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Abstract: - The methods of the class of Kalman filters have recently been used in the estimation of the term 

structure of interest rates. These methods can employ both time-series and cross-sectional aspects of term 

structure models.  This paper compares the performance of two kinds of non-linear Kalman filter algorithms - 

Extended Kalman Filter (EKF) and Square-Root Unscented Kalman Filter (SRUKF) in estimating one popular 

exponential-affine term structure model. Simulation results show that SRUKF is of higher approximation 

accuracy and stronger numerical stability than EKF is. 
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1   Introduction 
The term structure of interest rates describes the 

relationship between bond rates of different terms and 

it is of great interest to people due to its position of a 

leading indicator for economic activities.  The 

modeling and estimation of the dynamics of term 

structure is a main issue in term structure analysis.   

     Given the high correlation among bond yields of 

different maturities, many term structure models have 

been established to explain the joint movements.  In 

view of the stochastic volatility characteristics of 

short-term interest rates, a class of equilibrium 

models has been proposed.  Merton’s paper in1971 is 

the first study that uses a dynamic continuous-time 

model to describe the term structure of interest rates 

[1].  Vasicek notices the equilibrium characterization 

of the term structure and derives the expected rate of 

return on any bond in excess of the spot rate [2].  Cox, 

Ingersoll and Ross use a general equilibrium asset 

pricing model to study the term structure [3].  More 

recently, Duffie and Kan have developed a unified 

framework of exponential-affine representation for 

many term structure models, which contains models 

of Vasicek, Cox, Ingersoll and Ross, Longstaff and 

Schawartz [4] and so on [5]. 

     According to the number of factors, term structure 

models are classified into one-factor and multi-factor 

models.  One-factor models have often been analyzed 

in the literature for their simplicity.  What’s more, 

there is evidence showing that almost 90 percent of 

the variation in the changes of the yield curve of bond 

rates is attributable to the variation in the first factor 

based on principle component analysis.  For example, 

for most one-factor models, the factor is generally 

taken to be the instantaneous short rate [6].   

     Most modeling approaches are to divide the 

stochastic movement of the instantaneous short rate 

into two parts using a stochastic differential equation.  

The first part is the drift of the process, which is 

deterministic.  The second part is the volatility 

component of the process, which is the random part.  

Examples are one-factor Vasicek model [2], 

multi-factor extensions of Vasicek model [7], 

two-factor Brennan-Schwartz model [8], one-factor 

Cox-Ingersoll-Ross model [3] and two-factor 

extensions of Cox-Ingersoll-Ross model [4], among 

many others. 

     Although the modeling progress keeps going, the 

estimation techniques are relatively immature 

because of the complexity in the models.  For many 

models, the unknown probability distribution of bond 

rates or yields and the unobserved state variables pose 

the challenge.  In recent years, it has been popular to 

express term structure models in the state-space forms 

and then adopt methods of the class of Kalman filters 

to do the estimation [9,10,11].  These filtering 

estimation methods have provided a new vision for 

the study of term structure models.  Filtering is a 

natural approach when the underlying state is 

unobserved.  Kalman Filter (KF) is an optimal filter 

for recursive estimation for unobserved state 

variables [12].  KF applies where the process and 

measurement noises follow Gaussian distributions 

and the system is linear.  Moreover, a wide variety of 

financial models are nonlinear, so it is necessary to 
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use nonlinear filtering algorithms in which Extended 

Kalman Filter (EKF) is one of the most popular.  But 

when a model presents highly nonlinear nature, 

EKF-based estimator may diverge mainly because 

EKF handles nonlinear systems based on an 

approximate first-order Taylor series expansion 

around the mean values.  To compensate this, many 

options are proposed.  Examples are Particle Filter 

(PF) [13], Unscented Kalman Filter (UKF) [14] and 

Square-Root Unscented Kalman Filter (SRUKF) [15].  

