
Fuzzy Bimatrix Games with Single and Multiple Objective :
introduction to the computational techniques

ANDRE A. KELLER
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Abstract: This paper introduces to the computational techniques of non-cooperative bimatrix games in an uncertain
environment. Both single and multiple objective fuzzy-valued bimatrix games are considered theoretically with
one numerical example. The presentation is centered on the Nishizaki and Sakawa models. These models are
based on the maxmin and minmax principles of the classical matrix game theory. Equivalent nonlinear (possibly
quadratic) programming problems are giving optimal solutions. The equilibrium solutions correspond to players
maximizing a degree of attainment of the fuzzy goals. Besides the Nash equilibrium, the concept of α-Nash equi-
librium supposes Nature be the third Player. The aggregation of all the fuzzy sets in the multiobjective models
use the fuzzy decision rule by Bellman and Zadeh. This ‘aggregation by a minimum component’ consists in the
intersection of the fuzzy sets, the fuzzy expected payoffs and the fuzzy goals. Numerical examples of two-players
nonzero sum games are solved using the MATHEMATICA 7.0.1 software. The numerical solutions are possibly
local by using iterative methods.

Key–Words: Fuzzy bimatrix game, Single-objective, Multiobjective, Degree of attainment of a fuzzy goal,
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1 Introduction
The non-cooperative bimatrix games using fuzzy
logic (Nguyen and Walker [15]) differ according two
main aspects in the literature: the number of the ob-
jectives and the type of fuzziness of the goals and pay-
offs. Indeed, the bimatrix games may be with a single
objective or with multiple objectives (, Chen [6], Chen
and Larbani [7], Keller [9, 10],Nishizaki and Sakawa
[16]). The uncertainty may also concern the goals or
the payoffs (Bector and Chandra [1], Han et al. [8],
Larbani [11], Wang et al. [24]) or both goals and pay-
offs (Nishizaki and Sakawa [16, 17], Vodyottama et
al. [22]). This introduction presents a crisp bimatrix
game with a single objective.

1.1 Single objective bimatrix game
Two Players I and II have mixed strategies given by
the n-dimensional vector x and the m-dimensional
vector y, respectively. Mixed strategies of Players I
and II are represented by probability distributions to
their pure strategies. Let en be an n-dimensional vec-
tor of ones, em having a dimension m. Suppose that
the strategy spaces of Player I and II are defined by
the convex polytopes

Sm = {x ∈ Rm
+ , e′mx = 1}

and
Sn = {y ∈ Rn

+, e′ny = 1},

respectively. The payoffs of Players I and II are the
m×nmatrices A and B with real entries, respectively.
The objectives of Players I and II are defined by the
programming problems, respectively

{max
x

x′Ay subject to e′mx = 1, x ≥ 0}

and

{max
y

x′By subject to e′ny = 1, y ≥ 0},

respectively. The payoff domains for Players I and II
are

D1 = {x′Ay| x ∈ Sm, y ∈ Sn} ⊆ R

and

D2 = {x′By| x ∈ Sm, y ∈ Sn} ⊆ R,

respectively. Playing safe, the two players will select
the strategies for which the maximum losses are min-
imum.
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1.2 Equilibrium solution
Definition 1 A Nash equilibrium point is a pair of
mixed strategies (x∗, y∗), such that the objectives of
the two players are full filled simultaneously. We have

x′∗Ay∗ = max
x
{x′Ay∗| e′mx = 1, x ≥ 0},

x′∗By∗ = max
y
{x′∗By| e′ny = 1, y ≥ 0}.

The value of the game is obtained at the point
(x′∗Ay∗, x′∗By∗).

Applying the Kuhn-Tucker necessary and sufficient
conditions (see appendix A), we have the Equivalence
Theorem 2.

Theorem 2 (Mangasarian and Stone [13]) LetG =
(Sm, Sn,A,B) be a bimatrix game, a necessary and
sufficient condition that (x∗, y∗) be an equilibrium
point is the solution of the quadratic programming
(QP) problem

maxx,y,p,q x′(A + B)y− p− q
subject to

B′x ≤ qen,
Ay ≤ pem,

e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0,


where p, q ∈ R are the negative of the multipliers as-
sociated with the constraints.

Proof: see appendix B. �
The Lemke-Howson ’s pivot algorithm [12] (see also,
Milchtaich [14], von Stengel [23]) can be used for
computing the equilibrium solutions 1.

1.3 Bimatrix game with fuzzy goals
Definition 3 A fuzzy goal for Player I is a fuzzy set
G̃1 represented by the membership function (MF) µ1 :
D1 7→ [0, 1]. A fuzzy goal for Player II is similarly a
fuzzy set G̃2 represented by the MF µ2 : D2 7→ [0, 1].

An equilibrium solution is defined w.r.t. the degree of
attainment of the fuzzy goals.

Definition 4 A pair (x∗, y∗) ∈ Sm × Sn is an equi-
librium solution if, for other strategies, we have

µ1(x′∗A y∗) ≥ µ1(x′Ay∗), for all x ∈ Sm

µ2(x′∗By∗) ≥ µ2(x′∗By), for all y ∈ Sn.

1In a min-max problem, a function to be maximized w.r.t. the
maximizer variables is minimized w.r.t. the minimizer variables.
Shimizu and Aiyashi [19] present necessary conditions and tech-
niques based on the relaxation procedure for a min-max solution.

