizer. The 
generation of this regulator rules is realized starting 
with writing the nonlinear equations which are 
defining the inverted pendulum. Ignoring the 
dynamics of the engine, the nonlinear equations of 
motion, for the inverted pendulum system, are [4], 
[15], [22], [23], [24] and [25]: 
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Where:  
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• f is the force applied to the cart by the 
engine in Newton (N); 
• m is the position of the cart in meters; 
• y is the vertical angle of the pendulum in 
radians; 
• θ is the mass of the cart (0.455 kg); 
• M is the pendulum mass (0.21 kg); 
• l is the distance from the mass center of the 
pendulum (half of its length of 0.61 m); 
• g is gravitational acceleration (m/s). 

 
It is necessary that those equations be linear in 

the operating point y=0 and θ=0 to obtain the linear 
system: 
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Using MATLAB command: 
 

Klqr = lqr(A.b,diag( [0.25 0 4 0],0.003) 
 

one obtains the gain stability: 
 

K1qr = (-28.8675 -28.5632 -145.00 14 -14.8601) 
 
Besides the obvious non-linearity of the system’s 

equations, the voltage limit applied to the engine 
gives a restriction of the action saturation of 1 N [4], 
[15], [22], [23], [24] and [25].  

The sensors measure the position and angle 
pendulum device. 

In addition, with the pendulum stability follows 
that the device has a commanded reference signal. 
Specifically, one has to design a controller for the 
system to meet the following specifications of a 
closed loop specifications: 

• up to 4 sec. for propagation time; 
• up to 6 sec for the response time; 
• zero oscillation; 
• less than 0.2 radians deviation from vertical. 
 
It is noted that the saturation non-linearity 

included in the process model and hidden pendulum 
block contain the motion system with nonlinear 
equations.  

One commands the input device position with a 
signal-type unit. NCD blocks are attached to the 
pendulum angle and device position signal (Figure 

12 and Figure 13). It is noted that each simulation 
lasts 15 sec. 

The control structure contents finite estimated 
status differences for the speed of the device and 
angular velocity of the pendulum.  

As part of an internal control cycle, the 
estimations for the speed and angular velocity are 
multiplied by the amplification, collected and then 
introduced into the engine [4], [15], [22], [23], [24] 
and [25]. 

 
Fig. 12 NCD block attached to the result of the 

inverted pendulum 
 

 
Fig. 13 The internal scheme of a pendulum block 

 
The gain is initialized from 1 at 3 with: Klqr = 

Clqr (2:4), where Clqr is the solution from 1 to 4 at 
LQR. In a series of external control (used to allow 
the device to follow a commanded signal) a feed-
forward amplifier Kf is initialized by Kf=C1qr(1) 
and an integral amplifier, Ki is initialized as zero. It 
is noted that, in the absence of a commanded signal, 
these baseline controllers reduce the control 
structure at LQR amplification described in the 
previous section [1], [3], [4] and [15]. 

Tunable variables are initialized and, in 
accordance, restrictions of time domain response are 
defined. The configuration of these restrictions 
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should be known like a step response. Pendulum 
angle channel contains restrictions that define a 
disturbance rejection problem of perturbations. In 
other words, while device moves to the controlled 
position, the pendulum must remain in balance. 

The optimization begins. The optimization time, 
the cost function evolution and final values for 
tunable parameters vary depending on computer. 
Optimization should produce a controller to meet 
any restrictions. 

It is noted that this optimization runs slower than 
others. This is due to the estimating finite-state 
involve frequent updates during the simulation 
(Figure 14). 

 
 

 
 

Fig. 14 Moving the limits of restriction to achieve 
better performance of the inverted pendulum 

 
 

6 Conclusion 
The work from this paper intended to determine the 
parameters of a PID controller using two software 
packages, namely MATLAB-Simulink and 
LabVIEW.  As a mathematical model, a DC 
machine was used. 

Automatic modeling systems using Matlab-
Simulink software packages applied the Cohen-

Coon method for determining the closed loop PID 
parameters and plotted the system response clue. 
The limit of the over adjustment was found to be of 
20%, the timing of the transitional regime - 3 
seconds, and maximum response time was 10 
seconds. Also, one represented the chart of the 
evolution over time, in closed loop system, to unit 
step input. The use of this software packages offers 
an easy way of work, which means that is 
convenient to utilize the program functions. 

Implementing the same system in a closed loop 
PID adjustment using LabVIEW software package, 
one requires, at first, an additional procedure, 
namely, the use of the transfer functions in Z 
domain. For displayed example the sampling period 
is 60 μs and thus can be determined the transfer 
function graph, sampled to the entry with a unitary 
step. 

The use of the graphical features of LabVIEW 
software package for the adjustment of the PID 
controller, one recorded the best performance, since 
they include zero stationary error due to the 
integrative component for minimum stabilization 
time, due to anticipatory component derivative etc. 
Using the LabVIEW package to study the reaction 
systems involved additional procedures.  

A comparative analysis of the two programs 
using Matlab-Simulink and LabVIEW to determine 
the same automatic performances of the system 
indicates that Matlab-Simulink software is more 
efficient having different features of its libraries 
ready implemented, with coverage areas of 
automation and systems theory. LabVIEW is a 
software package dedicated to particular virtual 
instrumentation and graphical applications in time.  
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