Due to huge computational expense of PF, this paper 

considers Unscented Filter.  Furthermore, to prevent 

the covariance matrix from becoming non-positive 

semi-definite, the Square-Root form is adopted.  

SRUKF is put forward to avoid keeping calculating 

the square roots of state covariance matrix in UKF 

and thus to avoid more calculation errors [15].  The 

central idea of SRUKF is to use the form of Cholesky 

decomposition to directly propagate forward and 

update the square roots of state covariance matrix.  

During the process, two powerful linear algebra 

techniques are used: QR decomposition and Cholesky 

decomposition, which help enhancing the calculation 

efficiency. 

 

 

2   EKF Implementation 
As is well-known, Kalman Filter is to acquire optimal 

dynamic estimation according to minimum 

mean-square state error rule under the condition of 

linear systems and Gaussian noises.  However, 

strictly speaking, in the real world, nearly all the 

systems are non-linear.  Most are even of high 

non-linearity.  During the real time estimation of 

dynamic systems, usually the non-linearity nature is 

one of the important factors affecting optimal 

estimation results.  To solve the estimation problem 

of non-linear systems, the usual way is to transform 

the non-linear issue into a linear one by virtue of some 

linearization techniques.  The most common way is 

first-order Taylor series expansion adopted in 

Extended Kalman Filter.      

     The extended Kalman filter allows simultaneous 

estimation of states and parameters.  These 

parameters are considered as extra states in an 

augmented state vector.  This augmented model is 

non-linear because of multiplication of states.  Thus, 

it must be linearized along the state trajectory to give 

a linear perturbation model [16].  Extended Kalman 

Filter is applied to dynamic models that are in a 

state-space representation, which include state and 

observation equations.  Consider the following 

general nonlinear state-space system: 

 

1
( )

k k k k
x f x G w−= +   (1) 

( )k k ky h x v= +   (2) 

 

where equation (1) is state equation, equation (2) is 

observation equation, the two equations form a 

space-state model, ( )f i and ( )h i are both nonlinear 

functions, 
k
x is state vector, 

k
y is observation vector, 

k
G denotes the intensity of the noise

k
w .  

k
w and 

k
v are 

zero-mean, white and Gaussian noises.  Some former 

models neglect observation noise.  In fact, many 

factors affect testing data.  Observation data includes 

disturbance, which is called “observation noise”.  

Observation noise has white noise and colored noise.  

To compute simply, we treat disturbance as white 

noise with zero mean [17].The joint covariance 

matrix of 
k

w and 
k
v  is: 

 

( ) 0

0

k kT T

k k

kk

w Q
E w v

Rv

    
=    
   

  (3) 

 

1) The initial condition: 

 

( ) { }0 0
ˆ 0 1x E x x− = =   (4) 

( ) { }0 0 0 0 00 1 ( )( )TP E x x x x− = − − =Σ   (5) 

 

where ˆ( )x i  denotes priori estimation, ( )P i is the 

corresponding error covariance matrix of the state 

variable. 

2) Approximate linearized system: 

     Because of the nonlinearity of ( )f i and ( )h i , the 

conventional Kalman updating cannot be applied for 

such cases.  A solution for this is to approximate the 

linearity by first-order approximation, i.e., 

 

00 0( ) ( ) ( )xf x f x f x x≈ +∇ −   (6) 

 

     With this approximation, we can evaluate the 

Kalman updating in the vicinity of estimated state.  

This is the so called Extended Kalman Filter.  Its idea 

is clearly shown in Fig.1 [18]. 
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Fig.1 Dynamic Concept of Extended Kalman Filter 

 

     If we denote
( 1 1)

1
ˆ, 1

( )
k k

k

k k x

f x
F

x − −

−
−

∂
=

∂
, we have   

 

1 , 1 1 1

, 1 1 1 , 1 1

ˆ ˆ( ) ( )

ˆ ˆ[ ( ) ]

k k k k k k k k

k k k k k k k k k

x f x F x x G w

F x f x F x G w

− − − −

− − − − −

= + − +

= + − +
  (7) 

 

where
1 , 1 1

ˆ ˆ[ ( , ) ]
k k k k

f x k F x− − −−  is known fixed value.   