According to the Nishizaki-Sakawa model, the ex-
pression of the linear MF of the fuzzy goal G̃1 for
Player I may be

µ1(x′Ay) =


1, x′Ay ≥ ā
x′Ay−a
ā−a , x′Ay ∈ (a, ā)

0, x′Ay ≤ a,

where a denotes the worst degree of satisfaction of
Player I, whereas ā denotes his best degree of satis-
faction. These values are defined as

a = min
x∈X

min
y∈Y

x′Ay = min
i

min
j
aij , (1)

ā = max
x∈X

max
y∈Y

x′Ay = max
i

max
j
aij . (2)

The expression of the linear MF of the fuzzy goal G̃2

for Player II will be, as well

µ2(x′By) =


1, x′By ≥ b̄
x′By−b
b̄−b , x′By ∈ (b, b̄)

0, x′By ≤ b,

where b and b̄ also denote the worst and the best de-
gree of satisfaction of Player II, respectively. These
values are deduced from Eqs.(1-2)similarly, using B.

Theorem 5 (Equilibrium solution) An equilibrium
solution (x∗, y∗) of the fuzzy bimatrix game, is de-
duced from the optimal solution (x∗, y∗, p∗, q∗) of the
QP problem

maxx,y,p,q x′(Â + B̂)y− p− q
subject to

B̂′x ≤ qen,
Ây ≤ pem,

e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0,


where Â = A/(ā− a) and B̂ = B/(b̄− b).
Proof: see Bector and Chandra [1], pages 179-180.�

1.4 Numerical example

In the following game 2, Player I has three pure strate-
gies and Player II four strategies. The payoffs of Play-
ers I and II are respectively

A =

 1 4 7 2
3 6 1 8
2 5 3 9

 and B =

 5 1 2 4
3 4 8 3
1 8 1 2


2This numerical example is adapted from Nishizaki and

Sakawa [17], pages 93–95.
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The values of the worst and the best degree of satis-
faction are given by a = b = 1, ā = 9, b̄ = 8. We
have the QP problem

maxx,y,p,q
1
8x′

 1 4 7 2
3 6 1 8
2 5 3 9

 y

+1
7x′

 5 1 2 4
3 4 8 3
1 8 1 2

 y

−p− q
subject to

1
7


5 3 1
1 4 8
2 8 1
4 3 2

 x ≤ q e4,

1
8

 1 4 7 2
3 6 1 8
2 5 3 9

 y ≤ p e3,

e′3x = 1,
e′4y = 1,

x ≥ 0, y ≥ 0.


The optimum solutions of the QP problem are 3

x∗ = (.625, .375, 0.), y∗ = (.75, 0., .20, 0.), p∗ =
.3125, q∗ = .6071.

2 Single objective fuzzy bimatrix
game

A single objective bimatrix game is now played in a
fuzzy environment where both objectives and payoffs
are uncertain. The fuzzy goals and payoffs are charac-
terized by linear MFs. The equilibrium solutions are
evaluated w.r.t. the degree of attainment of the fuzzy
goals, as in the Nishizaki-Sakawa model. The optimal
solutions are those of nonlinear programming prob-
lems 4.

2.1 Membership functions

The linear MF of the Player I is defined as

µG̃1
(p) =


1, p > ā

(p− a)/(ā− a), p ∈ (a, ā)
0, p ≤ a

3The QP problem is solved by using the primitive ‘NMax-
imize’ of the MATHEMATICA package for searching a global
maximum.

4This presentation is inspired by Nishizaki and Sakawa [17],
pages 103-108, with adapted notations.

Figure 1: Fuzzy LR-type payoffs

where p ∈ D1 denotes the Player I’s fuzzy goal, a is
the worst degree of satisfaction of Player I, whereas
ā denotes the best degree of satisfaction of Player I 5.
Similarly, the linear MF of the Player II’s fuzzy goal
is

µG̃2
(p) =


1, p > b̄

(p− b)/(b̄− b), p ∈ (b, b̄)
0, p ≤ b

where p ∈ D2 denotes the Player II’s fuzzy goal, b is
the worst degree of satisfaction of Player II, whereas b̄
denotes the best degree of satisfaction of Player II. Let
the fuzzy payoffs have an LR-representation, where
the shape function is

L(p) = R(p) = max{0, 1− |p|}.

The fuzzy entries ãij of the matrix Ã are

ãij = (aij , δ−aij
, δ+aij

)LR,

where aij denotes the mean value, δ−aij
and δ+aij

the
left and right spreads, respectively (see Figure 1). The
fuzzy entries ãij are characterized by the MF

µãij (p) =



0, p < aij − δ−aij

p−aij+δ
−
aij

δ−aij

, p ∈ [ aij − δ−aij
, aij)

aij+δ
+
aij

−p
δ+aij

, p ∈ [aij , aij + δ+aij
)

0, p > aij + δ+aij
,

Definition 6 Based on the principle of decision by
Bellman and Zadeh [2] 6, the fuzzy decision is the

5As mentioned, these values are calculated by a =
mini minj aij and ā = maxi maxj aij .

6See, appendix C.
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intersection of the the fuzzy goals and fuzzy expected
payoffs 7, such as for Player I, we have

µa(x,y) = min
{
µx′eAy(p), µG̃1

(p)
}

and for Player II,

µb(x,y) = min
{
µx′eBy(p), µG̃2

(p)
}
.

Definition 7 A degree of attainment of the fuzzy goal
is defined as the maximum of the MF µa(x,y). We have

d1(x, y) = max
p

(
min

{
µx′eAy(p), µG̃1

(p)
})

.

The degree of attainment of the fuzzy goal for Player
II d2(x, y) is similarly defined as

d2(x, y) = max
p

(
min

{
µx′eBy(p), µG̃2

(p)
})

.

