
Implementation Roadmap using Voronoi Diagrams for Vision-based Robot

Motion

Shahed Shojaeipour
1,1
, Sallehuddin Mohamed Haris

1
 and Ali Shojaeipour

2

Dept. of Mechanical & Material Engineering
1
, Dept. of Computer Software Engineering

2

Universiti Kebangsaan Malaysia
1
, Islamic Azad University of Shirvan

2

Bangi, Selangor, 43600, Malaysia
1
, Shirvan University Ave, Iran

2

Malaysia
1
, Iran

2

shojaei@vlsi.eng.ukm.my, salleh@eng.ukm.my, ali.shojaeipour@yahoo.com

Abstract: - In this paper, we present a method to navigate a mobile robot using a webcam. This method determines the

shortest path for the robot to transverse to its target location, while avoiding obstacles along the way. The environment

is first captured as an image using a webcam. Image processing methods are then performed to identify the existence

of obstacles within the environment. Using the Voronoi Diagrams VD(s) method, locations with obstacles are

identified and the corresponding Voronoi cells are eliminated. From the remaining Voronoi cells, the shortest path to

the goal is identified. The program is written in MATLAB with the Image Processing toolbox. The proposed method

does not make use of any other type of sensor other than the webcam.

Key-Words: - Mobile robot, Path planning, Voronoi Diagrams, Image processing, Visual servo.

1 Introduction
Image processing is a form of signal processing where

the input signals are images such as photographs or

video frames. The output could be a transformed version

of the input image or a set of characteristics or

parameters related to the image. The computer

revolution that has taken place over the last 20 years has

led to great advancements in the field of digital image

processing. This has in turn, opened up a multitude of

applications in various fields, in which the technology

could be utilised.

The aim of this paper is to present a method for

visual servo control using only visual images from a

webcam. Visual servo is the use of image data in closed

loop control of a robot. Without doubt, today, the use of

vision in robotic applications is rapidly increasing. This

is due to the fact that vision based sensors such as

webcams are falling in price more rapidly than any other

sensor. It is also a richer sensor than traditional ranging

devices, particularly since a camera captures much more

data simultaneously [1].

Images can be captured by camera, and subsequently,

processed using some particular software. Among them,

MATLAB, with its Image Processing toolbox, is well

suited to perform such tasks. Information obtained from

the image processing exercise can then be used to

generate motion commands to be sent to the mobile

robot. This sequence is depicted in Fig. 1. Consequently,

the robot imitates human vision in stages as follows:

• Image acquisition

• Image processing

• Image analysis and assimilation

• Image intelligence

• Control signal reception

• Motion control of parts of the robot

Fig. 1 Experimental Setup.

The Voronoi tessellation, originally proposed by

Georgy Voronoi in 1907[2], is a special decomposition

of a metric space based on the distances of points to a

specified discrete set of sites within the space. For a set

S containing i number of sites in Euclidean space, the

tessellation is defined by associating a cell to each site.

Cell i contains all points that are closest to si and the cell

boundaries are hyper planes made up of points that are

equidistant to two or more sites in S (Fig. 2). The

Voronoi diagram (VD(S)) perfectly partitions the space,

and it has found use in the sciences for solving problems

that involve the assignment of space between groups of

objects. In general, the interested reader should refer to

the book written in [3]0.

Many methods have been developed and used by

different researchers to compute Voronoi tessellations.

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 639 Issue 6, Volume 9, June 2010

For example, in 0[4], the Voronoi C tree data structure

was introduced to generate generalized 3D Voronoi

diagrams. In [5], morphological operations were used to

transform image data obtained from sensors into its

corresponding VD(S) where the skeletal lines represent

obstruction free paths. There also exist a number of

software packages readily available for computing the

Voronoi tessellation. These include, for example, the

software package [6] which can compute VD(S) in

arbitrary dimensions and the Voronoi function in

MATLAB. The program in [7] which is well-known for

mesh generation via Delaunay Triangulation also

computes Voronoi tessellations.

A

B

Fig. 2 (A) the 2D Voronoi tessellation (B) the 3D

Voronoi tessellation.

Mesh computation codes can compute VD(S) of

single objects which, given a set of points, will return

the complete mesh dividing the space containing the set

of sites into a mesh of cells as seen in figure 3. However,

in practical applications, it is more natural to associate a

single VD(S) with each particle, and compute them

separately. This makes it easier to compute just a subset

of Voronoi meshes, or to tailor the computations to

handle special cases and complex boundary conditions.

