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Abstract: In accident analysis, vehicle crash mechanics and vehicle safety research modeling of the deformational
force and absorbed energy plays a crucial role. The usually applied FEM based methods give good approximations,
but they have extremely large computational complexity and require a detailed knowledge about the parameteres
of the crash and the vehicle. There are simpler models, but they not give satisfactory approximation. In this paper
using the LPV-HOSVD paradigm we introduce a model for vehicle deformation process, which well approximates
the deformation force and the absorbed energy, moreover it has acceptable computational complexity.
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1 Introduction
For all of the car factories one of the most important
task is to develop better and better passive and ac-
tive vehicle safety systems. In most of the cases in
the field of vehicle crash mechanics, accident analy-
sis, accident reconstruction and crash analysis the es-
timation of the energy absorbed by the deformation
of the car body is a key issue, it plays important role
in precise reconstruction of the whole accident. This
project requires a lot of vehicle crash tests and com-
puter simulations, and applying the results of these ef-
forts, different kind of models are developed for pas-
sanger safety, vehicle stiffness, etc. So for vehicle en-
gineers one of the most important task is to find an ’as
simple as possible’ model for the deformational force
and the absorbed kinetic energy, which gives accept-
able approximation, but doesn’t need perfect knowl-
edge about the parameters of the vehicle ([1], [2],[3]).

There are many tools developed to support the ac-
cident reconstruction and analysis, but to reconstruct
the accident properly, they require accurate input data.
The usual way to develop a detailed model of the

highly nonlinear deformation processes (not only in
the field of vehicle crash) is based on a kind of finite
element method (FEM) ([4], [5], [6], [7]). This ap-
proach gives a complete description about the whole
deformation process, but requires a detailed, accu-
rate knowledge about the geometry of the vehicle and
the circumstances, and about the material properties
of the vehicle (which are not known exactly in gen-
eral), and as a consequence of the huge number of
freedom, the computer simulation demands extremely
large computational power.

But if we are contented with an approach, which
not gives such detailed information about the process,
but works well in aspect of some important features
(for example deformation force and absorbed energy
vs. time), a simpler model is more suitable ([1], [3],
[8], [9],[10], [11]).

In the followings we introduce a model for ve-
hicle deformation, which well approximates the force
and the absorbed energy during the deformational pro-
cess. This approach gives good approximation and
has acceptable computational complexity.
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2 Previous Force Models and Real
Crash Tests

2.1 Previous Simple Force Models

There are several attempts to find simple force mod-
els, which describe the deformational process approx-
imately well, but not require too many knowledge
about the parameters of the vehicle, and require ener-
mous computational cost. The most widely used force
models are introduced below.

• Linear force model (also known as Campbell
model). It was established by K. Campbell,
based on the works of Emori [12].

F (x) = kx

• Bilinear force model (it would be better to cite it
as piecewise linear, but in the literature of vehi-
cle crash it known as bilinear force model [13],
[14]).

F (x) =

{
k1x if x ≤ xbl

k1xbl + k2(x− xbl) if x > xbl

• Force saturation model ([13], [14], [15]). This is
a special case of the bilinear model, when k2 =
0.

F (x) =

{
kx if x ≤ xs
kxs if x > xs

• Power law force model ([16]). This is the most
sophisticated within the introduced models. In
the other models the stiffness of a vehicle de-
creases with the depth of deformation, but not
so easy to find a good physical or mechani-
cal interpretation for ’breakpoint’ of the force
curve. Opposite with this, the power law model
gives a smooth transition between linear and sat-
urated parts of the curve, moreover the smooth-
ness makes the further examinations relatively
easy.

F (x) = k0xN

(
x

xN

)n
Easy to see that the main difference between these
models is based on the handling of the notion of stiff-
ness. All of the models are certain generalizations of
the very simple linear model, and achieve better ap-
proximation applying a more and more complex stiff-
ness concept.

2.2 The ’Stiffness’ of a Vehicle

The stiffness of a vehicle is a widely used quasi-
heuristic notion in the field of crash and accident anal-
ysis, accident reconstruction and vehicle safety re-
search ([17], [18], [19], [20]). The stiffness, as a nu-
merical value, is unambiguous in case of the linear
model (but vehicle deformation processes usually are
not describable effectively using this simple method).
There are several approaches defining the notions of
stiffness ([21]). From a certain point of view these
are generalizations of the stiffness of the linear modell
(’k’), and yield stiffness which depends on the depth
of the deformation.