     Similarly, if we denote
( 1)

ˆ,

( )
k k

k

k k x

h x
H

x −

∂
=

∂
, we have 

[19] 
 

,1 1

, ,1 1

ˆ ˆ( ) ( )

ˆ ˆ[ ( ) ]

k k k k kk k k k

k k k k k kk k k k

y h x H x x v

H x h x H x v

− −

− −

= + − +

= + − +          (8) 

 

     With the above-said linearization and 

simplification, the Kalman update can be applied. 

3) Time updates: 

     The mean 
1k

x + and variance 
1k k

P + can be calculated 

recursively by an application of the one-step ahead 

prediction equations: 

 

 1
ˆ ˆ( )k k k
x f x −=   (9) 

, 1 1 , 1 1 1 11

T T

k k k k k k k kk k
P F P F G Q G− − − − − −− = +  (10) 

 

4) Measurement updates: 

     If we define the Kalman Gain here as  

 
1

, 1 , , , 1 , 1
( )T T

k k k k k k k k k k k k
K P H H P H R −

− − −= +  (11) 

 

we have 

 

1 1
ˆ ˆ ˆ[ ( )]
k k kk k k k
x x K y h x− −= + −   (12) 

 1 1

k

k k kk k k k
P P K H P− −= −  (13) 

     The equation (12) indicates a very important 

conclusion that the filtered state estimate equals to the 

predicted state estimate plus the Kalman Gain 

multiplied by the innovation. 

     Although compared with KF, EKF not only mains 

the computationally efficient recursive update form 

of the KF, but also presents an improved way in 

solving nonlinear problems, there are several defects 

in EKF. First, linearized transformations are only 

reliable if the error propagation can be well 

approximated by a linear function [20].  Second, 

derivation is a necessary step in EKF algorithm, but it 

is not always the case that Jacobian matrix exists for 

every system.  Last, sometimes it is nearly impossible 

to calculate the Jacobian matrix or even if it is 

calculated by great patience, the whole process is 

prone to errors. 

 

 

3   SRUKF Implementation 
Similar as the conventional robust Kalman filter, the 

robust implementation of UKF also utilizes the 

square root algorithm for covariance propagation.  

The detail of this algorithm can be found in [15]. 

     In UKF, the most computationally expensive part 

lies in calculating new sigma points during time 

update every time and this  requires the computation 

of a matrix square-root of the state covariance matrix 

[21].  However, recently, Merwe R Vander and Wan 

have introduced the SRUKF [15], a reimplementation 

of the general UKF which delivers exactly the same 

results (to within machine accuracy), but which 

cleverly avoids the decomposition by directly 

propagating the Cholesky factor rather than the 

covariance [22].  In SRUKF, the matrix square-root 

will be propagated directly, avoiding the 

re-factorizing at each re-sampling point.  

Consequently, numerical stability is well kept.  In the 

algorithm of SRUKF, the QR decomposition (noted 

as ( )qr •  ), Cholesky factor updating and efficient 

least square techniques are employed.  The key idea is 

to propagate the covariance matrix in its cholesky 

factor instead of the full covariance matrix. 

     From the previous section, we know that for the 

estimation problems of non-linear systems, the 

traditional linearization way is to approximate the 

nonlinear mapping itself and then apply the standard 

KF method.  In fact, it is easier to approximate a 

probability distribution than it is to approximate an 

arbitrary nonlinear function or transformation [20].  

Thus, in [14], UT transformation is put forward.  

SRUKF is just based on the idea of UT 

transformation.  The UT approach is illustrated in 

Fig.2.  A set of points (sigma points) are chosen so 
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that their mean and covariance are x  and S .  The 

nonlinear function is applied to each point, in turn, to 

yield a cloud of transformed points.  The statistics of 

the transformed points can then be calculated to form 

an estimate of the nonlinearly transformed mean and 

covariance [20].   