This also makes it straightforward to compute mesh-

based statistics, such as mesh volumes, or the number of

faces per mesh [8], [9].

Assuming we have point-based obstacles and a point

robot, we can use the Voronoi diagram to navigate. You

can think of the Voronoi diagram as a Voronoi graph,

made up of edges and vertices. To go from a Startpoint to

a Goalpoint, we simply find the nearest points on the

Voronoi graph to (Startpoint ; Goalpoint): (Startpoint ;

Goalpoint). We then use a standard graph search type

algorithm (e.g Dijkstra’s algorithm) to traverse the

vertices and edges of the graph from Startpoint to

Goalpoint.

Suppose the robot isn’t a point and the obstacles aren’t a

point? The two-dimensional region in which the robot

moves will contain buildings and other types of barriers,

each of which can be represented by a convex or

concave polygonal obstacle. To find the generalized

Voronoi diagram for this collection of polygons, we can

use an approximation based on the simpler problem of

computing the Voronoi diagram for a set of discrete

points. We estimate the polygonal obstacle boundaries

by discrete points.

1.1 Methodology:

1. Approached the boundaries of the polygonal obstacles

with the large number of points that result from

dividing each side of the original polygon into small

segments.

2. The Voronoi diagram computes for this collection of

approximating points.

3. Once this complicated Voronoi diagram is

constructed, eliminate those Voronoi edges which

have one or both endpoints lying inside any of the

obstacles.

4. The Voronoi edges remaining form a good

approximation of the generalized Voronoi diagram for

the original obstacles in the map.

To take into account a robot which isn’t point size, we

need to find critical points and critical lines in the

Voronoi diagram. These are places where the Voronoi

path has a local minimum. At these points we can see if

the robot’s diameter will fit through the space at the

critical point: is the diameter greater than the critical line

length. Note that this assumes a fixed robot orientation,

or we can use the maximum diameter of the robot over

all rotations.

2 Visual Obstacles
The path to be transverse by the robot must be ensured

to be free of obstacles. For this, their existence must be

identified and their positions located. This section

describes how this could be done.

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 640 Issue 6, Volume 9, June 2010

The image is recorded by a webcam which is

installed above the robot. The image is then sent via a

USB cable to a PC, to be processed by MATLAB. The

experiments were carried out using a computer with

3.60GB free space hard disk and 1GB RAM memory.

The algorithm was developed using MATLAB (version

7.6 R2008a).

The image is divided into segments, which become

the export databases; usually they are the raw pixels data

abstracted from the captured image [10], [11] and [12].

The picture could be in JPG or BMP format, in which

case, every pixel point uses three numerical values,

representing intensity levels of the primary colours: red,

green and blue (RGB) to depict its characteristics.

Therefore, in such format, computing workload to

perform image processing would be very high. Hence, it

would be desirable to convert the coloured picture into a

grayscale image [13], [14].

Image processing methods are firstly used to

identify the existence of obstacles within the image

frame. This is implemented in an eight step MATLAB

(with the Image Processing Toolbox) program. The

following describes the steps:

Step 1. Generate input video objects.

This can be implemented using the command

 Obj = videoinput(‘adaptorname’, device name,

’format’);

where the adaptor name can be determined using the

‘imaqhwinfo’ command, device name is the name given

to the device and format refers to the required image

format.

Step 2. Preview the webcam video image.

 Preview(‘object name’);

where object name is Obj in the last command

Step 3. Set brightness level of image.

 set(obj,’ property name’ property value);

Step 4. Capture still image from webcam video.

 getsnapshot(object name);

The captured image is stored as an array whose

elements represent the light level.

Step 5. Remove the input device from memory.

 delete(object name);

Step 6. Convert from RGB to grayscale mode.

 I=rgb2ind(I,colorcube(150));

Step 7. Find edges of objects in the image.

 I=edge(I,’sobel’,(graythresh(I)*.1));

Step 8. Remove noise.

 Se90=strel(‘line’,3,90); Se0=strel (‘line’,3,0);

I=imdilate(I,[se90 se0]);

 I=imfill(I,’holes’);

The results of running this program can be seen in

Fig. 3, where (A) is the original image, (B)-(F) are the

intermediate stages of the image and (G) is the final

image.

