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Abstract: In some cases of the economic macrodynamics, delay differential equations (DDEs) may be more suit-
able to a wide range of economic models. The dynamics of the Kalecki’s business cycle model is represented by
a linear first-order DDE with constant coefficients, in the capital stock. Such a DDE, with constant or flexible
lags, also occurs in the continuous time Solow’s vintage capital growth model. This is due to the heterogeneity
of goods and assets. DDEs with constant lags may be preferably solved by using Laplace transforms. Numerous
techniques are also proposed for the solution of DDEs, like the inverse scattering method, the Jacobian elliptic
function method, numerical techniques, the differential transform method, etc. This study retains the Zhou’s dif-
ferential transform method for solving nonlinear DDEs with backward-foreward delays and flexible coefficients.
This study also uses a block diagram approach with application to reference economic models, with help of the
software MATHEMATICA 7.0.1 and its specialized packages for signal processing, such as ”Control System Pro-
fessional” and ”SchematicSolver”.

Key–Words: Delay differential equation, Method of steps algorithm, Differential transform method, Laplace trans-
form solution, (x,k)-root plateau.

1 Introduction
The elementary theory of DDEs is introduced by
solving and representing simple reference exam-
ples. MATHEMATICA plots will show how the
parametrized solutions are generated. The technical
aspects also concern the differential transform tech-
nique, for practical reasons. Two representative ap-
plications refer to economics: the earlier Kalecki’s
business cycle model and the Solow’s vintage capital
growth model. The Kalecki’s model is a continuous-
time system with a fixed delay (Allen [1], Kalecki
[20]). The Solow’s model is a continuous-time model
with a flexible delay in Boucekkine et al. [8] and
Bambi [4].

2 Elementary theory of functional
differential equations

2.1 Delay differential equations

In 1963, the book of Bellman and Cooke [6] on the
differential-difference equations is the first attempt in
the study of more complex differential equations, that
will better capture the real situations in many scien-
tific domains. Nowadays, numerous contridutions in-

troduce and deepen the functional differential equa-
tions, such as with El’sgol’ ts and Norkin [10], Hale
and Verduyn Lunel [16].

Definition 1 A delay differential equation (DDE) is a
differential equation in which the time derivatives at
the current time depends on the solution and possi-
bly its derivatives at previous time. A neutral DDE
(NDDE) of differential order n (the highest deriva-
tive) and difference order m (the distinct arguments
less one) is written

y′(t) = F
(
t, y(t), y(t− θ1), . . . , y(t− θn),

y′(t− σ1), . . . , y′(t− σm)
)
, t ≥ t0

given the initial history function

y(t) = φ(t), t < t0.

The sets of delays are such that

{θi > 0, i ∈ Nn|θ1 < . . . < θn}

and
{σi > 0, i ∈ Nm|σ1 < . . . < σm}.

The θ’s (resp. the σ’s) delays may be constant (θ =
C), time dependent (θ(t)) or time and state dependent
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(
θ(t, y(t))

)
. Many dynamical processes involve time

delays in engineering, nonlinear optical device, lasers
dynamics, chemical kinetics, physiological systems,
population dynamics, economics, etc. The interdisci-
plinary nature of the DDEs is illustrated by different
contributions in Balachandran et al. [3]. These pro-
cesses lead to models incorporating a dependence on
the past history through the state variable. The linear
form of a DDE of differential order n and difference
order m with constant coefficients takes the form 1

m∑
i=0

n∑
j=0

aijy
(j)(t− ωi) = f(t),

where y(j)(t) ≡ dj/dtjy(t).
The subclass of the linear first-order DDE will

then be written

a0y
′(t) + a1y

′(t− ω) + b0y(t) + b1y(t− ω) = f(t),

where f(t) is assumed to be integrable and of bound-
ary variation. Consider the linear DDE with a forcing
term f(t)

y′(t) + ay(t) + by(t− θ) = f(t), (1)

subject to the initial or boundary condition

y(t) = φ(t), with t ∈ [−θ, 0]. (2)

Suppose that f is of class C1 on [0,∞) and φ ∈
C0 on [0, θ).