     

 
Fig.2 the Principle of the UT [20] 

 

      In terms of simplicity conceptually and 

convenience in application, the UT algorithm is of the 

same appeal as linearization for the EKF.  Yet the UT 

method exhibits much more sufficient accuracy in the 

case of some highly nonlinear systems. 

     Since the time when the UT transformation was 

proposed, the UT method has found a number of 

applications in various nonlinear systems.  More 

recently, van der Merwe and Wan have developed a 

square root formulation of the UT method.  For the 

algorithm of SRUKF, the system model is assumed to 

be of the same form of equation (1) and equation (2).  

The definition of each variable is also the same as that 

in the corresponding part in the previous section.  The 

algorithm of SRUKF is described as following: 

1) The initial condition: 

 

0 0
ˆ ( )x E x=   (14) 

( ) ( ){ }0 0 0 0 0
ˆ ˆ

T
S chol E x x x x = − −    (15) 

 

where chol means Cholesky factorizing [15].  All 

symmetric nonnegative definite matrices have 

Cholesky factors.  If TA XX= , where A is a 

symmetric nonnegative definite matrix, X is a 

triangular matrix, then X is a triangular Cholesky 

factor, indicated as ( )X chol A= . 

2) Computation of the set of sigma points: 

 

( ) ( ) ( )1 1 1 10

1 1 1
ˆ ˆ ˆ

k k k ki j

k k k k k

X X X X

x x L S x L Sλ λ

− − − −

− − −

 =  

 = + + − + 

 (16) 

 

where 1,2,...,i L= , 1,2,...,j L= , ( )2 L Lλ α κ= + − is a 

scaling parameter which can be adjusted to enhance 

the approximation of the distribution of the state 

vector,  α  is a positive scaling parameter which can 

be made arbitrarily small to minimize the higher order 

effects, κ is a secondary scaling parameter.  There are 

2 1L + sigma points to be required and L is the 

dimension of the state vector. 

3) Time updates: 

     The transformed set propagates through the 

nonlinear state equation: 

 

( )11 kk k
X f X −− =   (17) 

 

     The predicted mean is calculated as: 

 

( )
2

, 1
0

ˆ
L

m

k i i k k
i

x W X−
−

=

=∑   (18) 

 

where ( )
0

m
W

L

λ
λ

=
+

,
( ) 1

2 2

m

i
W

L λ
=

+
, 1,2,..., 2i L= . 

     The Cholesky form of the covariance is predicted 

using: 

( ) ( )1 1:2 , 1
ˆ

c

k k kL k k
S qr W X x Q
− −

−
 = −  

          (19) 

( ){ }0, 0
ˆ, ,

c

k k k kS cholupdate S X x W
− − −= −   (20) 

 

where qr represents the QR decomposition of the 

matrix and cholupdate represents the Cholesky factor 

update.  The QR decomposition of a matrix M NA ×∈ℜ  

is given by TA QR= , where N NQ ×∈ℜ is orthogonal, 
N MR ×∈ℜ is upper triangular and N M≥ [23]. 

4) Measurement updates: 

     The sigma points propagate through the nonlinear 

measurement equation: 

 

( )11 kk k
Y h X −− =   (21) 

 

     The predicted mean observation is calculated as: 

 

( )
2

, 1
0

ˆ
L

m

k i i k k
i

y W Y−
−

=

=∑   (22) 

 

     The innovation Cholesky covariance is given by: 

 

( ) ( )1 1:2 ,
ˆ

k

c

y L k k kS qr W Y y R− = −  ɶ  (23) 

( ){ }0, 0
ˆ, ,

k k

c

y y k kS cholupdate S Y y W−= −
ɶ ɶ  (24) 
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     The cross-covariance matrix of x and y is 

determined by: 
 

      ( ) ( )( )
2

, 1 , 1
0

ˆ ˆ
k k

L T
c

x y i k ki k k i k k
i

P W X x Y y
− −

− −
=

= − −∑   (25) 

 

where ( ) ( )2

0
1

c
W

L

λ
α β

λ
= + − +

+
,

( ) 1

2 2

c

i
W

L λ
=

+
, 

1,2,..., 2i L= , β  is an extra degree of freedom scalar 

parameter used to incorporate extra prior knowledge 

of the distribution of the state variable. 