(A)

(B)

(C)

(D)

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 641 Issue 6, Volume 9, June 2010

(E)

(F)

(G)

Fig. 3 (A) Original Image, from B to F- intermediate

stages of filtering and (G) Final image.

3 Path Planning via Voronoi Diagrams
In order to select the shortest path for the robot to

transverse, three actions need to be considered: the first

is image capture using webcam, the second is to convert

the image into a 3D scene, using the Spectral Fractal

Dimension (SFD) technique [15] and [16]. Previous

works have used just two images of the scene for this

purpose [17], [18] and [19]. The third action is to use

cell decomposition to identify and eliminate paths that

are obstructed. The robot would then be able to chose

the shortest of the remaining paths. Fig. 4 illustrates the

path finding problem, where three paths are being

considered. Then,

• Path(1) is not possible (encounter obstacle)

• Path(2) is the shortest distance and possible

• Path(3) is possible but it isn’t the shortest path

Obviously, the number of objects and the number of

paths would vary, depending on situation. We will focus

on using a general program to find the shortest path

between the robot and the target [20].

Fig. 4 Analyzed Paths.

In order to send the correct control commands to the

robot such that the chosen path is followed, the precise

position of objects must be measured. Feedback is the

comparison of the target and actual positions, and is a

natural step in implementing a motion control system.

This comparison generates an error signal that may be

used to correct the system, thus yielding repeatable and

accurate results. [21]

For data transfer to and from the robot, the MATLAB

Instrumentation Control toolbox is used. Data transfer

may be performed via GPIB, VISA, Serial, TCP/IP or

UDP interface.

3.1 Generation of Voronoi Diagrams:

VD(S) are constructed by first performing the Delaunay

Tessellation which is regarded as the dual to Voronoi

Tessellations. Firstly, any two sites for which

there exists a circle C that passes through p and q and

doesn’t contain any other site of S in its interior or

boundary, are connected by a line segment. The set of

such line segments form the edges of the Delaunay

Tessellation DT(s), called Delaunay edges[8], [23] and

[24]. Now, bisection of the Delaunay edges by another

set of line segments results in the formation of Voronoi

cells where each cell contains one site enclosed by the

line segments forming Voronoi edges.

An example is depicted in figure 3, where VD(S) is

depicted by solid lines and DT(S) by dashed lines. Note

that a Voronoi vertex need not be contained in its

associated face of DT(S). The sites p, q, r, s are co-

circular, giving rise to a Voronoi vertex v.

Consequently, its corresponding Delaunay face is

boarded by four edges 0 [24].

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 642 Issue 6, Volume 9, June 2010

Fig. 5 Voronoi Diagram and Delaunay Tessellation.

3.2 Motion Planning using VD(S):

Application of Voronoi diagrams to mobile robot motion

planning has been discussed in [24]. The concept is

reproduced in the following excerpt.

Suppose that for a disc-shaped robot centered at some

start point, s, a motion to some target point, t, must be

planned in the presence of n line segments as obstacles.

We assume that the line segments are pair wise disjoint,

and that there are four line segments enclosing the scene,

as shown in figure 5. While the robot is navigating

through a gap between two line segments, l1 and l2, at

each position x its “clearance “, i.e. its distance

 (1)

to the obstacles, should be a maximum. This goal is

achieved if the robot maintains the same distance to

either segment. In other words, the robot should follow

the bisector B(l1, l2) of the line segments l1 and l2 until

its distance to another obstacle gets smaller than d(x,li).

Roughly, this observation implies that the robot should

walk along the edges of the Voronoi diagram VD(S) of

the line segments in S = { l1,……,ln}. This diagram is

connected, due to the four surrounding line segments.

If start and target points are both lying on VD(S), the

motion planning task immediately reduces to a discrete

graph problem: After labeling each edge of VD(S) with

its minimum distance to its two sites, and adding s and t

as new vertices to VD(S), a breadth first search from s

will find, within O(n) time, a path to t in VD(S) whose

minimum label is a maximum. If this value exceeds the

robot's radius, a collision-free motion has been found.

If the target point, t, does not lie on VD(S), we first

determine the line segment l(t) whose Voronoi region

contains t. Next, we find the point z(t) on l(t) that is

closest to t; see figure 6. If its distance to t is less than

the robot's radius then the robot cannot be placed at t and

no motion from s to t exists. Otherwise, we consider the

ray from z (t) through t. It hits a point t’ on VD(S) which

serves as an intermediate target point.