Definition 8 For any pair of strategies (x, y), the de-
gree of attainment of the fuzzy goal for Player I and
Player II are respectively

d1(x, y) =
x′(A + ∆A)y− a

ā− a+ x′∆Ay

and

d2(x, y) =
x′(B + ∆B)y− b

b̄− b+ x′∆By
,

where ∆A (resp. ∆B) denotes the right spread matrix
of the fuzzy matrix ÃLR (resp. B̃LR).

2.2 Nash equilibrium solution

According to the Nishizaki and Sakawa’s model, each
player is supposed to maximize the degree of attain-
ment of his goal. An equilibrium solution is then de-
fined w.r.t. the degree of attainment of the fuzzy goals
by the two players.

Definition 9 Let G = (Sm, Sn, Ã, B̃) be a fuzzy bi-
matrix game, the Nash equilibrium solution w.r.t. the
degree of attainment of the fuzzy goal is a pair of
strategies (x∗, y∗) if, for all other strategies, we have

d1(x∗, y∗) ≥ d1(x, y∗) for all x ∈ Sm,
d2(x∗, y∗) ≥ d2(x∗, y) for all y ∈ Sn.

7Nishizaki and Sakawa [16] also consider a convex combina-
tion.

The Player I’s programming problem is

maxx d1(x, y∗) = x′(A+∆A)y∗−a
ā−a+x′∆Ay∗

subject to
e′mx = 1,

x ≥ 0.


The Player II’s programming problem is

maxy d2(x∗, y) = x′∗(B+∆B)y−b
b̄−b+x′∗∆By

subject to
e′ny = 1,

y ≥ 0.


Applying the Kuhn-Tucker necessary and sufficient
conditions, we have the equivalence Theorem 10:

Theorem 10 (Equivalence Theorem) Let
G = (Sm, Sn, Ã, B̃) be a fuzzy bimatrix game,
a necessary and sufficient condition that (x∗, y∗) be
an equilibrium point, is the solution of the non linear
programming problem

maxx,y,ψ,ξ ā x′(A + ∆A)y + b̄ x′(B + ∆B)y
−a x′Ay− ψ(ā− a+ x′∆Ay)2
−b x′By− ξ(b̄− b+ x′∆By)2

subject to
(ā− a+ x′∆Ay)A1y + (ā− x′Ay)(∆A)1y

−ψ(ā− a+ x′∆Ay)2 ≤ 0,
(ā− a+ x′∆Ay)A2y + (ā− x′Ay)(∆A)2y

−ψ(ā− a+ x′∆Ay)2 ≤ 0,
(b̄− b+ x′∆By)B1y + (b̄− x′By)(∆B)1y

−ξ(b̄− b+ x′∆By)2 ≤ 0,
(b̄− b+ x′∆By)B2y + (b̄− x′By)(∆B)2y

−ξ(b̄− b+ x′∆By)2 ≤ 0,
e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0,


where ψ, ξ are scalars, Ai and Bi, i = 1, 2 are the ith
row of matrices A and B, respectively.

Proof: see Nishizaki and Sakawa [17], pages 105-107
8 . �

2.3 α-Nash equilibrium solution

Given a bimatrix game G = (Sm, Sn, Ã, B̃) with
fuzzy payoffs. Suppose that the payoffs are triangu-
lar fuzzy numbers (TFNs) of the form ã = (l,m, u),

8The notations of Nishizaki and Sakawa [17] , pages 105–108
are those of this article except for the right spread matrices À and
B̀ which are denoted by ∆A and ∆B .
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where the real numbers l, m and u denote the lower,
the middle and the upper value, respectively. The
fuzzy payoffs of Player I are represented by Ã =
(ãij)m×n. The entry ãij denotes the (fuzzy) payoff
that Player I receives when the Players I and II choose
the pure strategy i and j respectively.

Definition 11 The α-cut of a fuzzy number ã is de-
fined by aα = {x ∈ X |µã(x) ≥ α}. It can be repre-
sented by the closed interval

[aα, āα] = {λ(āα − aα) + aα, λ ∈ [0, 1]},

where aα and āα denote the real lower and the upper
bounds of the elements, respectively.

According to the method for solving classical games
under uncertainty, Larbani [11] introduces Nature as a
third Player : Nature chooses the payoffs of Players I
and II and the two players express their beliefs about
the behavior of Nature. The α-cuts of the payoffs of
Player I are

Ãα1 =
[
Aα1

, Āα1

]
,

=
{

Λ(Āα1 − Aα1
) + Aα1

}
,

where Λ = (λij)m×n ∈ [0, 1]. Similarly, α-cuts of
the payoffs of Player II are

B̃α2 =
[
Bα2

, B̄α2

]
,

=
{

Π(B̄α2 − Bα2
) + Bα2

}
,

where Π = (πij)m×n ∈ [0, 1], i ∈ Nm and j ∈ Nn.
Nature will be favorable to Player I (resp. to Player
II) if λij ∈ [12 , 1] (resp. πij ∈ [12 , 1]) and Nature will
be unfavorable to those players, otherwise. For the
extreme values λij = 0 (resp. πij = 0), Player I (resp.
Player II) is rather strong pessimistic. For λij = 1
(resp. πij = 1) Player I (resp. Player II) is rather
strong optimistic. If λij = πij = 1

2 , Nature has a
balanced behavior towards the players (Larbani [11]).
The solution can be found by solving the QP problem

maxx,y,p,q x′
(
A(λ0) + B(π0)

)
y− p− q
subject to

Bi(π0)x ≤ qen, i = 1, 2
Aj(λ0)y ≤ pem, j = 1, 2

e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0,


Proposition 12 (α-Nash equilibrium) Let Tij and
Uij be closed subsets for λij and πij respectively
in [0, 1]. An α-Nash equilibrium (x∗, y∗, λ0, π0) of
the game G =

(
Sm, Sn,A(λ0),B(π0)

)
is such that

λ0 = min Tij and π0 = min Uij .