Theorem 2 (Existence and uniqueness) (Bellman
and Cooke [6]). There exists one and only one con-
tinuous function for t ≥ 0, which satisfies Eqs.(1-2)
for t > θ. Moreover, this function is of class C1 on
(θ,∞) and of class C2 on (2θ,∞). If φ is of class C1

on [−θ, 0], y′ is continuous at θ, if and only if

φ′(θ − 0) + aφ(θ) + bφ(0) = f(θ). (3)

If φ is of class C2 on [−θ, 0], y′′ is continuous at 2θ if
either Eq.(3) holds or else b = 0.

1The general form of a NDDE is given by Bellman and Cooke
[6]

F

„
t, y(t), y(t− ω1), . . . , y(t− ωm),

y′(t), y′(t− ω1), . . . , y
′(t− ωm), . . . ,

y(n)(t), y(n)(t− ω1), . . . , y
(n)(t− ωm)

«
= 0

.

Proof. See Bellman and Cooke [6], pages 50-51. �
Basic reference equations are the DDEs of differ-
ent type: the Frisch-Holme type, the Ikeda type, the
Mackey-Glass type, the logistic type and the Lotka-
Volterra system of DDEs. The Frisch-Holme type
DDE [12] is of the form

y′(t) = −ay(t)− by(t− θ),

where a and b are non-negative constants, and θ a
given positive delay. This DDE was inspired by
the macroeconomic Kalecki model [20]. Frisch and
Holme [12] discuss the characteristic solutions. The
Ikeda type DDE [19]may be written in the simplified
form 2

y′(t) = sin(t− θ),

where the RHS is a delayed nonlinear feedback. The
bifurcation phenomena of the system are discovered
by Ikeda and Matsumoto [19] and Sprott [31]. The
Mackey-Glass type DDE was introduced to model the
physiological control systems (i.e. the production of
white blood cells). The DDE takes the form 3

y′(t) = a
y(t− θ)

1 + y(t− θ)n
− by(t),

where a, b are positive parameters and θ a given delay.
The study by Mackey and Glass [28] deals with a first-
order nonlinear DDE. The equation displays dynamic
behavior including limit cycle oscillations, a variety
of wave forms, aperiodic and chaotic solutions. The
logistic function is frequently used in modeling the
population growth of persons, animal species or other
physiological members. The assumption is that the
population grows with the population size, moderated
by a competition factor. Indeed, as population grows,
its members come into competition for food and other
limited resources. Assuming y(y − 1)/2 interactions
for a given population of size y, the logistic (non de-
layed) growth equation (see Shone [30], pages 593-
603) is

y′(t) = ry(t)− r1
y(t)

(
y(t)− 1

)
2

2The Ikeda type DDE was proposed to model an optical
bistable resonator system. The generalized form introduces a fric-
tion besides a delayed feedback, such as

y′(t) = −y(t) + µ sin
`
x(t− tR)− x0

´
,

where x is the lag of the phase in the electric field, µ the laser
power intensity injected into the system, tR the round trip time of
the light in the resonator and x0 a constant.

3The generalization with infinite delay, given by Liz et al.
[26], is the integro-differential equation

y′(t) = −δy(t) + α

Z ∞

0

dq(s)

1 + yn(t− s)
, t > 0, y ≥ 0,

with α, δ > 0 and n ∈ (0,∞).
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or
y′(t) =

(
a− by(t)

)
y(t).

Introducing a positive delay, single species models
(see Bocharov and Rihan [7], Kuang [25]) and eco-
nomic time-to-build model may take the form of a
DDE, such as for the Hutchinson’s equation [18](also
referred to as Wright equation [34]). The equation is
written

y′(t) = r
(
1− y(t− θ)/K

)
y(t),

where the nonegative parameters r and K denote re-
spectively, the intrinsic growth rate and the environ-
ment carrying capacity. Also biological problems give
rise to Lotka-Volterra systems [27, 33] of logistic de-
layed DDEs, such as the two-dimensional system

y′1(t) =
(
−a1 + b1y2(t− θ2)

)
y1(t),

y′2(t) =
(
−a2 + b2y1(t− θ1)

)
y2(t),

where a1, b1, a2, b2 are positive constants, and θ1, θ2

two delays. Assuming that two species of animal
compete for food, the relative growth rate of each
species is negatively related with a specific delay to
the biomass of other species.

