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Abstract: It is regularly to optimization of temperature and feeding profiles in batch process for several 
objectives and constraints. A temperature profile is applied to drive the process so as to obey certain 
constraints during the beer fermentation. The design of this temperature profile is an optimization problem 
where the objective is to minimize the operation time and optimize the quality of beer. In this paper, 
differential evolutionary computation is exploited to efficiency handle such problems. The proposed approach 
has been implemented and practical to design temperature profile for beer fermentation process. The results 
show that differential evolution is a proficient and at ease method to incorporate the prior knowledge of the 
user into the temperature profile optimization of batch processes.     
.    
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1   Introduction 
We are interested in applied control problems, 
requiring the use of advanced computer-based 
methods. Beer fermentations are good candidates 
for two reasons: the complexity of the biological 
phenomena taking place, and the dynamic nature of 
the process. Fermentations are the basis of many 
important industrial activities. Both for modeling 
and testing purposes, we selected the conventional 
beer fermentation, as a representative example that 
can be experimentally studied at laboratory scale 
with a moderate equipment effort. The results 
obtained in this way, can be useful for many other 
fermentation processes. 
In order to decide a suitable parameter of the 
extrusion process, optimum design methods that 
combine the optimization algorithm with the 
computer simulation have been reported [1-2]. By 
the way, Evolutionary Algorithms (EAs) such as 
Genetic Algorithm (GA) are practical optimization 
algorithms and applied to various optimum design 
problems effectively. Therefore, GAs has been also 
applied to the optimum design problem of extrusion 
process. B. Andres-Toro,and others [3] illustrated 
that batch  fermentations are dynamic processes  

that must be guided  along  convenient paths  to  
obtain  the  desired  results. Their  research deals 
with the application of computers for advanced 
control of such processes and  selected  beer 
fermentation, and started  to investigate whether it 
is possible  to  optimize  the  process,  taking  as  
reference  to  be improved  a  real  industrial  
fermentation. In their paper they describe the 
process, the new model, the optimization problem, 
and the solution by Genetic Algorithms.  
 
Conor and others (2002) integrated fuzzy logic into 
the fermentation process in a brewery involving a 
local commercial brewery, Beamish and Crawford 
Brewery plc in Cork, Ireland. Their approach 
consists of developing a control system for a 
fermentation process using fuzzy logic in two 
stages. In the first stage the software package 
fuzzyTech from Inform provided the fuzzy logic 
controller, and in the second stage In touch from 
wonder ware provided the user front-end. The 
results of the   new controller and the fault 
detection system show a clear alternative over the 
conventional controller (PID). Optimization of the 
fermentation vessel is run simultaneously with this 
project. The main idea is based on examining the 
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various input parameters that influence the 
fermentation process. These parameters include 
temperature, pressure, fermentation duration and 
yeast count. Then  the quality or output parameters 
are identified. These include alcohol content, 
present gravity, pH, colors and bitters. A model 
based on fuzzy logic was developed to establish the 
inter-relationships between these factors and how 
they affect the output quality factors. The ultimate 
objective is to integrate this fuzzy logic model into 
the fermentation process control system [4, 20-25]. 
 
Most of ester compounds found in beer are 
produced by yeast during fermentation. They 
contribute significantly to beer flavour. Therefore, 
the control of their formation is very important to 
maintain consistent quality of the product. Riverol 
and Cooney (2007) analyzed the influences of 
fermentation temperature and dissolved oxygen 
content in the production of ethyl acetate and 
isoamyl acetate using a comparative studied 
between kinetic methods and neural networks. The 
results confirmed that the production of ester and 
isoamyl acetate can be expressed as a function of 
the ethanol formation, however the isoamyl acetate 
production is independent of the temperature of the 
fermenter. The neural networks allowed obtaining a 
good prediction of ester’s production without to use 
complex model (kinetic analysis) [5, 17-19]. 
 
In some previous paper, a recent EA called 
Differential Evolution (DE) was applied to the 
optimum design problem of a balanced SAW filters 
[6-7]. 