Proof: Larbani [11], page 661. �

2.4 Numerical example

2.4.1 Nash equilibrium

In the following two-players example 9, Players I and
II have two pure strategies. The goals of the two
players are fuzzy. The payoffs are TFNs. The LR-
representations of the payoffs are the tensors Ã ∈
R2×2×3 and B̃ ∈ R2×2×3 for Players I and II respec-
tively, are

ÃLR =
(

(180, 5, 10) (156, 6, 2)
(90, 10, 10) (180, 5, 10)

)
and

B̃LR =
(

(200, 10, 15) (132, 4, 6)
(120, 5, 10) (156, 6, 6)

)
.

The right spread matrices are

∆A =
(

10 2
10 10

)
and ∆B =

(
15 6
10 6

)
.

The optimal solutions of Player I are x∗1 = .2366 and
x∗2 = .7634 w.r.t. a degree of attainment of the goal
10 of 75.3 per cent. The optimal solutions of Player
II are y∗1 = .2963 and y∗2 = .7037 w.r.t. a degree of
attainment of the goal of 39.4 per cent.

2.4.2 α-Nash equilibrium

Larbani [11] introduces the beliefs of the players
about the possible values of the payoffs. The α-
cuts of the payoffs of Player I are defined by Aα1 =
[Aα1

, Āα1
], where the lower and upper bound matri-

ces Aα1
and Āα1

denote the lower and upper bound
matrices.

Aα1
=

(
175 + 5α1 150 + 6α1

80 + 10α1 175 + 5α1

)
,

Āα1 =
(

190− 10α1 158− 2α1

100− 10α1 190− 10α1

)
.

The α-cuts of the payoffs of Player II are similarly
defined by Bα2 = [Bα2

, B̄α2
], where Bα2

and B̄α2 are
the lower and upper bound matrices.

Bα2
=

(
190 + 10α2 128 + 4α2

115 + 5α2 150 + 6α2

)
,

9This numerical application is an extension of the Campos’s
example [4].

10We have d∗1 = x∗(A+∆A)y∗−a
ā−a+x∗∆Ay∗ = .7532.
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B̄α2 =
(

215− 15α2 138− 6α2

130− 10α2 162− 6α2

)
.

If the players choose α-cut levels such as α1 = α2 =
1
2 , the α-cut matrices of Player I and Player II are re-
spectively

A 1
2

=
(

[175.5, 189] [150.6, 157.8]
[81, 99] [175.5, 189]

)
and

B 1
2

=

 [191, 213.5] [128.4, 137.4]

[115.5, 129] [156.6, 161.4]


Suppose, as in Larbani [11], that the players may have
two types of beliefs. In the first case, the players be-
lieve that Nature plays against them. In the second
case, Player I believes that Nature is favorable to him,
only for the pairs of strategies (1,1) and (2,2), and
against him for the other pairs of strategies. Player II
still believes that Nature is against him for all pairs of
strategies. The third case shows the dependence be-
tween the profits of the two players and the strategies
chosen by Nature.

case 1: For Player I, we have Tij = Uij = [0, 1
3 ] and

λ0 = π0 = 0. The payoff matrices of Players I and II
are respectively

A(λ0) =

 355
2 153

85 355
2


and

B(π0) =

 195 130

235
2 153

 .

The game has three Nash equilibria 11.The game has
two perfect equilibria and one mixed equilibrium. The
first perfect Nash equilibrium is

(x∗1, x
∗
2) = (0, 1), (y∗1, y

∗
2) = (0, 1)

with an expected payoff of 177.5 for Player I and an
expected payoff of 153 for Player II. The second per-
fect Nash equilibrium is

(x∗1, x
∗
2) = (1, 0), (y∗1, y

∗
2) = (1, 0)

with an expected payoff of 177.5 for Player I and an
expected payoff of 195 for Player II. The third mixed
Nash equilibrium is

(x∗1, x
∗
2) = (.3532, .6468), (y∗1, y

∗
2) = (.2094, .7906)

with an expected payoff of 158.1 for Player I and an
expected payoff of 144.9 for Player II.

11The package Game Theory of MATHEMATICA is used to cal-
culate all the perfect and mixed Nash equilibrium (Canty [5]).

case 2: For Player I, we have

Tij =

{
[2
3 , 1], i = j, i, j ∈ {1, 2}

0, otherwise.

then, we have

λ0 =

{
2
3 , i = j ∈ {1, 2}
0, otherwise.

The Player II’s beliefs are similar to those of the case
1. The payoff matrices of Players I and II are respec-
tively

A(λ0) =

 365
2

467
3

275
3

365
2


and

B(π0) =

 195 130

235
2 153

 .

The game has three Nash equilibria. Two of them are
perfect equilibria and one is a mixed equilibrium. The
first perfect Nash equilibrium is

(x∗1, x
∗
2) = (0, 1), (y∗1, y

∗
2) = (0, 1)

with an expected payoff of 182.5 for Player I and an
expected payoff of 153 for Player II. The second per-
fect Nash equilibrium is

(x∗1, x
∗
2) = (1, 0), (y∗1, y

∗
2) = (1, 0)

with an expected payoff of 182.5 for Player I and an
expected payoff of 195 for Player II. The third mixed
Nash equilibrium is

(x∗1, x
∗
2) = (.3532, .6468), (y∗1, y

∗
2) = (.2280, .7720)

with an expected payoff of 161.8 for Player I and an
expected payoff of 144.9 for Player II.

case 3: The profits of Players I and II depend on the
strategies that Nature will choose. Nature is favorable
to the players in the range [12 , 1] for λ and µ. The re-
sulting profits in varying λ and µ in the interval [0, 1]
are illustrated by the density plots Figure 2. The prof-
its are then increasing when Nature is more favorable
(with higher values of λ and µ).
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Figure 2: Players’ profits and Nature’s strategies

3 Multiobjective fuzzy bimatrix
game

A multiple objectives bimatrix game is presented 12in
a fuzzy environment where both the objectives and the
payoffs are uncertain. The list of the r payoff matri-

ces for Player I is represented by Ã
k

= (ãkij)m×n, k ∈
Nr, with fuzzy entries. The list of the s payoff matri-
ces for Player II is represented by B̃

l
= (b̃lij)m×n, l ∈

Ns, with fuzzy entries.