2.2 Method of Steps Algorithm

The Bellman’s method of step is a numerical integra-
tion approach for DDEs. The theoretical aspects of
such numerical methods are shown in Bellen and Zen-
naro [5]. Let a real-valued DDE with constant delay
be

y′(t) = f
(
t, y(t), y(t− θ)

)
, t > θ, θ > 0,

where f is continuous in all arguments. The method
of steps algorithm (MSA) consists in extending fore-
ward an initial solution in the direction of increas-
ing t (see Halanay [15]. The equation is solved for
each meshpoint {0, θ, 2θ, . . . , kθ, . . . }. Suppose that
y′t) = y0(t) is given on [−θ, 0]. The computation
process consists of the following steps:
1st step: a solution y(t) = y1(t) is determined on
[0, θ] by solving, analytically or numerically, an ordi-
nary differential equation (ODE) with the initial con-
dition y(0). We have

y′(t) = f
(
t, y(t), y0(t− θ)

)
, t ∈ [0, θ]

y(0) = y0(θ), t ∈ [−θ, 0].

2nd step : a solution y(t) = y2(t) is determined on

[θ, 2θ] by solving an ODE with the initial condition
y(θ). We have

y′(t) = f
(
t, y(t), y1(t− θ)

)
, t ∈ [θ, 2θ]

y(θ) = y1(θ), t ∈ [0, θ].

· · ·

kth step : a solution y(t) = yk(t) is determined on
[(k − 1)θ, kθ] by solving an ODE with the initial
condition y((k − 1)θ). We have

y′(t) = f
(
t, y(t), yk−1(t− θ)

)
, t ∈ [(k − 1)θ, kθ],

with

y((k − 1)θ) = yk−1(θ), t ∈ [(k − 2)θ, (k − 1)θ].

2.2.1 Dynamics of a Frisch-Holme type DDE

A Frisch-Holme type DDE [12] 4 is defined by

y′(t) = −ay(t)− by(t− θ).

With the parameter values a = 0, b = −1, θ = 1, the
DDE is now

y′(t) = y(t− 1).
Let the initial function be simply set to y0(t) = 1,
at period 0. The ODE to solve at next period will be
y′(t) = y0(t− 1), y(1) = y0(1), at period 1, and that
of the next period will be y′(t) = y1(t − 1), y(2) =
y1(2), a.s.o.

Suppose that y(t) = 1 for t ∈ (0, 1]. If y′(t) =
y(t − 1) is to hold for t > 1, the values of y′(t) for
t ∈ (1, 2) are determined. Since y(t) is required to be
continuous at t = 1, these values determine y(t) for
t ∈ (1, 2), we have

y(t) = 1 + (t− 1) = t, t ∈ [1, 2].

Extending the definition of y(t) from one interval to
the next, we find the expression 5

y(t) =
n∑

k=0

(t− k)k

k!
, t ∈ [n, n + 1], n ∈ N0.

4Kalecki [20] early retained a similar DDE for the macroeco-
nomic system

y′(t) =
m

θ
y(t)− m + nθ

θ
y(t− θ),

for which a main cyclical solution is obtained for the parameter
values: m = .95, n = .121 and θ = .6 (7 months). In the
Kalecki’s model, y(t) denotes a deviation of investment from the
constant demand for restoration of equipement. The parameters
m and n are coefficients, providing from a relation between the
proportion of investment and the expected net yield.

5In Appendix A, the general solution is obtained by applying
Laplace transforms to a similar DDE with different values for b.
The Tinbergen’s shipbuilding cycle model, in Appendix C, also
uses this type of DDE for a value of the delay which differs from
unity.
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Let two simple real-valued DDEs with constant unit
delay be DDE1 for y′(t) = y(t − 1) and DDE2 for
y′(t) = −y(t − 1) with history y0(t) = 1 on [−1, 0]
for both equations. The first three steps are presented
in Figure 1.