• Local stiffness (derivative of the force–
deformation curve in a certain point).

kloc =
dF

dx

• Energy equivalent or global stiffness. The stiff-
ness value is the coefficient of a linear model,
which belongs to the same absorbed energy (E)
and to the same deformation (x).

kgl =
2E

x2

• Slope of the line fitted to certain part of the
force–deformation curve.

• Stiffness from average deformation force:

1

2
kd2 = F · d⇒ k =

2F

d

• Local maxima (peaks) in the force-deflection
curve are also used to describe the stiffness.

2.3 LCB Crash Test Data

In the field of vehicle safety research there are several
type of crash tests. For our purpose the most suitable
is the so called load cell barrier (LCB) test. Within
this approach the examined vehicle is driven into a
special barrier which is equipped with force-sensors.
During the collision a set of sensors in the back of the
car measures acceleration, while force-sensors mea-
sure the deformation force at the wall.

We work with data which are available
from the free database of NHTSA (National
Highway Traffic Safety Administration, USA):
http://www.nhtsa.dot.gov. We will use data series
of three different LCB tests in which a similar type
of car was examined with different impact speed.
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These data are available ’as measured’ form, so
we have to filter them before of further computing.
There are rigorous prescriptions for filtering the
crash test data [22]. According to SAE J211 the
force and acceleration data were filtered with CFC60
filter. From the acceleration data the deformation is
determined by double integration, so after filtering we
have two data sets: force vs. time and deformation vs.
time (See Fig. 2). From these one can easily produce
the force–deflection curve (See Fig. 3), which can be
compared with the force models described above.
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Figure 1: The measured force and the force after fil-
tering by CFC60 filter vs. time.
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Figure 2: Filtered force and computed deformation vs.
time from a real crash test.

We can observe that the first region of the curve is
not so far from the linear, but after there appear local
maxima and minima, the nonlinearity of the force–
deflection relation will be more dominant. Also im-
portant to observe the turning back end of the curve:

this means that the deformation process has an elastic
component (elastic recovery) (see Fig 3, Fig 4).

Analyzing the usual force models we can state
that those are too simple to be able to describe the
peaks and the elastic recovery in the force–deflection
curve. Moreover, from the concepts of stiffness it is
clear, that this cannot be the same numerical value
during the deformation process for the whole car
body. Based on these experiences we are searching
for a model, which approximates the measured data
more better and which is a kind of generalization of
the linear (k · x) model, but deals with a non-constant
stiffness.
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Figure 3: Force-deflection curve derived from the pre-
vious force vs. time and deformation vs. time curves.
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Figure 4: Force-deflection curves for the same type of
vehicles at different impact velocities.
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3 Mathematical Background of
Model Reduction

Singular value decomposition is one of the most pow-
erful tools of linear algebra and it has a great variety
of applications. In the last two decade the increasing
computing power made it possible to work with large
multidimensional arrays (tensors). Some properties of
tensors is the same as of matrices in the ’usual’ linear
algebra, but some of them is a bit trickier (see for ex-
ample [23], [24]). In this section we shortly introduce
the generalization of the singular value decomposition
to higher dimesional tensors, and the HOSVD-based
model reduction of LPV systems. For more details see
for example [25], [26]and [27].

3.1 HOSVD based Canonical form
Consider the following linear parameter varying
(LPV) state-space model:(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(1)

where p(t) = (p1(t), ..., pN (t)) ∈ Ω and which can
be given in the form of

(
ẋ(t)
y(t)

)
=
(
S �N

n=1 w
T
n (pn))

)(x(t)
u(t),

)
(2)

where column vector wn(pn) ∈ RIn n = 1, . . . , N
contains one variable bounded and continuous weight-
ing functions wn,in(pn), (in = 1 . . . In). The
(N + 2)-dimensional coefficient (system) tensor S ∈
RI1×···×IN+2 is constructed from linear time invariant
(LTI) vertex systems

Si1...iN = {Si1...iN ,α,β, 1 ≤ α ≤ IN+1, 1 ≤ β ≤ IN+2}

Si1...iN ∈ RIN+1×IN+2 .

Symbol �n represents the n-mode tensor-matrix
product.

For this model, we can assume that the functions
wn,in(pn),in = 1, . . . , In, n = 1, . . . , .N, are lin-
early independent over the intervals [an, bn], respec-
tively.