     The Kalman gain is: 

 

( )
k k k k

T

k x y y y
K P S S=

ɶ ɶ
  (26) 

 

     The update mean is: 

 

( )ˆ ˆ ˆ
k k k k kx x K y y

− −= + −   (27) 

 

     The update Cholesky factor is: 

 

{ }, , 1
kk k k yS cholupdate S K S

−= −
ɶ  (28) 

 

     The computational complexity associated with the 

square-root implementation of the unscented Kalman 

filter is similar to that of the original unscented 

Kalman filter, but the square-root implementation is 

more stable numerically [24]. 

     In the previous part, the general formulation for 

state estimate is outlined using the unscented Kalman 

filter in square root form.  As mentioned in [22], the 

SRUKF is in general 3( )O N for state estimation, but 

is 2( )O N  for parameter estimation.  To estimate 

parameters using the unscented Kalman filter, it is 

necessary to introduce additional state variables 

( )px t representing the unknown parameters, i.e. 

 

( ) : { ( ) ( )}
s p

x t x t x t=  

 

Where the dynamics of the additional parameters 

follow a white-noise process 

 
p p

k kx w=  

 

and p

k
w  is a zero mean Gaussian process noise with 

covariance p

k
Q [25].  Although the parameters are 

usually assumed to be constant in the model of the 

system, the process noise is used to aid in 

convergence of the estimate particularly when there 

may be a lot of uncertainty in the initial estimate.  

Note that the initial covariance of the unknown 

parameters also affects the rate of convergence of the 

estimate.  It can also be important for online 

estimation of parameters to quickly detect changes to 

the system parameters [25]. 

     To further understand the superiority of UT 

method intuitively, two examples are shown in Fig.3 

and Fig.  4.   

 

 
 

Fig.3 Example of EKF for Mean and Covariance 

Propagation 

 

 
Fig.4 Example of UT for Mean and Covariance 

Propagation 

UT method 

mean 

covariance 

UT Algorithm  

true mean 

true covariance 

estimated  

mean 

estimated  

covariance 

sigma points 

transformed 

sigma points 

Linearize (EKF) 

mean 

covariance 

EKF Algorithm  

true mean 

true covariance 

estimated  

mean 

estimated  

covariance 
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     The two figures are revised and plotted based on 

the examples often seen in the literature of E.  Wan, R.  

Merwe and A.  Nelson [26]. Fig.3 shows the results 

using a linearization approach as would be done in the 

EKF.  Fig.4 shows the performance of the UT.  The 

superior performance of the UT is clear. 

 

 

4   Model Description 
We utilize a result of Duffie and Kan which 

establishes the sufficient and necessary conditions for 

the obtainment of an exponential-affine term 

structure model.  The exponential-affine term 

structure model is a class of models in which the 

yields to maturity are affine functions in some 

abstract state variable vector as 
t

X indicated in 

equation (29).  It is constructed by assuming that bond 

yields are a linear function of the underlying state 

variables that provide uncertainty in the model.  The 

Duffie-Kan model is as follows [5]: 

 

( , ) ( , )t t t tdX U X dt V X dz= +ℝ ℝ   (29) 

 

where
t

X is a state variable; ℝ is a set containing 

model parameters; 
t

dz denotes an independent 

Wiener process and    
t

dz dtε=  , ~ (0,1)Nε .  In this 

model, the state variable driving the dynamics of the 

term structure is specified in a stochastic process.  