 
2. Differential Evolution  
DE is a very simple population based, stochastic 
function minimizer which is very powerful at the 
same time. DE managed to finish 3rd at the First 
International Contest on Evolutionary Computation 
(1stICEO) which was held in Nagoya, may 1996. 
DE turned out to be the best genetic type of 
algorithm for solving the real-valued test function 
suite of the 1st ICEO (the first two places were 
given to non-GA type algorithms which are not 
universally applicable but solved the test-problems 
faster than DE). The crucial idea behind DE is a 
scheme for generating trial parameter vectors. 
Basically, DE adds the weighted difference 
between two population vectors to a third 
vector.This way no separate probability distribution 
has to be used which makes the scheme completely 
self-organizing.  
 

DE is an improved version of Genetic Algorithms 
(GA) [Deb, (1996)] for faster optimization. DE 
uses real coding of floating point numbers. Among 
the DE is advantages are its simple structure, ease 
of use, speed and robustness. Price and Storn [8] 
gave the working principle of DE with single 
strategy. Later on, they suggested ten different 
strategies of DE. The strategy to be adopted for a 
problem is to be determined by trial and error. The 
key parameters of control are: NP - the population 
size, CR - the cross over constant, F - the weight 
applied to random differential (scaling factor).   
 
 
Evolutionary Algorithm 
Differential evolution (DE) is the stochastic, 
population-based optimization algorithm. It was 
introduced by Storn and Price in 1996 [1,2]. It was 
developed to optimize real (float) parameters of a 
real valued function. The general problem 
formulation is: for an objective function  
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the minimization problem is to find such that 
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for any in the region (2).  
 
 
Evolutionary Algorithms  
DE is an Evolutionary Algorithm (EA) or Genetic 
Algorithm (GA) [3, 4]. The parameter vector is 
called an individual (or chromosome, or genome). 
The objective function is also called the fitness 
function. The general scheme is the same for all 
EAs:  
 
 
 

 
 
Fig. 1 Differential Evolution Scheme. 
 

• Initialization - creation of a population of 
individuals   

• Mutation (and migration in multi-population 

 

Initialization Mutation Recombinatio
n 

Selection Solution 
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versions) - random change of the vector 
components (genes). It can be a single-point 
mutation, inversion, translocation, deletion, etc.  
• Recombination (Crossover) - merging the 
genetic information of two or more parent 
individuals for producing one or more descendants  
• Selection - choice of the best individuals for the 
next cycle.  
 
One cycle in the above scheme is called a 
generation. The solution is found if some stopping 
criterion is met.   
 
Differential evolution  
The canonical EA-GA work with the strings of bits 
or integers (letters). Evolution strategy (ES) and 
Differential evolution both work with vectors of 
real numbers as representations of solutions. The 
ES typically uses adaptive mutation rates for the 
vectors themselves, but DE uses mutations of the 
differences of the parameter vectors.   
 
Algorithm  
Definition: g

ix − are the parameters for the 

individual i ( i = 1, . . . , P ) in the generation g ( g 
= 1, . . . , G max )  
 
Mutation: 
 
i, a,b, c   are mutually different indexes of  
   individuals 

g
ix −   is the target vector 

g

c

g

b

g

ai xxFxd
→→→→

−+= ( ) is the donor vector 

F   is the scaling (weighting) factor 
 
Recombination: 
construct a trial vector 
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Cr  is the crossover 
 
Here rand generates the random numbers in the 
interval [0, 1) and  rand (D) generates integer 
numbers in the interval 0, 1, . . ., D -1. 
 
Selection: 
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Variants of mutation: 
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Here K is the combination factor. For K  = 1 Eq. (6) 
reduces to Eq. (4). Eq.(5) has the following limits: 
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Acceleration 
In the case when the mutation and crossover 
operations do not further improve the best fitness a 
steepest descent method is applied to push the best 
individual towards a better point: 
 

bestx
best

new

best xfxx

→
→→→

∇−= )(ρ  

 
The gradient can be estimated numerically. 
 
Recommendations 
All control constants are problem-specific. 
According to [1], typical values for the weighting 
factor F = 0.8 and for the crossover constant CR = 
0.9. In general, they both should be chosen from 
the interval [0.5,1]. In [6] it is recommended to 
choose CF from the interval [0,1] with typical 
value CR = 0.8. The value for K should be chosen 
around 0.5. It is also reported that the random 
choice of F from the interval [0,2] gives a good 
result. 
 