3.1 Fuzzy expected payoff

For triangular fuzzy payoffs, we have the
following LR-representations of entries
ãkij =

(
akij , δ

k−
aij
, δk+aij

)
LR

and b̃lij =
(
blij , δ

l−
bij
, δl+bij

)
LR
.

Definition 13 For any pair of mixed strategies (x, y),
the kth fuzzy expected payoff for Player I is defined
by

x′Ã
k
y =

(
x′Aky, x′∆k−

A y, x′∆k+
A y

)
LR

and is characterized by the MF

µ
x′eAk

y
: Dk

1 7→ [0, 1],

where Dk
1 ⊆ R denote the domain of the kth payoff

for Player I. The lth fuzzy expected payoff of Player II
is similarly defined by

x′B̃
l
y =

(
x′Bly, x′∆l−

B y, x′∆l+
B y

)
LR

and is characterized by the MF

µ
x′eBl

y
: Dl

2 7→ [0, 1],

where Dl
2 ⊆ R denotes the domain of the lth payoff

for Player II.

3.2 Fuzzy goal attainment

Definition 14 Let the fuzzy goals of Players I and II
be denoted by p1 = (p1

1, . . . , p
r
1) ∈ D1 ⊆ Rr and

p2 = (p1
2, . . . , p

s
2) ∈ D2 ⊆ Rs. The Player I’s kth

fuzzy goal Gk1 is a fuzzy set characterized by the MF

µk1 : Dk
1 7→ [0, 1], k ∈ Nr.

Similarly, the Player II’s lth fuzzy goal Gl2 is a fuzzy
set characterized by the MF

µl2 : Dl
2 7→ [0, 1], l ∈ Ns.

12This presentation is inspired from Nishizaki and Sakawa [17],
pages 108-114.
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Figure 3: Degree of attainment of a fuzzy goal

Definition 15 For any pair of strategies (x, y), an at-
tainment state of the fuzzy goal is represented by the
intersection of the fuzzy expected payoff x′Ã

k
y and the

fuzzy goal G̃k1 . We have

µka(x,y)(p) = min
{
µk
a(xeAk

y)
(p), µG̃k

1
(p)

}
,

where p ∈ Dk
1 is a payoff of Player I. The degree of

attainment of the kth fuzzy goal for Player II is the
maximum of the MF, such as

µ̂ka(x,y)(p
∗) = max

p
µka(x,y)(p).

Similarly, the degree of attainment of the fuzzy goal
for Player II is

µ̂lb(x,y)(p
∗) = max

p

(
min

{
µl
b(xeBl

y)
(p), µG̃l

2
(p)

})
.

The Figure 3 illustrates the concept.

3.3 Equilibrium solution

An equilibrium solution is defined w.r.t. the degree of
attainment of the aggregated fuzzy goal.

Definition 16 Let G = (Sm, Sn, Ã
k
, B̃

l
, k, l) be a

multiobjective fuzzy bimatrix game, and denote the
degrees of attainment of the aggregated fuzzy goal for
Players I and II by D1(x, y) and D2(x, y), respec-
tively. The equilibrium solution w.r.t. the degree of
attainment of the aggregated fuzzy goal is a pair of
strategies (x∗, y∗) if, for all other strategies, we have

D1(x∗, y∗) ≥ D1(x, y∗), for all x ∈ Sm

D2(x∗, y∗) ≥ D2(x∗, y), for all y ∈ Sn.

If the fuzzy goals are aggregated by a minimum com-
ponent method, the classical decision rule by Bellman

and Zadeh [2] is used 13. This aggregation method
consists in the intersection of all the fuzzy sets. The
Player I’s degree of attainment of the aggregated fuzzy
goal is defined by

D1(x, y) = min
k∈Nr

x′(Ak + ∆k
A)y− ak

āk − ak + x′∆k
Ay

.

The Player I’s programming problem using the kth
payoffs is

maxx,σ σ
subject to

x′(Ak+∆k
A)y∗−ak

āk−ak+x′∆k
Ay∗ ≥ σ,

e′mx = 1,
x ≥ 0.



The Player II’s programming problem for Player II us-
ing the lth payoffs is

maxy,δ δ
subject to

x′∗(Bl+∆l
B)y−bl

b̄l−bl+x′∗∆l
By ≥ δ,

e′ny = 1,
y ≥ 0.



Applying the Kuhn-Tucker necessary and sufficient
conditions, we have the equivalence Theorem 17.