The linearly independent functions wn,in(pn) are
determinable by the linear combinations of orthonor-
mal functions (for instance by Gram–Schmidt-type
orthogonalization method): thus, one can determine
such a system of orthonormal functions for all n as
ϕn,in(pn), 1 ≤ in ≤ In, respectively defined over the
intervals [an, bn] , where all ϕn,kj (pn), 1 ≤ j ≤ In
are the linear combination of wn,ij , where ij is not

Figure 5: The three possible ways of expansions of a
3-dimensional array into matrices.

larger than kj for all j. The functions wn,ij can re-
spectively be determined in the same way by functions
ϕn,kj . Thus, if the form (2) of (1) exists then we can
determine it in equivalent form as follows:(

ẋ(t)
y(t)

)
=
(
C �N

n=1 ϕ
T
n (pn(t))

)(x(t)
u(t)

)
, (3)

where tensor C has constant elements, and column
vectors ϕn(pn(t)) consists of elements ϕn,kn(pn(t)).

Corollary 1 We can assume, without the loss of gen-
erality, that the functions wn,in in the tensor-product
representation of S(p) are given in orthonormal sys-
tem:

∀n :

∫ bn

an

wn,i(pn)wn,j(pn)dpn = δi,j , 1 ≤ i, j ≤ In,

where δi,j is the Kronecker-function (δij = 1, if i = j
and δij = 0, if i 6= j).

Theorem 2 (HOSVD) (see Fig 5 and Fig 6) Every
tensor S ∈ RI1×···×IL can be written as the product

S = D �L
l=1 Ul (4)

in which

1. Ul =
[
u1,l u2,l . . . uIl,l

]
is an orthogonal

(Il × Il)-matrix called l-mode singular matrix.

2. tensor D ∈ RI1×...×IL whose subtensors Dil=α
have the properties of

WSEAS TRANSACTIONS on SYSTEMS Istvan A. Harmati, Andras Rovid, Peter Varlaki

ISSN: 1109-2777 737 Issue 7, Volume 9, July 2010



Figure 6: Illustration of the higher order singular
value decomposition for a 3-dimensional array. Here
S is the core tensor, the Ul-s are the l-mode singular
matrices.

(a) all-orthogonality: two subtensors Dil=α
and Dil=β are orthogonal for all possible
values of l, α and β : 〈Dil=α,Dil=β〉 = 0
when α 6= β,

(b) ordering: ‖Dil=1‖ ≥ ‖Dil=2‖ ≥ · · · ≥
‖Dil=Il‖ ≥ 0 for all possible values of l.

3. The Frobenius-norm ‖Dil=i‖, symbolized by
σ
(l)
i , are l-mode singular values of D and the

vector ui,l is an i-th singular vector. D is termed
core tensor.

Theorem 3 (Compact HOSVD) For every tensor
S ∈ RI1×···×IL the HOSVD is computed via execut-
ing SVD on each dimension of S. If we discard the
zero singular values and the related singular vectors
url+1, . . . ,uIl , where rl = rankl(S), during the SVD
computation of each dimension then we obtain Com-
pact HOSVD as:

S = D̃ �L
l=1 Ũl, (5)

which has all the properties as in the previous theorem
except the size of Ul and D. Here Ũl has the size of
Il × rl and D̃ has the size of r1 × ...× rL.

Consider (1) which has the form of (2). Then we
can determine:

(
ẋ(t)
y(t)

)
=
(
D0 �

N
n=1 wn(pn(t))

)(x(t)
u(t)

)
, (6)

via executing CHOSVD on the first N -dimension of
S. The resulting tensor D0 = D̃ �N+2

n=N+1 Ũn has the

size of r1× ...× rN × IN+1× IN+2, and the matrices
Ũk ∈ RIk×rk , k = N + 1, N + 2 are orthogonal.

The weighting functions have the property of:

1. The rn number of weighting functions wn,in(pn)
contained in vector wn(pn) form an orthonormal
system.

2. The weighting function wi,n(pn) is an i-th sin-
gular function on dimension n = 1..N .

Tensor D has the properties as:

1. Tensor D ∈ Rr1×...×rN+2 whose subtensors
Din=i have the properties of

(a) all-orthogonality: two subtensors Din=i
and Din=j are orthogonal for all possible
values of n, i and j : 〈Din=i,Din=j〉 = 0
when i 6= j,

(b) ordering: ‖Din=1‖ ≥ ‖Din=2‖ ≥ . . . ≥
‖Din=rn‖ > 0 for all possible values of
n = 1, . . . , N + 2.