The overall structure of the DE algorithm 
resembles that of most other population based 
searches. The parallel version of DE maintains two 
arrays, each of which holds a population of NP, D-
dimensional, real valued vectors. The primary array 
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holds the current vector population, while the 
secondary array accumulates vectors that are 
selected for the next generation. In each generation, 
NP competitions are held to determine the 
composition of the next generation. Every pair of 
vectors (Xa, Xb) defines a vector differential: Xa - 
Xb. When Xa and Xb are chosen randomly, their 
weighted differential is used to perturb another 
randomly chosen vector Xc. This process can be 
mathematically written as Xíc = Xc + F (Xa - Xb). 
The scaling factor F is a user supplied constant in 
the range (0 < F ≤ 1.2). The optimal value of F 
for most of the functions lies in the range of 0.4 to 
1.0 (Price and Storn, 1997). Then in every 
generation, each primary array vector, Xi is 
targeted for crossover with a vector like X'c  to  
produce a trial vector Xt. Thus the trial vector is the 
child of two parents, a noisy random vector and the 
target vector against which  it must complete. The 
non-uniform crossover is used with a crossover 
constant CR, in the range 0  ≤ CR  ≤ 1. CR actually 
represents the probability that the child vector 
inherits the parameter values from the noisy 
random vector. When CR = 1 for example every 
trial vector parameter is certain to come from X' 
c. If, on the other hand, CR=0, all but one trial 
vector parameter comes from the target vector. To 
ensure that Xt differs from Xi by at least one 
parameter, the final trial vector parameter always 
comes from the noisy random vector, even when 
CR=0. Then the cost of the trial vector is compared 
with that of the target vector, and the vector that 
has the lowest cost of the  two would survive for 
the next generation. In, all just three factors control 
evolution under DE, the population size, NP; the 
weight applied to the random differential, F; and 
the crossover constant, CR. The pseudo-code for 
DE is given in the fourth section.  
 
Choosing NP, F, and CR is seldom difficult and 
some general guidelines are available. Normally, 
NP ought to be about 5 to 10 times the number of 
parameters in a vector. As for F, it lies in the range 
0.4 to 1.0. Initially F = 0.5 can be tried then F 
and/or NP is increased if the population converges 
prematurely. A good first choice for CR is 0.1, but 
in general CR should be as large a possible (Price 
and Storn, 1997). Among DE is advantages are its 
simple structure, ease of use, speed  and robustness. 

Already, DE has been successfully applied for  
solving several complex problems and is now being 
identified as a potential source for accurate and 
faster optimization.  
 
The crucial idea behind DE is a scheme for 
generating trial parameter vectors. Basically, DE 
adds the weighted difference between two 
population vectors to a third vector. Price and  
Storn [8] have given some simple rules for 
choosing key parameters of DE for any given 
application. DE has been successfully applied in 
various fields. The various applications of DE are: 
digital filter design, fuzzy decision making 
problems of fuel ethanol production, design of 
fuzzy logic controller, batch fermentation process, 
multi sensor fusion, dynamic optimization of 
continuous polymer reactor, estimation of heat 
transfer parameters in trickle bed reactor, optimal 
design of heat exchangers, synthesis and  
optimization of heat integrated distillation system 
optimization of non-linear functions, optimization 
of thermal cracker operation, etc [9].  
 
Babu and Monava [10] presented the application of 
Differential Evolution (DE) for the optimal design 
of shell-and-tube heat exchangers.  The main 
objective in any heat exchanger design is the 
estimation of the minimum heat transfer area 
required for a given heat duty, as it governs the 
overall cost of the heat exchanger.  Lacks of 
configurations are possible with various design 
variables such as outer diameter, pitch, and length 
of the tubes; tube passes; baffle spacing; baffle cut 
etc.  Hence the design engineer needs an efficient 
strategy in searching for the global minimum. In 
the present study for the first time DE, an improved 
version of Genetic Algorithms (GAs), has been 
successfully applied with different strategies for 
1,61,280 design configurations using Bellís method 
to find the heat transfer area.  In the application of 
DE 9680 combinations of the key parameters are 
considered.  For comparison, GAs are also applied 
for the same case study with 1080 combinations of 
its parameters.  For this optimal design problem, it 
is found that DE, an exceptionally simple evolution 
strategy, is significantly faster compared to GA and 
yields the global optimum for a wide range of the 
key parameters [10].  