Theorem 17 (Equivalence Theorem) Let
G = (Sm, Sn, Ã

k
, B̃

l
) be a multiobjective fuzzy

bimatrix game, a necessary and sufficient condition
that (x∗, y∗) be an equilibrium point is the solution of

13One another method for aggregating multiple fuzzy goals is
weighting the coefficients.
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the nonlinear programming problem

maxx,y,ψ,ξ,σ,δ,Λ,Θ

{∑r
k=1 λk

[
ak(2x′∆k

Ay+āk−ak)

(āk−ak+x′∆k
Ay)2

−x′∆k
Ay×x′(Ak+∆k

A)y
(āk−ak+x′∆k

Ay)2

]
+ σ − ψ

+
∑s

l=1 θl

[
bl(2x′∆l

By+b̄l−bl)
(b̄l−bl+x′∆l

By)2

−x′∆l
By×x′(Bk+∆l

B)y
(b̄l−bl+x′∆l

By)2

]
+ δ − ξ

}
subject to∑r

k=1 λk

[
(āk−ak+x′∆k

Ay)Ak
1y

(āk−ak+x′∆k
Ay)2

+ (āk−x′Aky)(∆k
A)1y

(āk−ak+x′∆k
Ay)2

]
− ψ ≤ 0,∑r

k=1 λk

[
(āk−ak+x′∆k

Ay)Ak
2y

(āk−ak+x′∆k
Ay)2

+ (āk−x′Aky)(∆k
A)2y

(āk−ak+x′∆k
Ay)2

]
− ψ ≤ 0,∑s

l=1 θl

[
(b̄l−bl+x′∆l

By)(Bl
1)′x

(b̄l−bl+x′∆l
By)2

+
(b̄l−x′Bly)(∆l

B)′
1

x
(b̄l−bl+x′∆l

By)2

]
− ξ ≤ 0,∑s

l=1 θl

[
(b̄l−bl+x′∆l

By)(Bl
2)′x

(b̄l−bl+x′∆l
By)2

+
(b̄l+x′Bly)(∆l

B)′
2

x
(b̄l−bl+x′∆l

By)2

]
− ξ ≤ 0,∑s

l=1 θl

[
(b̄l−bl+x′∆l

By)(Bl
3)′x

(b̄l−bl+x′∆l
By)2

+
(b̄l+x′Bly)(∆l

B)′
3

x
(b̄l−bl+x′∆l

By)2

]
− ξ ≤ 0,

x′(Ak+∆k
A)y−ak

āk−ak+x′∆k
Ay − σ ≥ 0, k ∈ Nr

x′(Bl+∆l
B)y−bl

b̄l−bl+x′∆l
By

− δ ≥ 0, l ∈ Ns

e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0, Λ ≥ 0, Θ ≥ 0,



where ψ, ξ are scalars and Λ′ = (λk)1×3, Θ′ =
(θl)1×3, scalar entries. The vector Aki , i = 1, 2 de-
notes the ith row of the matrix Ak and similarly for
the transposed matrix (Bl)′j , j = 1, 2, 3.

Proof: see Nishizaki and Sakawa [17], pages 110–
114. �

3.4 Numerical example

In the following two players example 1415, Players I
and II have respectively two and three pure strategies
and three different objectives. The goals of the two
players are fuzzy. The payoffs are triangular fuzzy
numbers. The LR-representation of the payoffs are the

tensors Ã
k
∈ R2×3×3, k ∈ N3 and B̃ ∈ R2×3×3, l ∈

N3 for Players I and II respectively, are

Ã
1

LR =
(

(1, .5, 1) (4, 1, 1) (3, .5, 1.5)
(2, 1, 1) (4, .5, .5) (1, 1, 1)

)
,

Ã
2

LR =
(

(4, .5, 1) (3, 1, 1) (2, 1, .5)
(1, 1, 1) (5, 1, .5) (1, .5, 1)

)
,

Ã
3

LR =
(

(2, 1, 1.5) (0, 0, 1.5) (1, .5, 1)
(4, 1.5, 1.5) (1, .5, .5) (3, 1, .5)

)
and

B̃
1

LR =
(

(0, 0, 1) (2, 1.5, 1) (2, 1, 1)
(5, .5, 1) (5, 1, 1) (1, .5, .5)

)
,

B̃
2

LR =
(

(4, .5, 1) (2, 1, 1.5) (5, 1, .5)
(0, 0, 1) (5, .5, .5) (4, 1.5, 1)

)
,

B̃
3

LR =
(

(2, 1, 1.5) (1, .5, 1) (4, 1, 1.5)
(1, .5, .5) (0, 0, 1.5) (1, 1, 1)

)
.

The right spread matrices for Player I are

∆1
A =

(
1 1 1.5
1 .5 1

)
,∆2

A =
(

1 1 .5
1 .5 1

)
,

∆3
A =

(
1.5 1.5 1
1.5 .5 .5

)
.

The right spread matrices for Player II are

∆1
B =

(
1 1 1
1 1 .5

)
,∆2

B =
(

1 1.5 .5
1 .5 1

)
,

∆3
B =

(
1.5 1 1.5
.5 1.5 1

)
.

The optimal solutions 16 of Player I are x∗1 = .6438
and x∗2 = .3562 w.r.t. a degree of attainment of the

14This numerical application is an extension of the Chen’s ex-
ample [6].

15The contribution by Keller [9] introduces to the fuzzy opti-
mization techniques, using the software MATHEMATICA. Simple
classic economic examples are analysed.

16The numerical solutions have been obtained using the primi-
tive ’Minimize’ of MATHEMATICA for a timing of 7 minutes 46
for an Intel(R) Corel(TM)2 CPU6400@2.13 GHz.

WSEAS TRANSACTIONS on SYSTEMS Andre A. Keller

ISSN: 1109-2777 380 Issue 4, Volume 9, April 2010



goal 17 of 58.5 per cent. The optimal solutions of
Player II are y∗1 = .5226, y∗2 = .3149 and y∗3 = .1625
w.r.t. a degree of attainment of the goal of 52.5 per
cent.

