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Abstract: - In this work a totally analytic solution for this film flow of a fourth grade fluid down a vertical cylinder are 
obtained using some approximate optimal methods. These approaches do not depend upon any small or large 
parameters in comparison with other perturbation methods. The solutions obtained using our procedures are in good 
agreement with the exact solution, which show the applicability of the methods. 
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1   Introduction 
In general it is very difficult to solve nonlinear problems 
either numerically or theoretically. Approximate 
analytical and numerical methods are widely used to 
solve non-linear differential equations modeling physical 
phenomena. This is because exact solutions of these 
equations are rare. 
     Mathematical modeling of many physical systems 
leads to non-linear ordinary or partial differential 
equations in various fields of physics and engineering. 
An effective method is required to analyze the 
mathematical model which provides solutions 
conforming to physical reality. In many cases, it is 
possible to replace a non-linear differential equation by a 
corresponding linear differential equation that 
approximates the original non-linear equation closely to 
give useful results. In general, the study of nonlinear 
differential equations is restricted to a variety of special 
classes of equations and the method of solution usually 
involves a limited number of techniques to achieve 
analytical approximations to the solutions. 
     There are some approaches for approximating 
solutions of a non-linear system. The most common and 
most widely used methods for non-linear differential 
equations are the perturbation methods [1], [2]. But 
almost all perturbation methods are based on such an 
assumption that a small parameter must exist in an 
equation.  This so-called small parameter assumption 

greatly restricts applications of perturbation techniques. 
As it is well-known, an overwhelming majority of 
nonlinear problems, especially those having strong 
nonlinearity, have no small parameters at all. The 
approximate solutions obtained through perturbation 
methods are valid, in most cases, only for small values 
of the parameters. However, there is no criterion on how 
the small parameters should be. 
     To overcome the restrictions of perturbation 
techniques, some non-perturbation methods are 
developed such as the Adomian decomposition method 
[3], the weighted linearization method [4], δ-method [5], 
the bookkeeping artificial parameter method [6], the 
modified Lindstedt-Poincare method [7], and so on. 
     In recent years a growing interest toward the 
application of iterative techniques and homotopy 
techniques in nonlinear problems appeared in 
engineering practice [8-15]. In 1987 Mickens [16] 
proposed an iteration scheme for a nonlinear 
conservative oscillator. Lim et al. [17] proposed a 
modified iterative scheme for an oscillator described as 

0)0(x,A)0(x,0)x(fx ===+ ɺɺɺ  (1) 

where f is an odd function in the following from: 
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where )x(fx)x,(g 2 −ω=ω , ω is a priori unknown 

frequency and 
dx

dg
g x = .  

     Later, Marinca and Herişanu [18] proposed a new 
iteration method combining Mickens and He’s iteration 
methods. These iteration procedures have been used to 
solve both nonlinear conservative and nonconservative 
oscillators. For most conservative oscillators, like some 
other methods for nonlinear oscillators, the second-
order, even the first order of approximation can give 
uniformly accurate solutions [19,20].  

In 1978, Inokuti et al [21] proposed a general 
Lagrange multiplier method to solve non-linear 
problems, which was first proposed to solve problems in 
quantum mechanics. The main feature of the method is 
as follows: the solution of a mathematical problem with 
linearization assumption is used as initial approximation 
or trial-function and then a more highly precise 
approximation at some special point can be obtained. 
Variational iteration method has been favorably applied 
to various kinds of nonlinear problems. The main 
property of the method is in its flexibility and ability to 
solve nonlinear equations accurately and conveniently. 
Major applications to nonlinear wave equation, nonlinear 
fractional differential equations, nonlinear oscillations 
and nonlinear problems arising in various engineering 
applications are surveyed. The confluence of modern 
mathematics and symbol computation has posed a 
challenge to developing technologies capable of 
handling strongly nonlinear equations which cannot be 
successfully dealt with by classical methods. Very 
recently it was recognized that the variational iteration 
method [22-28] can be an effective procedure for 
solution various nonlinear problems without usual 
restrictive assumptions. The method, extensively worked 
out by numerous authors, has been maturing into a fully 
fledged theory, more and more merits have been 
discovered and some modifications are suggested to 
overcome the demerit arising in the solution procedure. 
Applications of the method have been employed due to 
its flexibility, convenience and accuracy. D’Acunto [29] 
applied the variational iteration method to nonlinear heat 
transfer, Marinca [30] to nonlinear oscillations, Lu [31] 
to two-point boundary value problems, Sweilan et al [32] 
to nonlinear thermoelasticity, Siddiqui et al [33] to non-
Newtonian flows, Liu [34] to ion acoustic plasma wave 
and so on. 
     Over the last few years, a number of investigators 
[35-39] have been involved in the study of non-
Newtonian fluids. The study of non-Newtonian fluids is 
very important in view of its potential applicability in the 
fields of engineering and technology. Examples of such 
fluids include blood, drilling muds, clay coating and 