Similarly a point s’ can be defined if the original start

point, s, does not lie on VD(S) [24].

3.3 Shortest Path using Voronoi Diagrams:

A Voronoi Diagrams representation of free space is

constructed in order to reduce the search space for

finding a collision-free path for the mobile object [25].

In order to conduct an efficient search, the Voronoi

Diagrams is first converted to an equivalent graph of

nodes and arcs. A simple example of a Voronoi

Diagrams graph is shown in Fig. 6 where the circles

represent nodes, and the lines connecting them represent

arcs.

There are three types of nodes which appear in the

Voronoi Diagrams graph: junction nodes, terminal

nodes, and pseudo nodes. A junction node is generated

where three or more arcs of the Voronoi Diagrams

intersect. A terminal node corresponds to a dead end of a

Voronoi Diagrams arc. Terminal nodes arise when

concave vertices are present. Since the workspace itself

can be regarded as a hole inside of a large obstacle, the

vertices of a rectangular workspace are terminal nodes

as can be seen in Fig. 6, the third type of node is a

pseudo node called a source node or a goal node. Source

and goal nodes are artificial nodes inserted in the graph

near the source and goal positions, respectively. These

nodes represent entry and exit points at which the

mobile object gets onto and off of the graph.

The arcs of the graph are lines connecting pair’s nodes.

Each arc is represented as a sequence of piecewise-linear

segments between via-points. The data structure used to

represent an arc is summarized in Table I.

TABLE I

Representation of a Voronoi Diagrams Graph

Field Description Type

1 node number of start node integer

2 node number of end node integer

3 length of arc real

4 minimum radius of arc real

5 pointers to via-point list pointer

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 643 Issue 6, Volume 9, June 2010

Each via-point is characterized by the parameters (x, y,

R) where (x, y) represent the coordinates of via-point

and R is the radius of the Voronoi Diagrams at via-point.

Smooth parabolic curves can be approximated arbitrarily

closely with piecewise linear arcs by controlling the

spacing between via-points.

In order to search for the shortest path from source to

goal, first a method must be developed to transfer the

mobile object onto and off of the Voronoi Diagrams

graph. Depending upon the relative positions of the

workspace obstacles, this can be a subtle problem in its

own right. For example, if the mobile object is a peg and

the goal is to place the peg at the bottom of a narrow

hole, then some careful planning is required to move the

object from the Voronoi Diagrams graph to the goal.

This type of task arises in fine motion planning for

automated assembly [26] . The formulation presented

here is not directed toward fine motion planning, but is

instead restricted to gross motion planning. As such, no

attempt is made to move an object that is in confect with

an obstacle. Instead, the gross motion planner moves the

object to a point somewhere near this destination a point

at which a fine motion planner can then take over.

When the source and goal positions of the mobile object

are not in contact with any workspace obstacles, the

following simple heuristic method appears to work

reasonably well for moving the object onto and off of

the Voronoi Diagrams graph. First, a line is constructed

through the centroid of the mobile object normal to the

nearest obstacle edge. The mobile object then moves

directly away from the nearest obstacle along this line

until it reaches the Voronoi Diagrams graph. This point

of intersection is the source node (s) or goal node (g), as

appropriate. As the mobile object moves onto the graph

from the source position to the source node, it rotates so

that when it arrives on the graph its principal axis is

aligned with the Voronoi Diagrams. Similarly, as the

object moves off of the graph from the goal node to the

goal position, it rotates so as to assume the proper

orientation at the goal position.

A number of graph theory algorithms might be

employed to search for a path from the source node to

the goal node 141. The technique used here starts by

examining nodes adjacent to the source node. Nodes

adjacent to these nodes are then investigated and the

search continues to expand all branches as sub-graphs

until each sub-graph reaches a dead end or the goal

node. If the minimum radius of an arc is found to be less

than half the width of the mobile object, a collision is

inevitable.

Consequently, these narrow arcs are regarded as dead

ends. When a node adjacent to sub-graph A is already

reached by Sub-graph B, and the total length for sub-

graph A exceeds the length for sub-graph B, sub-graph

A is discarded. The shortest sub-graph which reaches the

goal node is then taken as the shortest collision-free

Voronoi Diagrams path.