4 Conclusion
The crisp bimatrix games have an equivalent QP prob-
lem for finding Nash equilibrium solutions. The sin-
gle objective fuzzy bimatrix game have an equiv-
alent nonlinear programming problem. The multi-
ple objective bimatrix games have an extended non-
linear programming problem. All these problems
may be solve by different ways, by using algorithms
and optimization techniques (Lemke-Howson’s algo-
rithm, multipliers in Varian [21], Van de Panne’s two
phase method [20], symmetric Zimmermann’s ap-
proach [25, 26]), genetic algorithm in Wang et al.
[24], the relaxation procedure for min-max problems
subject to separate constraints (Shimizu and Aiyoshi
[19]).

A Karush- Kuhn- Tucker (KKT)
Optimality Conditions [3]

Let a nonlinear programming problem be (see Boyd
and Vandenberghe [3])

minx f0(x)
subject to

fi(x) ≤ 0, i ∈ Nm

hj(x) = 0, j ∈ Np


The optimization variables are x ∈ Rn, the objective
function is f0 : Rn 7→ R, the m inequality constraints
are fi(x) ≤ 0, i ∈ Nm, and the p equality con-
straints are hj(x) = 0, j ∈ Np. All the functions
f0, f1, . . . , fm, h1, h2, . . . , hp are differentiable. The
domain of the optimization problem is defined by

D =
m⋂
i=0

dom fi
⋂ p⋂

j=0

dom hj .

Associating the m-dimensional multiplier λ and the p-
dimensional multiplier ν, we have the lagrangian

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
j=1

νjhj(x).

17We have

D1∗ = min
k


x∗(Ak + ∆k

A)y∗ − ak

āk − ak + x∗∆k
Ay∗

, k ∈ N3

ff
= .5840

.

Since x∗ minimizes L(x, λ∗, ν∗) over x, it follows that

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑
j=1

ν∗j∇hj(x) = 0.

Thus we have the KKT conditions at the primal point
x∗ and dual points (λ∗, ν∗)

fi(x∗) ≤ 0, i ∈ Nm

hj(x∗) = 0, j ∈ Np

λ∗i ≥ 0, i ∈ Nm

∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi(x∗) +

∑p
j=1 ν

∗
j∇hj(x) = 0,


Boyd and Vandenberghe [3](page 244) present

the minimization quadratic problem

minx
1
2x′Px + q′x + r

subject to
Ax = b,


where we have P ∈ Rn×n a symmetric positive semi-
definite matrix, x ∈ Rn and A ∈ Rm×n. Let the
multipliers be the vector ν, the KKT conditions are

Ax∗ = b
Px∗ + q− A′ν∗ = 0.

Thereafter, the optimal primal and dual variables are
obtained by solving this set of m+ n equations in the
m+ n variables x∗ and ν∗.

B Proof of the Equivalence Theorem

The objectives of the Players I and II are achieved by
solving the two programming problems, respectively

maxx x′Ay∗
subject to
e′mx = 1,

x ≥ 0


and

maxy x′∗By
subject to
e′ny = 1,

y ≥ 0


The equilibrium solution can be obtained by solving
(see Chen [6], Mangasarian and Stone [13])

maxx,y x′Ay∗ + x′∗By
subject to
e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0,



WSEAS TRANSACTIONS on SYSTEMS Andre A. Keller

ISSN: 1109-2777 381 Issue 4, Volume 9, April 2010



Let p = maxx x′Ay∗ and q = maxy x′∗By. The
following inequalities are also true p ≥ x′Ay∗ ≥
x′Ay, for all x ≥ 0. So, we have the simplifica-
tion pem ≥ Ay. We also have the inequalities q ≥
x′∗By ≥ x′By, for all y ≥ 0. So, we have the simpli-
fication qe′n ≥ B′x. The QP problem is

minx,y,p,q (p− x′Ay) + (q − x′By)
subject to

B′x ≤ qe′n,
Ay ≤ pem,

e′mx = 1,
e′ny = 1,

x ≥ 0, y ≥ 0.


Then, the QP problem of the equivalence Theorem 2
is deduced �

C Fuzzy decision sets

C.1 Bellman-Zadeh fuzzy decision rules

According to the Bellman-Zadeh symmetry principle,
a fuzzy decision set is achieved by using an appropri-
ate aggregation of the fuzzy sets.

Definition 18 Let X be a set of possible actions,
{G̃j (j ∈ Nn} a set of fuzzy objectives, and {C̃i (i ∈
Nm} the decision set is defined by

D̃ =
( n⋂
j=1

G̃j

) ⋂( m⋂
i=1

C̃i

)
,

with MF µ1
D̃

: X 7→ [0, 1] given by

µ1
D̃

(x) =
( n∧
j=1

µG̃j
(x)

) ∧( m∧
i=1

µC̃i
(x)

)
.

The MFs of the aggregate fuzzy goal can be expressed
as

µ(x, y) = min
k∈Nr

{
µk(x′Aky)

}
.

Hence, we have with linear MFs

µ(x, y) = min
k∈Nr

{ m∑
i=1

n∑
j=1

akij
āk − ak

xiyj −
ak

āk − ak

}
.

Considering the unequal importance of the fuzzy
goals and constraints, Bellman and Zadeh also sug-
gest another decision rule. This rule is defined the
following convex combination of the fuzzy objective
functions and constraints

µ2
D =

r∑
i=1

αiµGi(x) +
m∑
j=1

βiµCj (x),

where all the nonnegative weighting coefficients αi
and βj sum to one.