Babu and Angira [2001] presented the application 
of Differential Evolution (DE), an Evolutionary 
Computation method, for the optimization of 
Thermal Cracking operation. The objective in this 
research was the estimation of optimal flow rates of 
different feeds to the cracking furnace under the 

restriction on ethylene and propylene production. 
Thousands of combinations of feeds are possible. 
Hence an efficient optimization strategy is essential 
in searching for the global optimum. In this study 
LP Simplex method and DE, an improved version 
of Genetic Algorithms (GA), have been 
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successfully applied with different strategies to find 
the optimum flow rates of different feeds. In the 
application of DE, various combinations of the key 
parameters are considered. It is found that DE, an 
exceptionally simple evolution strategy, is 
significantly faster and yields the global optimum 
for a wide range of the key parameters. The results 
obtained from DE are compared with that of LP 
Simplex method [11].  
 
Babu and Munawar [200] presented the application 
of Differential Evolution (DE) for  the optimal 
design of  shell-and-tube heat exchangers. A 
primary objective in the heat exchanger (HE) 
design is the estimation of the minimum heat 
transfer area required for a given heat duty, as it 
governs the overall cost of the heat exchanger. 
However, many numbers of discrete combinations 
of the design variables are possible. Hence the 
design engineer needs an efficient strategy in 
searching for the global minimum heat exchanger 
cost. In this study, for the first time DE, an length, 
number of tube passes, baffle spacing and baffle 
cut. Bellís method is used to find the heat transfer 
area for a given design configuration. For a case 
study taken up, it is observed that DE, an 
exceptionally simple evolution strategy, is 
significantly faster compared to GA and is also 
much more likely to find a function was true global 
optimum[12].  
 improved version of Genetic Algorithms (GA), 
had been successfully applied with 1,61,280 design 
configurations obtained by varying the design 
variables: tube outer diameter, tube pitch, tube 
 
Babu and Sastry [1999] proposed a new non-
sequential technique for the estimation of effective 
heat transfer parameters using radial temperature 
profile measurements in a gas–liquid co-current 
down flow through packed bed reactors (often 
referred to as trickle bed reactors). Orthogonal 
collocation method combined with a new 
optimization technique, differential evolution (DE) 
is employed for estimation. DE is an exceptionally 
simple, fast and robust, population based search 
algorithm that is able to locate near-optimal 
solutions to difficult problems. The results obtained 
from this new technique are compared with that of 
radial temperature profile (RTP) method. Results 
indicate that orthogonal collocation augmented with 
DE offer a powerful alternative to other methods 
reported in the literature. The proposed technique 
takes less computational time to converge when 
compared to the existing techniques without 
compromising with the accuracy of the parameter 

estimates. This new technique takes on an average 
10 s on a 90 MHz Pentium processor as compared to 
30 s by the RTP method. This new technique also 
assures of convergence from any starting point and 
requires less number of function evaluations [13]. 
 

3. Description of the process 
Batch processes play an important role in brewery 
industry (fig.2). During batch-and fed-batch 
operation of bioreactors the system states change 
considerably. As a consequence of the varying 
process states, the best operation results can be 
realized by varying the input variables along 
optimal trajectories during the operation time. This 
explains why searching for efficient methods for 
calculating the optimal trajectories has been an 
important issue for bioreactor control. Several 
methods have been discussed in literature: e.g. first-
order gradient method and dynamic programming 
[14]. 
 
During the beer fermentation a temperature profile 
is applied to drive the process so as to obey to 
certain constraints. The design of this temperature 
profile is an optimization problem where the 
objective is to minimize the operation time and 
optimize the quality of the beer. These objectives 
are frequently in conflict with one another. Trade-
offs exists between some objectives, where 
advantage in one objective will cause deterioration 
in another. These multi-objective optimization 
problems involve the simultaneous consideration of 
multiple performance criteria that should be 
defined prior to the optimization procedure. This 
requires in-depth information concerning the 
various trade-offs and valuation of each individual 
objective. Such detailed model-based multi-criteria 
optimization of the temperature profile of beer 
fermentation is discussed in several articles [14, 16-
18]. 