other suspensions, certain oils and greases, polymer 
melts, elastomers and many emulsions.  

Non-Newtonian fluids may be defined as fluids for 
which the shear stress depends on the shear rate, fluids 
for which the relation between the shear stress and shear 
rate depend upon the time and fluids which possess both 
elastic and viscous properties, which are called 
viscoelastic fluids or elastic-viscous fluids.  

It is very difficult to suggest a simple model which 
exhibits all properties of non-Newtonian fluids. 
Therefore, several fluid models have been proposed to 
predict the non-Newtonian behaviour of various types of 
materials.  

The most popular model for non-Newtonian fluid 
designated the “second-grade” generally involves simple 
calculations and it is thus feasible to obtain analytical 
solutions. The “second-grade” fluid describes normal 
stress effects but it does not exhibit the property of shear 
thinning or thickening for a steady flow. Due to this fact, 
some experiments may well be described by the fluids of 
the order three or four.  

The study of such fluids involves the use of non-
linear equations with increasing complexity for systems 
that involve substantial non-linear analysis. 
     The model under study in the present paper is of the 
fourth grade fluid type, and we have applied the Optimal 
Parametric Iteration Method (OPIM) and the Optimal 
Variational Iteration Method (OVIM) in order to analyze 
the non-linear behaviour of a thin film flow down a 
vertical cylinder. The fluid under investigation 
introduces greater nonlinearity in the analysis.  

The results obtained by these two approximate 
methods are compared with the exact solution and a very 
good agreement was observed. These procedures are not 
valid only for small but also for large parameters. They 
provide us with a convenient way to control the 
convergence of approximations, which ensure their 
applicability and great potential to solve a wide number 
of non-linear problems in science and engineering. 
 

 

2   Basic Ideas of the Optimal Parametric 

Iteration Method 
We consider the nonlinear differential equation in the 
following form 

]b,a[,0))(''f),('f),(f,(N)(Lf ∈η=ηηηη+η  (3) 

with the initial conditions 
β=α= )b('f,)a(f   (4) 

where 
η

=
d

df
'f , L is a linear operator and N is a 

nonlinear operator. 
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     Applying the Taylor series theorem for the analytic 
function )''x,'x,x(F and for any real values x0, α, β and 

γ we have 

...)''x,'x,x(F
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where 
x

F
Fx ∂

∂
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   Instead of solving the nonlinear differential equation 
(3), one can solve another equation, making recourse to 
the following scheme: 
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where the initial approximation f0(η) is given by the 
equation 

β=α==η )b('f,)a(f,0)(Lf 000  (7) 

and )C,( in ηα , )C,( in ηβ and )C,( in ηγ are functions 

of η and a number of constants C1, C2,… which are 
chosen of the same form like 

))("f),('f),(f,(N nnn ηηηη . 

     In this way we obtain an approximation to the 
solution of Eq.(3) given by a truncated series (5). To 
improve the order of convergence of the sequence 

)(fn η as given in Eq.(6) and (7) we propose that the 

constants C1, C2,… which appear in the functions αn, βn 
and γn (and are unknown at this moment) be determined 
optimally, i.e. the residual functional J given by 

ηηηηη+η= ∫ d]))("f),('f),(f,(N)(Lf[J 2
b

a
nnnn  

(8) 
be minimum, i.e. 