The change of the value of the state variable (
t

dX ) is               

divided into two parts, the first part is deterministic    

( ( , )
t

U X ℝ ), called the drift of the process; and the 

second is a random part ( ( , )
t

V X ℝ ), which is the 

variance of the process.  This involves the 

assumption, that the interest rate process is generated 

by a standard Brownian motion, also known as a 

Wiener process [11]. 

     The corresponding bond pricing formula for this 

class of model can be generically expressed as: 

 
( , )

( , , ) ( , ) tB X

t tP X A e
ττ τ −= ℝ

ℝ ℝ   (30) 

 

where ( , )t T T tτ = − denotes term with  t representing 

the time the bond starts and T  representing  the time 

the bond matures; ( , , )
t t
P X τℝ is the bond price.  

Duffie and Kan have shown that ( )P i  is generically 

exponential-affine if and only if ( )U i and ( )V i are 

affine in
t

X . 

     Among the existing exponential-affine term 

structure models, one-factor Vasicek model has 

gained prominence in the literature of derivative 

contract pricing.  The Vasicek (1977) model is a 

one-factor partial equilibrium model and starts out 

with the specification of a time series process for the 

instantaneous spot interest rate which is treated as the 

only factor of uncertainty [2].  The no-arbitrage 

restriction then permits the derivation of a bond 

pricing formula whereby the bond price is a function 

of the unobserved instantaneous spot rate and the 

model’s parameters [11]. 

     In the Duffie-Kan model, if we set some limits to 

the variables, we can get the representation of 

one-factor Vasicek model.  In Vasicek model, the 

unobserved state variable is the instantaneous interest 

rate
t
r .   

     In the following part of this section, we introduce 

the state-space formulation of the interest rate 

stochastic volatility model - one-factor Vasicek 

model and use this example to illustrate the 

effectiveness of SRUKF.   

     As a popular one-factor stochastic volatility model, 

Vasicek model is widely used in term structure 

literature.  The one-factor Vasicek model is 

characterized by one factor, the instantaneous interest 

rate
t
r  that evolves in continuous time.  The model is 

given by the following first-order stochastic 

differential equation [2]: 

 

1( )t t tdr k r dt dzθ β= − +   (31) 

 

     In the movement of the instantaneous interest rate, 

the interest rate appears to be pulled back to some 

long-term average level over time and this 

phenomenon is known as mean reversion.  In 

equation (31), k , θ ,
1
β  are all positive constants, k is 

the mean-reverting intensity, θ is the long-run 

average of the instantaneous interest rate 
t
r which is 

the state variable .  When the instantaneous interest 

rate deviates from its long-term mean, θ  , it will 

revert back to this mean at a speed governed by the 

parameter k .  For the second part of this stochastic 

differential equation, 
1
β is the volatility parameter of 

the process,
t

dz denotes an independent Wiener 

process and    
t

dz dtε=  , ~ (0,1)Nε .  This process 

is hampered in its ability to revert back to its mean 

level just by the second random part, known as the 

diffusion term, which essentially shocks the process 

at each step in time. 

     The process specified by the aforementioned 

stochastic differential equation is defined in 

continuous time, while the observed data are sampled 

at discrete time intervals.  Before applying directly 

the algorithm of EKF and SRUKF, we try to put 

equation (31) into discrete form.  If we use daily data 
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to do the estimation, we can set 1 365dt = .  Then we 

get: 

 

[ ] ( )

( ) ( )

( ) ( )

1 1

1

( ) 365 365

1 365 365 365

1 365 365

t t t

t

t t

r r k r

k r k

k r k w

θ β ε

θ β ε

θ

+ = + − +

 = − + + ∗ 

= − + +

 (32) 

 

where 
1

365
t
w β ε = ∗  ， ε  is zero-mean, white 

Gaussian noise with unit variance. 