C.2 Product fuzzy decision set

The product fuzzy decision is an alternative decision
set, defined by

µ3
D =

( r∏
i=1

αiµGi(x)
)
×

( m∏
j=1

βiµCj (x)
)
,

C.3 Comparison of the fuzzy decision rules

The three types of decision sets are related by the in-
equalities

µ3
D(x) ≤ µ1

D(x) ≤ µ2
D(x).

The following example is taken from Sakawa [18]
with one objective and one constraint. According to
the fuzzy goal ”x should be much larger than 10”, and
according to the fuzzy constraint ”x should be sub-
stantially less or equal than 30”. The MFs of the fuzzy
objective and the fuzzy constraint are respectively de-
fined by

µG(x) =

 0, x ≤ 10
1− 1

1+
(

x−10
10

)2 , x > 10

and

µC(x) =

{
0, x ≤ 30

1
1+ x

x−30
, x < 30

The Figure 4 compares the fuzzy rules. In this
examples, the maximum decisions are obtained
for (x∗1, µ

∗
1) = (11.7549, .7549), (x∗2, µ

∗
2) =

(11.3841, .8500) and (x∗3, µ
∗
3) = (11.4811, .6520).

D Fuzzy quadratic programming

The symmetric approach by Zimmermann [25] may
be used for solving fuzzy programming problems. For
this approach, membership functions are defined, by
using a given aspiration level of the decision maker for
the objective, and accepted tolerances for the objective
and the constraint functions. An equivalent crisp QP
problem is obtained with a quadratic constraint. This
particular QP problem can be solved by using van de
Panne ’s two-phase method [20]
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Figure 4: Fuzzy decision rules: intersection, convex
and product fuzzy decision

D.1 Fuzzy QP problem

The fuzzy QP problem may be defined by a convex
quadratic objective function together with a bounded
feasible region such as in Bector and Chandra [1]

m̃inx c′x + 1
2x′Qx

subject to
Aix . bi, i ∈ Nm

x ≥ 0,


where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, Q ∈ Rn×n.
The vector Ai denotes the ith row of matrix A. The
symmetric matrix Q is supposed to be positive semi
definite.

D.2 Symmetric fuzzy QP problem

According to Zimmermann [25, 26], the symmetric
version of the fuzzy QP problem is

Find x
such that

c′x + 1
2x′Qx & z0,

Aix . bi, i ∈ Nm

x ≥ 0,


where z0 ∈ R is the aspiration level of the DM and
p0, pi, i ∈ Nm the tolerances for the objective and the
set constraints, respectively. The membership func-
tion for the objective is defined by

µ0(z) =


1, z < z0,
(z0+p0)−z

p0
, z ∈ [z0,≤ z0 + p0]

0, z ≥ z0 + p0,

The membership function for the ith (i ∈ Nm) con-
straint is also defined by

µi(Aix) =


1, Aix < bi,
(bi+pi)−Aix

pi
, Aix ∈ [bi, bi + pi]

0, Aix ≥ bi + pi.

An optimal solution is obtained by solving the crisp
equivalent QP problem

Find α
such that

c′x + 1
2x′Qx + αp0 ≤ z0 + p0,

Aix + αpi ≤ bi + pi, i ∈ Nm

x ≥ 0, α ∈ [0, 1].


D.3 Multiplier method

Let a nonlinear programming problem be defined as
in Varian [21]

min
x
f(x) subject to g(x) = 0 and h(x) ≤ 0,

where g, h are nonlinear vectorial functions and x a
vector of variables. The multiplier method is based
on the Uzawa algorithm, which is a dual gradient
ascent algorithm. 18 The principle of the method may
be described by the three steps:
i) predict the multipliers p(k) and q(k) that are associ-
ated with the constraints g(x) = 0 and h(x) ≤ 0,
ii) then, minimize f(x) + p(k)g(x) + q(k)h(x),
iii) then, update until to convergence as
p(k+1) = p(k) + c1g(x(k)) and q(k+1) =
q(k) + c2 max{0,h(x(k))}, where the numbers
ci, i = 1, 2 are positive.

D.4 Numerical example

The following numerical example is taken from Bec-
tor and Chandra [1], pages 77-78. The fuzzy symmet-

18The multiplier method (also called augmented La-
grangian method) package of the software MATH-
EMATICA (see Varian [21]) uses the primitive
MultiplierMethod[f, g, h, x, x0, DualParameter → True].
This primitive is finding a local solution to a minimization
problem where f is the criterion to be minimized, g a list
(possibly empty) of equality constraints, h a list (possibly empty)
of inequality constraints of the form h(x) ≤ 0, x the list of
variables and x0 the initial conditions for x. It returns the list of

results


f∗, {x1 → x∗1, . . .}
ff

. The option DualParameter is

providing information on feasibility and Lagrange and/or KKT
multipliers.
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ric QP problem is

Find (x1, x2)
such that

2x1 + x2 + 4x2
1 + 4x1x2 + 2x2

2 . 51.88,
4x1 + 5x2 & 20,
5x1 + 4x2 & 20,
x1 + x2 . 30,
x1, x2 ≥ 0.


Let the tolerances be p0 = 2.12, p1 = 2, p2 =
1, p3 = 3, the equivalent crisp QP problem is

maxα
subject to

2x1 + x2 + 4x2
1 + 4x1x2 + 2x2

2 + 2.12α ≤ 54,
4x1 + 5x2 − 2α ≥ 18,
5x1 + 4x2 − α ≥ 19,
x1 + x2 + 3α ≤ 33,

x1, x2 ≥ 0,
α ∈ [0, 1].


The optimum solution of the QP problem, given by the
multiplier method is x∗1 = .9918, x∗2 = 3.7253, α∗ =
.8599. This result tells that the solution is obtained
with a satisfaction level of 86 per cent.
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