,...2,1i,0
C

J

i

==
∂
∂

  (9) 

     We remark that the constants Ci can be determined 
via various methods, for example the last square method, 
the Galerkin method, the collocation method and so on. 
In this way the solution of Eq.(6) and (7) is well 
determined. 
     The basic ideas of the proposed procedure are the 
construction of a new iteration scheme (6) and (7) and 
the presence of the constants Ci, i=1,2,… which lead to 
an excellent agreement between the approximate and 
exact solutions. 

 

3   Formulation of the Problem 
     Consider a fourth grade fluid falling on the outside 
surface on an infinitely long vertical cylinder of radius 
R. The flow is considered in thin, uniform, axisymmetric 
film with thickness δ, in contact with stationary air. In 
cylindrical coordinates, we have [35-37]: 
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where p≠ p(z) is pressure and Eq.(11) further gives: 

0r
g

dr

du

dr

ud

dr

du
r3

)(2

dr

du

dr

ud
r

3

2

22
32

2

2

=
µ
ρ

+












+






+








µ

β+β
++

 (12) 

     The boundary conditions are: 

0)R(u = , 0
dr
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=
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            (13) 
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Eqs.(21) and (22) reduces to 
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     In accordance with Eq.(15), the linear operator is 
chosen as 

η+
η

+
η

η=η k
d

df

d

fd
)(Lf

2

2

  (17) 

and we define a non-linear operator as 

]''f'f3'f[2))(''f),('f ),(f,(N 23 η+β=ηηηη (18) 
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4   Solution through Optimal Parametric 

Iteration Method 
The initial approximation )(f0 η is obtained from Eq.(7): 

0k'f''f 00 =η++η   (19) 

0)d('f 0 =    (20) 

It is obtained: 
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     The first-order approximate solution )(f1 η is 

obtained from Eq.(6) for n=0: 
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0)d('f 1 =    (23) 

     The Eq.(22) can be written in the following form 
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     The Eq.(24) can be easy solved if the functions 
)C,( iηα and )C,( iηγ are chosen such as 
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where C1, C2 and C3 are unknown constants and i,j,k are 
integers. 
     From Eq.(25) it is obtained: 
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     From Eqs.(23), (24), (26) and (27) we obtain 
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     For i=4, j=5, k=6 and using Eq.(21), from Eq.(28) we 
obtain 
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     The residual functional J given by Eq.(8) becomes: 
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     From Eqs.(9) for β=k=1 we obtain 
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     Therefore, the explicit analytic expression given by 
Eq.(29) of the first-order approximate solution becomes: 
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     In [37], β≥ 0.3 is considered a parameter 
corresponding to strong nonlinearity. 
     In tables 1 and 2 is presented a comparison between 
the present solution obtained from formula (32) and the 
exact solution of Eq.(15).  

It can be seen that the solution obtained through the 
present method is identical with that given by exact 
solution, demonstrating a very good accuracy. 

 
 

η 'f given by 
Eq.(32) 

'f exact 

1 
1.005 
1.007 
1.01 
1.0105 
1.0108 

0.020183555 
0.015105047 
0.013079437 
0.010047475 
0.009542918 
0.009240289 

0.020183555 
0.015105047 
0.013079437 
0.010047475 
0.009542918 
0.009240289 

 
Table 1: Comparison between the present solution (32) 
and the exact solution for d=1.02 
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η 'f given by 
(46) 

'f exact 

1 
1.008 
1.016 
1.023 
1.03 
1.038 

0.040665504 
0.032439661 
0.024254926 
0.017131195 
0.010046515 
0.00200191 

0.040665504 
0.032439661 
0.024254926 
0.017131195 
0.010046515 
0.00200191 

Table 2: Comparison between the present solution (32) 
and the exact solution for d=1.04 
 
 

5   Basic ideas of the variational iteration 

method [24] and optimal variational 

iteration method [40] 
Consider the following general non-linear system 

)x(gNuLu =+   (33) 

where L is a linear operator and N is a non-linear 
operator. 