The criterion used to search the graph is simply the

shortest path satisfying a minimum radius threshold. No

effort is made to evaluate the difficulty of traveling that

path. In some cases there may be a slightly longer path

that does not require the mobile object to pass as close to

the obstacles. One way to find such a path would be to

increase the minimum radius to be something larger than

half the width of the mobile object. This would tend to

find safer paths. However, when the only path available

is an extremely narrow path, it could fail to find any path

at all. In workspaces with many obstacle vertices, a

significant part of the total execution time is spent

constructing the Voronoi Diagrams. Thus there appears

to be no compelling reason not to use the shortest path

unless there is difficulty in executing the motion along

that path [27].

Fig. 6 The Motion Planning in Voronoi Diagrams

Algorithm.

4 Trajectory Curve
The trajectory curve is very useful because its curvature

varies linearly along the arc. Kanayama proposed to use

this curve for motion trajectory design [28]. It is chosen

for generating a flat path since it satisfies all the

requirements for robot motion control tasks and

modeling. The Trajectory curve is a real Spline and it

cannot be expressed in a closed form. This is the biggest

limitation and results in calculation difficulty. However,

its curvature varies linearly along the arc, and the curve

can be constructed from its curvature. On the other hand,

since the parameter t is proportionate to the length of the

arc, it can be used directly as a trajectory. The derivative

of the curvature of trajectory curve is a constant which is

similar with the new control theory in aimed at giving

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 644 Issue 6, Volume 9, June 2010

solution to the optimal control problem. The trajectory

curve is defined as following:

0)(CvsksCv +×=
 (2)

Where s is the arc length, Cv(s) is the curvature and k is

a constant. The direction of the tangent vector is the

integration of the curvature and is expressed by

 (3)

In our work, two dynamically allocated points in a 2D

space are identified at each state for each basic curve

element configuration. Unlike a customary approach, we

don’t restrict the curve as a proportional double since it

may encounter difficulties in a global configuration. The

global trajectory is made up of a set of local curve

pieces. Our approach is to use an antithetical trajectory

curve element two dynamic control points S2 and S4 to

offer the more flexible and powerful solution to the

trajectory generation problem. In practice, a proportional

pattern cannot always be guaranteed to be the optimal

trajectory to follow, and the antithetical pattern is the

general situation and offers more flexibility for the

control process. In order to do a successful smooth

connection at the joints between curves, keeping in mind

that each goal state is also the new initial state for the

next move step, the direction of the motion trajectory at

the current goal location should be the same as at the

next new initial robot location. The curvatures at the

both locations should also be the same for smooth

curvature transition. To meet these requirements, two

transition points are recommended which are determined

by the motion kinematical states of the robot to produce

a smooth transition between curve elements.

As shown in Figure 7, the robot starts at S1. S3 andS6

are the points perceived, S2 and S4 are the two points

added to control the robot movement to make a smooth

transition between adjacent trajectory curve elements,

which are derived from the robot motion requirements

that satisfy the robot kinematical conditions and the

equations (2) and (3). The first local curve element ends

at the destination point S4, which is also the new initial

position of the next trajectory curve element. At S4, the

curvature is decreased to zero and the direction is from

S3 to S6. The trajectory generation will keep going as

long as subsequent path points are supplied [29].

Fig.7. A Curve Configuration in 2D Environment

5 Experimental Results

5.1 Identify ink Workspace using Image Processing

Model shapes are made of black cardboard. Black colour

is chosen because of the contrast between the light

background and the model itself. There are five image

processing shape models included in this experiment

which are rectangle, cylinder, twice pyramid and cubic.

Description Median filtering is a nonlinear operation

often used in image processing to reduce "white and

pepper" noise. Median filtering is more effective than

convolution when the goal is to simultaneously reduce

noise and preserve edges. By click “load figure” can be

load an image from section image processing. The main

window of MATLAB Software for path planning was

shown in Figure 8 below.

Fig. 7 Load Figure3 from Image Proceeding

00

0

2

0
2

1
)()(θθ +×+××=+×= ∫ sCVskdsCvsks

s

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 645 Issue 6, Volume 9, June 2010

5.2 Identify ink Workspace using Voronoi Diagrams

In this section we discussed about using Voronoi

Diagrams method and in this part we intend to divide the

workspace into multiple polygons using the Voronoi

Diagrams method.

Firstly, the operator clicks "Load Figure" to load the

processed image of the workspace (saw Fig. 8). Next the

operator clicks "Voronoi Diagrams" to draw polygonal

cells on the workspace (see Fig. 9). Finally, the operator

clicks "Shortest Path" to draw the shortest path with

continuous red circles. The total distance of the path and

time taken to find the shortest path is displayed in the

"Details" section of the program. The distance measured

on the sample workspace is 13.46mm and the runtime

was 1.14 seconds (see Fig. 10).