     In Vasicek model, the instantaneous interest rate 

t
r  is the unobserved state variable, while the 

corresponding bond price data can be observed.  The 

corresponding bond pricing formula is: 

 
( , ) '

2

( , )

( , , ) ( , )

( , )

j t

j t

B r

t t j

B r

j t

P r A e

A e v

τ

τ

τ τ β ε

τ

−

−

= +

= +

ℝ

ℝ

ℝ ℝ

ℝ

 (33) 

 

where ℝ is a set containing model parameters, 

( , )t T T tτ = − denotes term with  t representing the 

time the bond starts and T  representing  the time the 

bond matures, 'ε  is zero-mean, white Gaussian noise 

with unit variance, ( , , )
t t
P r τℝ is the bond price.  Here 

the measurement noise 
t
v  is added to equation (33) 

because the equation involves the problem of 

estimation.  The noise '

2t
v β ε= is zero-mean, white 

Gaussian noise with variance 2

2
β .  In equation (33), 

 

( ) ( )2 2

1
,

( , ) exp ,
4

B
A B

k

β τ
τ γ τ τ

  
= − −   

  

ℝ
ℝ ℝ  (34) 

( )1
( , ) 1 kB e

k

ττ −= −ℝ   (35) 

2

1 1

22k k

β ϕ β
γ θ= + −   (36) 

 

whereϕ denotes the market price of risk. 

     Therefore, equation (32) and equation (33) are the 

discrete time state-space specifications of Vasicek 

model.  This is a non-linear system, and in addition, 

the measured input data are also corrupted by noises.  

All these factors require the use of an observer that 

can provide a good filtering and unknown parameter 

estimation.  The extended Kalman filter (EKF), which 

is a full-order stochastic observer, can be the solution 

to these issues [27].  Moreover, as an improved 

non-linear filtering method, SRUKF is also applied 

here to do the comparison of state estimation and 

parameter estimation with that of EKF. 

 

 

5   Empirical Results 
Various kinds of methods have been put forward in 

the finance literature for the estimation of the term 

structure of interest rates, including that of the 

one-factor Vasciek model.  Usually, these methods 

can be classified as the cross section method and the 

time series method.  For the cross section method, 

only information on the yields of bonds with different 

maturities at a point in time is used in the estimation 

process.  This generates a different set of parameters 

for each time period [11].  For the time series method, 

on the contrary, only the dynamic implications of the 

model is studied and the cross-sectional information 

is ignored.  Obviously, both methods are ex parte.  

However, as two kinds of the class of Kalman filter 

methods, SRUKF and EKF can make full use of both 

the cross-sectional information and the time series 

data. Traditional estimation methods use either time 

series data or cross-sectional data while Kalman 

filters class methods can use both at the same time.  

What’s more, in traditional research, short-term 

interest rate, the unobserved state variable, is often 

dealt with as a proxy variable, while under Kalman 

filters methods, short-term interest rate is taken as 

unobserved to do further estimation to enhance the 

reliability. The main advantage of the class of 

Kalman filter methods just stems from the fact that 

they allow the state variable to be unobserved 

magnitude. 

     The performances of the SRUKF and EKF are 

now examined for yielding state estimate and 

parameter estimate to the term structure of interest 

rates.  For the sake of comparison, SRUKF and EKF 

are respectively applied to the system in 100 

simulations.    

     During the simulation, we set 0.1k = , 0.2θ = , 

1
1σ = , 

2
1σ = , 0.16ϕ =  based on historical 

experience.  In addition, the process noise covariance 

matrix is 0.001Q = Ι  and the measurement noise 

covariance matrix is 0.2R = Ι .  The three parameters of 

SRUKF estimator are assumed to be 

1 1eα = − (usually1 2 1e α− ≤ ≤  ), 2β = (for Gaussian 

distribution, 2β = is optimal), 0κ = (usually set to 

either 0 or 3-L).   