Assuming u0(x) is the solution of Lu=0, one can 
write down an expression to correct the value of some 
special point, for example x=1 

dx))x(gNuLu()1(u)1(u 00

1

0
0correction −λ+= ∫  (34) 

where λ is a general Lagrange multiplier [21] which can 
be identified optimally via variational theory, the 
second term on the right is called the correction. J.H.He 
[22-24] modified the above method into an iteration 
method in the following way: 

dx)gu~NLu()x(u)x(u nn

0x

0
0n01n −+λ+= ∫+

 (35) 

with u0(x) as initial approximation with possible 
unknowns, and nu~ is considered as a restricted 

variation, i.e. 0u~n =δ . For arbitrary x0 we can rewrite 

Eq.(35) as follows: 

ds))s(g)s(u~N)s(Lu()x(u)x(u nn

x

0
n1n −+λ+= ∫+

 (36) 

Eq.(36) is called a correction functional. The 
variational iteration method has been shown to solve 
effectively, easily and accurately a large class of non-
linear problems with approximations converging 
rapidly to accurate solutions. For linear problems, exact 
solutions can be obtained by only one iteration step due 
to the fact that the Lagrange multiplier can be exactly 
identified. 

Considering the following example 
0)x(u),x(u),x(u,x(f =′′′   (37) 

where we consider the function f twice differentiable 
with respect to all arguments and we assume that the 
boundary conditions are of the form 

00 v)0(u,u)0(u =′=   (38) 

Its correction functional can be written down as 
follows 
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With the notation 
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the variation of the functional 
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symbolized by δv, becomes [41]: 
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Making the above functional stationary, noticing 
that 0u~ =δ : 

[
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yields the following stationary conditions 
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The Lagrange multiplier therefore can be readily 
identified from Eqs.(45). For Eqs.(15) and (16), the 
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correction functional becomes 

{
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The stationary conditions (45) in the case of Eq.(15) 

are :)0)0(ff
~

f
~

( n
"

n
'

n =δ=δ=δ  

0
s

),s(
s

s

),s(
2

2

=
∂

ηλ∂
+

∂
ηλ∂

 

0s
s

),s(
s),s(1 =η=





∂

ηλ∂
−ηλ−        (47) 

0s),s( =η=ηλ  

The Lagrange multiplier is 

s
1),s(

η
−=ηλ    (48) 

As a result, we obtain the following iteration 
formula 

{
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Integrating part by part, from Eq.(49) we obtain the 
following two identities 
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From Eqs. (50), (51) and (49) we obtain 
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By differentiating into Eq.(52), we obtain the 
following iteration formula 
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For n=0 into Eq.(53) we have 
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where )(f '
0 η is the initial approximation which must 

satisfy the boundary conditions (16): 

0)d(f,0)1(f '
00 ==    (55) 

In the case of VIM, )(f '
0 η does not contain unknown 

parameters. In the case of OVIM, the initial 

approximation )(f '
0 η  is chosen such as it depends on a 

number of unknown constants. For example, if we take 
into account only the linear part of Eq.(15), we can 
write 

0)d('f,0k'f"nf ==η++   (56) 

Therefore, we obtain from Eq.(56) (see Eq,(19)-
(21)): 
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The initial approximation '
0f which appears in the 

right side of Eq.(54) is chosen in the form 
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The choose (58) of '
0f is not unique. This initial 

approximation can be chosen in the form: 
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or 
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and so on. 
At this moment, the constants C1, C2 and C3 are 

unknown. 
Having in view Eq.(54), from Eq.(58) we obtain: 
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Substituting Eq.(62) into Eq.(54) we obtain 
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Fig.1 Comparison between the present solution (63) 
and the numerical solution for k=1, β=1, d=1.02 

 
Fig.2 Comparison between the present solution (63) 
and the numerical solution for k=1, β=1, d=1.04 
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The residual functional J from Eq.(8) is 
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The constants C1, C2 and C3 are determined from 
Eqs.(9) and thus from the conditions 

0
C

J

C

J

C

J

321

=
∂
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=
∂
∂

=
∂
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   (65) 