Fig.9. Changes from Actual Workspace to the Voronoi

Diagrams Workspace

Fig.10. Find Shortest Path via the Voronoi VD(S) Method

5.3 Trajectory Curve Smoothing

A curved trajectory is very useful as it avoids sharp

turns, leading to discontinuities in robot velocity,

acceleration. To produce a curved trajectory, [28]

proposed the concatenation of clothoids and cubic

spirals through the use of cost functions such as the

integral over the curvature’s square and the integral over

the square of curvature derivative. In [30], clothoids,

approximated using Rational Bezier Curves, were used

in trajectory generation for mobile robots.

In our work, we created a cubic spline from the optimal

Voronoi Diagrams path to generate a smooth curved

trajectory. In robot trajectory planning, cubic splines are

widely used as they assure continuity of position,

velocity and acceleration commands for each joint [31].

A fast compact algorithm for smoothing cubic splines

implemented using MATLAB was introduced in [32].

The result of implementing the cubic spline smoothing

algorithm on the generated quad tree map is shown in

Figure 11.

Fig.11. Fig. 3 Path after smoothing

6 Conclusion
This paper provides a framework for mobile robot

navigation using a robot mounted webcam. Using

images captured by the webcam, the location of

obstacles are identified. Then, using the Voronoi

Diagrams VD(s) technique, the shortest path to the

target destination is determined. Future work would be

to translate the generated optimal path into input

commands to the actual robot. The system would also be

further developed for situations with moving obstacles

and moving targets.

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 646 Issue 6, Volume 9, June 2010

Acknowledgments
This research was supported by the Ministry of Science

Technology and Innovation, Malaysia, Grant No. 03-01-

02-SF0459.

References:

[1] J. Campbell, R. Sukthankar, Nourbakhsh, I.

Sukthankar and A. Pahwa, A robust visual odometry

and precipice detection system using consumer-grade

monocular vision. Proc. ICRA2005, Barcelona,

Spain. 2005.

[2] G. Voronoi. Nouvelles applications des param`etres

continus `a la theorie des forms quadratiques, Journal

f¨ur die Reine und Angewandte Mathematik 133, pp.

97–178, 1907.

[3] A. Okabe, Barry Boots, K. Sugihara, and S. N.

Chiu,” Spatial tessellations: concepts and

applications of Voronoi diagrams,” John Wiley &

Sons, Inc., New York, NY, 2000.

[4] I. Boada, N. Coll, N. Madern and J.A. Sellares,”

Approximations of 3D Generalized Voronoi

Diagrams,” EWCG 2005, Eindhoven, March 9-11,

2005.

[5] S.Garrido, L.Moreno, M. Abderrahim and F.

Martin,” Path Planning for Mobile Robot Navigation

using Voronoi Diagram and Fast Marching,” Int.

Conference on Intelligent Robots and Systems Oct,

2006.

[6] Qhull code for convex hull, Delaunay triangulation,

Voronoi diagram, and halfspace intersection about a

point, http://www.qhull.org/.

[7] Triangle: A two-dimensional quality mesh generator

and Delaunay triangulator,

http://www.cs.cmu.edu/_quake/triangle.html

[8] E. Masehian and G. Habibi,” Robot Path Planning in

3D Space using Binary Ineger Programming,”

International Journal of Mechanical System Science

and Engineering ISSN 1307-7473, 2008.

[9] G. Habibi, E. Masehian, M.T.H. Beheshti,” Binary

Integer Programming Model of Point Robot Path

Planning,” The 33rd Annual Conference of the IEEE

Industrial Electronics Socitey IECON ,Nov 5-8 ,

2007.

[10]R. Gonzalez, R. wood,” Digital Image Processing”

2nd edition. Prentice-Hall Inc, 2002.

[11]A. Jain,” Fundamentals of Digital Image

Processing”. Prentice-Hall Inc, 1989.

[12]R. Duda, E. Peter Hart and D. Stork.” Pattern

Classification “2nd edition. John Wiley & Sons, Inc,

2000.

[13]G. Blanchet, M. Charbit,” Digital Signal Image

Processing Using MATLAB” ISTE Ltd, 2006.