  The abilities of SRUKF-based estimator and 

EKF-based estimator to track the term structure are 

presented in Fig. 5 and Fig. 6 separately.  The two 

figures show examples of the state estimates 

produced by SRUKF and EKF respectively compared 

to the truth. 
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    Fig.5 Estimation of Term Structure Using SRUKF 

    

     Fig.  5 shows an example of the state estimates 

produced by SRUKF compared to the truth. 
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 Fig.6 Estimation of Term Structure Using EKF 

 

     Fig.  6 shows an example of the state estimates 

produced by EKF compared to the truth.  EKF 

produces state estimates that are a little far from the 

truth.  SRUKF is the correct filter and captures the 

time history of the term structure very well.  The 

displayed results indicate that EKF estimator 

demonstrates larger errors than SRUKF one does. 

     In order to further quantify the performance of the 

two estimators, the mean and variance of Root Mean 

Square Error (RMSE) have been generated.  100 

samples (observation times) were simulated.  300 

different realizations of the proposed EKF and 

SRUKF were generated.  The comparison is in terms 

of RMSE, computed as follows: 

 

( )2

1

1
  -  Re  

n

i

RMSE Forecasted yield alized yield
n =

= ∑
 

     On one hand, we obtain from the simulation 300 

forecasted interest rate term structures.  On the other 

hand, we observe 300 realized interest rate term 

structures. We are thus able to measure the 

performance of the simulation by computing the 

RMSE. 

     The average results of RMSE are shown in Table 

1: 

 

algorithms SRUKF EKF 

RMSE(mean) 0.63532 0.97559 

RMSE(var) 0.38323 1.7298 
 

Table 1 RMSE of 100 Times Simulation 

 

     As expected, the SRUKF-based term structure 

estimator presents a good performance.  Thus the 

simulations demonstrate the superiority of the 

SRUKF-based term structure approaches over the 

EKF-based one. 

     Fig.7 presents the parameter estimation of theta 

using EKF and SRUKF respectively.  As the figure 

indicates, SRUKF estimator is able to more 

accurately track the long-run average of the 

instantaneous interest rate.  However EKF estimator 

exhibits poorer performance. 
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        Fig.7 Parameter Estimation of Term Structure 
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     The simulation results show that SRUKF 

estimator seems to have stronger noise power 

immunity and higher precision than EKF estimator 

does.  Such better numerical performance is mainly 

because that SRUKF estimator can achieve 

third-order accuracy and EKF estimator approximates 

the linearity by first-order approximation through 

Taylor expansion series. 

    

 

6   Conclusion 
The Kalman filter is a well-known recursive 

algorithm that takes the stochastic state space model 

of the system together with measured outputs to 

achieve the optimal estimation of states in 

multi-input, multi-output systems.  The filter takes 

system and measurement noises into account in the 

form of white noise.  The optimality of the state 

estimation is achieved with the minimization of the 

mean estimation error [28].  In this study, EKF and 

SRUKF estimators are studied, which are two 

extended forms of Kalman filter that could be used 

for nonlinear systems. 

     SRUKF and EKF are two filters aiming at solving 

state and/or parameter estimation problems of 

nonlinear system.  Compared with EKF estimator, 

SRUKF estimator is derivative-free and need not 

calculate Jacobian matrix associated with EKF 

algorithm and sometimes difficult to calculate in case 

of large and complicated systems.  For SRUKF, it 

only needs relatively simple algebra calculation.  This 

fact makes it much easier for SRUKF-based 

estimation.  To linearize system equations is the most 

difficult part during the use of EKF and such 

approximation can only reach first-order accuracy in 

terms of Taylor series expansion.  However, SRUKF 

does filtering directly according to the nonlinear 

system instead of linearization and so it can avoid the 

errors brought about from that linearization. 

     Simulation results tell us that SRUKF-based 

estimator provides higher precision because of the 

higher-order approximation than that of EKF.  What’s 

more, the square-root form embedded in SRUKF 

helps effectively reduce the covariance of important 

weights and guarantees positive definiteness of the 

underlying state covariance.  SRUKF estimator 

exhibits improved accuracy and numerical 

performance relative to the EKF one and 

consequently can be a better alternative in case of 

nonlinear system estimation than the EKF estimator. 
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