2. The Frobenius-norm ‖Din=i‖, symbolized by
σ
(n)
i , are n-mode singular values of D.

3. D is termed core tensor consisting the LTI sys-
tems.

3.2 Tensor Product Transformation
Tensor product (TP) transformation is numerical ap-
proach, which make a connection between linear
parameter varying models and higher order tensors
([25], [27], [28]). The main steps are the followings:

• Discretize the LPV model over a hyper-
rectangular grid in the parameter space (dimen-
sion is defined by the number of the parameters).
If we deal with state space representation, we get
matrices SDm1m2...mN

.

• Store the matrices into the tensor
SD ∈ RM1×M2×...MN×O×I .

• Execute HOSVD on the firstN dimension of ten-
sor SD and we get the following:

SD ≈ S
N
⊗
n=1

Un

Tensor S ∈ RI1×I2×···×IN×O×I contains the LTI
(parameter independent) matrices.

• The weighting functions for the LTI matrices are
stored in discretized form in the columns of ma-
trices Un.
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4 LPV Type Force Model
The results of crash tests show difficult force and dis-
placement behaviors. From this, it is obvious that the
stiffness parameter of a vehicle (or a part of the ve-
hicle) is not a constant value, but depends on several
variables. From practical point of view we search for
a model, where the stiffness depends on the measure
of deformation (x) and on the impact velocity of the
vehicle (v).

4.1 The Structure of the Model
Based on the fact mentioned above, we assume the
force can be approximated well by a nonlinear form,
which is a generalization of the linear spring model:

F = k(x, v)x. (7)

Or, in differential equation form:

mẍ = k(x, v)x. (8)

From this, with k′ = k(x, v)/m, x1 = x and x2 = ẋ1
we obtain the following matrix form:(

ẋ1
ẋ2

)
=

(
0 1
k′ 0

)(
x1
x2

)
. (9)

This is a parameter varying matrix and our main as-
sumption is that the behavior of original system (force
and displacement) can be described quite well using
this kind of nonlinearity. In general state-space model
form

ẋ(t) = f(x(t)) (10)
y(t) = c(x(t))

where

f(x(t)) =

(
x2(t)

k (x1(t), v)

)
(11)

c(x(t)) =
(
x1(t) 0

)
With the usual notation of LPV models:(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
. (12)

The system matrix S(p(t)):

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
. (13)

where p(t) = (x1(t), v) and

A =

(
0 1
k′ 0

)
, B =

(
0
0

)
, (14)

C =
(

1 0
)
, D =

(
0
)
.

4.2 Identification of Parameter k′

The next task is to determine the function k′. The ap-
proach is similar to the methods introduced in [29]
and [30]. Firstly the functional dependence of k′ on
the variables x (depth of deformation) and v (impact
speed) must be specified, for example piecewise lin-
ear, polynomial, spline or other linear combinations
of given functions of x and v.

The model identification includes two major
steps: identification of the local models (LTI models)
with the same structure of the LPV model and on the
base of these models identification of the final LPV
model.

4.2.1 Identification of the Local Models

For local model identification we need some data from
well-measured crash tests: depth of deformation vs.
time, force (at sensors) vs. time. From this data set
for a certain deformation x a linear spring model can
be identified. Certainly, for other x an other model
is valid. The stiffnes k′ depends on x, x depends on
time (t), so we handle k′ as a function of t, which is
determined by the measured F (t) and x(t). In this
way, for a certain impact speed a set of simple linear
models is determined. After that we have to repeat
this measuring and identifying process at other impact
speeds, but with the same division on the parameter t.
Finally we get a large amount of local models in the
space of the impact velocity (v) and the time (t), with
the same structure of the searched LPV.

4.2.2 Identification of the Final LPV Model

A set of linear models means a set of certain values of
the parameter varying k′ at different parameter values.
From these points and using our assumption about
the type of the functional dependence, the function k′
identified.