[14]L. Xingqiao, G. Jiao, J. Feng, Z . Dean,” Using

MATLAB Image Processing to Monitor the ealth of

Fish in Aquiculture”. Proceeding of the 27th Chinese

Control Conference July 16-18, Kunming, Yunnan

China , 2008.

[15]H. Akbar, A.S. Prabuwono,” Webcam Based

System for Press Part Industrial Inspection” .IJCSNS

International Journal of Computer Science and

Network Security, VOL.8 NO.10, October, 2008.

[16]G. Modesto, M. Medina, D. Baez-Lopez,” Focusing

and Defocusing vision system (SIVEDI)”.

International Conference on Electronics,

Communications and Computers (CONIECOMP

2005) IEEE, 2005.

[17]K.T. Jenn,”analysis and application of Auto

focusing and Three-Dimensional Shape Recovery

Techniques based on Image Focus and Defocus”.

PhD Thesis SUNY in Stony Brook, 1997.

[18]S.K. Nayar, M. Watanabe, M. Noguch,” Real-time

focus range sensor”. Intl. Conference on Computer

Vision, PP.995-100, June, 1995.

[19]M. Subbarao,” Spatial-Domain Convolution/

Disconsolation Transform”. Technique Report

No.91.07.03,Computer Vision Levorotatory, State

University of New York , Stony Brook, NY 11794-

2350

[20]S.Shojaeipour, S.M.Haris and M.I.Khairir, “ Vision-

based Mobile Robot Navigation using Image

Processing and Cell Decomposition .” IVIC 2009

Springer Lecture Note in computer science LNCS-

5857, pp.90-96 Nov, 2009.

[21]Ch. Aung , H. Lwin , Y. K.T, M. Myint ,”

Modeling Motion Control System For Motorized

Robot Arm using MATLAB”. PWASET VOLUME

ISSN 2070-3740 32 August, 2008.

[22]E. Masehian and G. Habibi,” Robot Path Planning

in 3D Space using Binary Ineger Programming,”

International Journal of Mechanical System Science

and Engineering ISSN 1307-7473, 2008.

[23]S.W. Bae and K.Y. Chwa,” Shortest Paths and

Voronoi Diagrams with Transportation Networks

Under General Distances,” Springer – Verlag Brilin

Heideberg, 2005.

[24]F. Aurenhammer, R. klein,” Voronoi Diagrams,”

Resarch Concerning Voronoi diargrams,

www.pi6.fernuni-hagen.de/publ/tr198.pdf

[25]C. O’Dunlaing and C. K. Yap, “A retraction method

for planning the motion of a disc,” J. Algorithms,

vol. 6, pp. 104-111, 1985.

[26] T. Lozano-Perez, M. T. Mason, and R. H. Taylor,

“Automatic synthesis of fine-motion strategies for

robots,” Znt. J. Robotics Res. vol. 3, no. 1, pp. 3-24,

Spring 1984.

[27]O, Takahashi and R.J, Schilling, “Motion Planning

in a Plane using Generalized Voronoi Diagrams”,

IEEE Transaction on Robotic and Automation Vol. 5

No2. April, 1989.

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 647 Issue 6, Volume 9, June 2010

[28]Y. Kanayama, and B. I. Hartman, in: Smooth local

path planning for autonomous vehicles. Robotics and

Automation, vol. 3, pp. 1265-1270. 1989.

[29]H.L. Weinert, in: A fast compact algorithm for

cubic spline smoothing. Computational Statistics and

Data Analysis, Vol. 53, pp. 932-940, 2009.

[30]N. Montes, M.C. Mora and J. Tornero, in:

Trajectory generation based on Rational Bezier

Curves as clothoids. Proceedings of the 2007 IEEE

Intelligent Vehicles Symposium, Istanbul, Turkey,

pp. 505-510, 2007.

[31]A. Visioli, “ Trajectory planning of robot

manipulators by using algebraic and trigonometric

splines. Robotica,” Vol. 18, pp. 611-631, 2000.

[32]H.L. Weinert, “ A fast compact algorithm for cubic

spline smoothing.” Computational Statistics and

Data Analysis, Vol. 53, pp. 932-940, 2009.

WSEAS TRANSACTIONS on SYSTEMS Shahed Shojaeipour, Sallehuddin Mohamed Haris, Ali Shojaeipour

ISSN: 1109-2777 648 Issue 6, Volume 9, June 2010