 
4. Mathematical Model  
In fermentation, an accurate mathematical is 
dispensable for the control, optimization and the 
simulation of a process. Models used for on-line 
control and those used for simulation will not 
generally be the same (even if they pertain to the 
same process) because they are used for different 
purposes; no model could be a reconstruction of the 
process rather it is intended to serve as a set of 
operators on the identified set of inputs, producing 
similar outputs as expected from the process.  
The problem is that the process output is usually 
contaminated with noise and other disturbances, 
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whereas ideally the model should follow the true 
output of the underlying representative process, 
which is unknown. Genetic algorithms, if properly 
chosen, yield the parameter values after processing 
of data coming from measurements on the system.  

Application to Model based Optimization of Beer 
Fermentation 
The performance of the proposed differential 
evolution technique is illustrated in the model-
based temperature profile optimization of beer 
fermentation. 

 
 

Fig 1. a scheme for generating trial parameter vectors 
 

(http://www.icsi.berkeley.edu/~storn/code.html#basi) 
 
 
 
4.1 Process Description 
In this paper a kinetic model [6] has been used to 
estimate the effect of the temperature profiles. This 
model has been developed from experimental data 
and shows good results in the aspect of a realistic 
view of the fermentation process. The model takes 
into account seven components: three components 
of the biomass (latent, active, dead), ethanol and 
sugar, and two important byproducts: ethyl acetate 
and diacetyl. The model equations and parameters 
are taken [16]. Most of the process parameters vary  
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Fig.2 Brewery process description. 

(www.tewsbrewery.com/images/the-brewing-process.jpg) 
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When the parameters used as the following: 
 
Table 2 Categorization used.  
 
 

Parameter Description Unit 
µa Ethanol production rate h-1 
µD Specific yeast setting 

down rate 
g/l 

µeas Ethyl acetate coefficient 
rate 

g/l 

µlog Specific rate of latent 
formation 

h-1 

µs Substrate consumption rate h-1 
µx Specific yeast growth rate h-1 
acet Ethyl acetate concentration ppm 
diac Diacetyl concentration ppm 
e Ethanol concentration g/l 
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Parameter Description Unit 
f Fermentation inhibition 

factor 
g/l 

kdc Diacetyl appearance rate  
kdm Diacetyl reduction rate  
km Yeast growth inhibition 

parameter 
g/l 

ks Sugar inhibition parameter g/l 
s Concentration of sugar g/l 
so Initial concentration of 

sugar 
g/l 

t Time H 
T Temperature oC 
xactive Suspended active biomass g/l 
xdead Suspended dead biomass g/l 
xlog Suspended latent biomass g/l 

 
5. Result and Discussion 
The multi-objective optimization problem and task 
is to find a good temperature profile which result in 
a high ethanol, low sugar and ethyl acetate 
concentrations, a very low diacetyl and biomass 
concentrations, and a smooth temperature profile , 
and short operation time.  In this case study, from 
the ethyl acetate and diacetyle concentrations are  
applying the differential evolution, the results 
demonstrated that the final ethanol level is smaller, 

lower, and the biomass and sugar concentration has 
been decreased also (fig 3-6). 
 
6.   Conclusion 
This paper illustrates the differential evolution to be 
suitable in optimization of batch fermentation 
process. The differential evolution applied here 
appears to be a flexible representation of the model 
that was easy to interface with the differential 
evolution algorithm. In addition, a cost-value 
function has been obtained by means of the 
differential evolution algorithm for the optimization 
of the beer process. Also a softer profile by 
parameter rising and calculating average 
temperatures made results suitable for 
implementation. 
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Fig. 3 Temperature profile of fermenting process by differential evolution. 
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Fig. 4. Suspended biomass behavior results as following :  

total biomass (-); active microbial (-); dead microbial (-); latent heat (-). 
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Fig. 5 Byproducts behavior results as following: ethyl acetate (-); diacetyl acetate (-). 
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Fig. 6 Ethanol and sugar concentration as following: ethanol (-); suagar (-). 
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