4.3 Reduction of the LPV Model

Because of the large amount of obtained parameter in-
dependent models our system may become very com-
plex. In order to reduce the complexity of the system
we apply tensor product transformation and higher or-
der singular value decomposition, which were intro-
duced within the mathematical tools. As we will see,
for an acceptable approximation of the deformational
force and absorbed energy we do not have to keep all
of the singular values, but only a few of them.
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5 Application of the Model on Real
Crash Test Data

The method described above was executed on real
crash tests data taken from NHTSA. There were three
different impact velocity, deformation in time and
force in time were measured. From these data sets we
obtained by interpolation the functions F (t, v) and the
x(t, v), which determined the k(t, v) stiffness (see Fig
7, Fig 8 and Fig 9).

Figure 7: The interpolated surface of the force vs. im-
pact velocity and time (F (v, t)).

Figure 8: The interpolated surface of the deformation
vs. impact velocity and time (x(v, t)).

5.1 HOSVD Based Reduction
The computation was carried out with Matlab TPTool-
box ([28]). We applied 108 grid lines in the dimension
of the time and 34 grid lines in the dimension of the
velocity. Computing HOSVD on each dimension we

Figure 9: The surface of the stiffness vs. impact ve-
locity and time, obtained form the force and the defor-
mation surfaces (k′(v, t)).

got 10-10 singular values (which are numerically not
zero). So the maximal model was given by keeping
all of these singular values. Neglecting singular val-
ues step by step we can check the approximation ca-
pability of the reduced models (see Fig. 10, 11 and
12).

5.1.1 Approximation Capability of the Reduced
Model in Case of Deformation Force

As we can see, if we keep three singular values the re-
duced model produces practically the measured data.
If we keep less singular values the approximation be-
cames worse, but the main features of the curve ap-
pears in these cases also. The approximation is better
in case of the medium velocity (see Table 1).

Table 1: Mean square errors of the deformation force
(n: number of remaining singular values).

n Velocity (km/h)
39.8 48.3 56.3

1 5.1399 0.7598 6.0068
2 0.0148 0.4926 6.3828
3 0.0045 0.0178 0.0456
4 0.0043 0.0178 0.0447
5 0.0044 0.0179 0.0449
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Figure 10: Comparison of the measured data and the reduced models (impact velocity: 39.8 km/h).
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Figure 11: Comparison of the measured data and the reduced models (impact velocity: 48.3 km/h).
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Figure 12: Comparison of the measured data and the reduced models (impact velocity: 56.3 km/h).
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5.1.2 Approximation Capability of the Reduced
Model in Case of Absorbed Energy

Before analyzing the results of the reduced models we
have to examine the notion of absorbed energy. Dur-
ing the deformation process the kinetic energy of the
vehicle turns to deformation energy. It is easy to de-
termine the absorbed energy from the force-deflection
curve: the absorbed energy is the area under the curve.
As it can be seen from the force-deflection curve, the
mechanical deformation has two major part: residual
and elastic deformation. From this it is clear that not
the whole kinetic energy of the vehicle turns to resid-
ual deformation (the area of the ’loop’), but a little part
of it became kinetic energy again (the area under the
final part of the force curve), while the damaged vehi-
cle pushes back (elastic recovery). For this reason the
maximal absorbed energy is not equal to the residual
absorbed energy, and this results the ’flag’ at the end
of the absorbed energy vs. deformation curve.

As in the case of the force, the reduced model
with only three singular values is the same as the mea-
sured data. But if we keep only two singular values
the result is almost the same (see Table 2). So for
good approxmation of the absorbed energy we need
less singular values than for good approximation of
the force.

Table 2: Mean square errors of the estimated absorbed
energy (n: number of remaining singular values).

n Velocity (km/h)
39.8 48.3 56.3

1 6.3929 0.9908 1.6565
2 0.0004 0.0079 0.2466
3 0.0002 0.0033 0.0023
4 0.0002 0.0033 0.0026
5 0.0002 0.0033 0.0024

6 Conclusion
Applying the LPV-HOSVD paradigm we introduced
a method based on real crash test data for modeling
the force and the absorbed energy during the vehi-
cle deformational process. This model based on the
natural fact that the stiffness of a vehicle depends on
the depth of deformation and on the impact veloc-
ity. The applied concept of the stiffness is more com-
plex than the stiffness notions used in the field of ve-
hicle crash mechanics and accident analysis, but the
model gives more better approximation, and with the
HOSVD based reduction the complexity of the model

can be reduced significantly, while the approximation
capability remains satisfactory.

Acknowledgements: The research was sponsored by
OTKA CNK 78168 project and Széchenyi István Uni-
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