 

6   Numerical examples 
The explicit analytic expression given by Eq.(63) 
contains the parameters C1, C2 and C3 which give the 
convergence region and rate of approximation for the 
OVIM. In order to prove the efficiency of the OVIM we 
consider different cases for some values of the 
parameters k, β and d. 
6.1. The case k=1, β=1 

Form the system (65) we obtain 
74789281.0C,00001127.0C,5.0C 321 ===      (66) 

     In tables 3 and 4 is presented a comparison between 
the present solution obtained from formula (63) and 
exact solution of Eq.(15) for d=1.02 and d=1.04 
respectively. It can be seen that the solution obtained by 
the present method is identical with that given by the 
exact solution, demonstrating a very good accuracy. 

η 'f given by Eq.(63) 'f exact 

1 
1.005 
1.007 
1.01 
1.0105 
1.0108 

0.020183555 
0.015105047 
0.013079437 
0.010047475 
0.009542918 
0.009240289 

0.020183555 
0.015105047 
0.013079437 
0.010047475 
0.009542918 
0.009240289 

Table 3: Comparison between the present solution (63) and 
the exact solution for k=β=1, d=1.02 

η 'f given by (63) 'f exact 

1 
1.008 
1.016 
1.023 
1.03 
1.038 

0.040665504 
0.032439661 
0.024254926 
0.017131195 
0.010046515 
0.00200191 

0.040665504 
0.032439661 
0.024254926 
0.017131195 
0.010046515 
0.00200191 

Table 4: Comparison between the present solution (63) and 
the exact solution for k=β=1, d=1.04 

     Figures 1 and 2 present a comparison between the 
present solution given by Eq.(63) and the exact solution 
of Eq.(15) for d=1.02 and d=1.04, respectively. 

6.2. The case k=1, β=1.5 

In this case we obtain 
74791023.0C,000012321.0C,5.0C 321 === (64) 

     In tables 5 and 6 is presented a comparison between 
the present solution (63) and the exact solution for 
d=1.02 and d=1.04, respectively 

η 'f given by Eq.(63) 'f exact 

1 
1.005 
1.007 
1.01 
1.0105 
1.0108 

0.020175363 
0.015101608 
0.013077203 
0.010046462 
0.009542049 
0.009239501 

0.020175363 
0.015101607 
0.013077203 
0.010046462 
0.009542049 
0.009239501 

Table 5: Comparison between the present solution (63) and 
the exact solution for k=1, β=1.2, d=1.02 

η 'f given by Eq.(63) 'f exact 

1 
1.008 
1.016 
1.023 
1.03 
1.038 

0.040599239 
0.032405844 
0.024240732 
0.017126181 
0.010045502 
0.002001902 

0.040599241 
0.032405844 
0.024240731 
0.017126181 
0.010045502 
0.002001901 

Table 6: Comparison between the present solution (63) and 
the exact solution for k=1, β=1.2, d=1.04 
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Fig.3 Comparison between the present solution (63) 
and the numerical solution for k=1, β=1.2, d=1.02 

 
Fig.4 Comparison between the present solution (63) 
and the numerical solution for k=1, β=1.2, d=1.04 

     It is easy to verify the accuracy of the obtained 
solutions if we graphically compare these analytical 
solutions with the exact ones. 

8   Conclusions 
In his paper, a new technique was proposed to solve the 
nonlinear problem of thin film flow of a fourth grade 
fluid down a vertical cylinder.  

This procedure is very effective and has a distinct 
advantage over usual approximation methods in that it 
proves to be valid not only for weakly nonlinear 
equations, but also for highly complex nonlinear ones.  

Convergence and errors are remarkable and this 
method provides a convenient way to control the 
convergence of approximate solution. This is realized 
using the auxiliary functions )C,( iηα and )C,( jηλ used 

for adjusting and controlling the convergence of 
solution. These coefficients are determined by 
minimizing the residual square errors which is a very 
rigorous and effective procedure.  

It is observed that we need only one iteration to 
obtain a remarkable accuracy. The results obtained 
through the proposed method reveal very good 
agreement with the exact results. 
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