Figure 1: Solution of equations DDE1 and DDE2 for
the first three steps

For each case, the solutions are shown in Figure 2.
The cartesian plots show the integral solution in y(t),
the velocity y′(t) and acceleration y′′(t). The phase
plots in (y(t−1), y(t)) plane show different dynamics
of the two simple models. Figure 3 allows the evalu-

Figure 2: Solutions for y′(t) = y(t − 1) (DDE1) and
y′(t) = −y(t− 1) (DDE2)

ation of the Frisch-Holme dynamics, with parameters
a and b, within some ranges. The solutions are ex-
plored for different values of the coefficients a and
b, of the delay θ, and for different history functions,
through the control of sliders. An additional discrete
slider allows the choice between the cartesian and the
parametric plot. Theoretical studies show that delayed

Figure 3: Frisch-Holme dynamics

feedback mechanisms or multiple feedback loops may
generate complex periodic, aperiodic or chaotic dy-
namics (in Glass et al. [13]).

2.2.2 Stability of the Frisch-Holme DDE

The stability of all solutions is achieved asymptoti-
cally, provided that all the characteristic roots lie in
the negative complex left half-space (LHP) (in Bell-
man and Cooke [6], Kolmanovskii and Nosov [22],
Hairer et al. [14], Kolmanovskii and Myskis [23, 24]).
Searching for solutions of the form

y(t) = ceρt, with ρ = α + jβ, j =
√
−1 (4)

leads to the characteristic equation

D(ρ) ≡ ρ + a + be−ρθ = 0, (5)

which possesses many solutions for b 6= 0. We are
searching for (a, b)-values for which D(ρ) = 0. A
zero root is obtained for a + b = 0. The purely imag-
inary root is ρ = jω, for ω real. Inserting the com-
plex ρ in Eq.(4) into Eq.(5), and separating the real
and imaginary parts, we obtain a parametric function
in ω for a and b, and a fixed delay θ. The parametric
equations are defined by

a = −ω cot ωθ, (6)
b = ω sec ωθ. (7)
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The spectrum of roots of D(ρ) in the complex plane
is plotted 6 in the LHS Figure 4 for (a, b) = (−.5, 1).
All the the roots stay in the LHP. The RHS Figure
4 shows a unique stability region in the (a,b)-plane.
At the point C(−.5, 1), in the stability region Γ0, all
characteristic roots of the transcendental function are
negative (see the LHS Figure 4).

Definition 3 (D-Subdivision). Given a characteris-
tic equation of a DDE with constant coefficients, a
D-subdivision is a partition of the coefficients (a, b)
plane into regions by hypersurfaces, the point of
which corresponds to quasi-polynomials having at
least one zero on the imaginary axis.

The boundaries of the D-Subdivision are plotted in the
RHS Figure 4. One boundary is the line a + b = 0 for
a real zero root. The other boundaries are defined by
the parametric functions Eqs.(6-7) in ω for a given de-
lay θ. A boundary is drawn for any of the open inter-
vals

(
0, π

θ

)
,
(

π
θ , 2π

θ

)
,
(

2π
θ , 3π

θ

)
, . . . . The solutions are

either monotonic or oscillatory. The D-Subdivision
method determines the number of roots having posis-
itive real part (p-zeros) in accordance with the coeffi-
cients a and b. For continuous variation of the coef-
ficients, the number of the p-zeros may change when
passing accross the boundary of a region of the D-
Subdivision. To every region Γk, it is possible to as-
sign a number k of p-zeros, as in the RHS Figure 4.
The regions Γ0 (if they exist) are the regions of asymp-
totic stability of solutions. There is one such shaded
stability region in Figure 4. The extension to a lin-
ear (linearized) system of DDEs introduces the matrix
equation (Engelborghs and Roose [11])

y′(t) = A0y(t)+
m∑

i=1

Aiy(t−θi), Ai ∈ Rn×m, i ∈ Nm,

whose characteristic equation reads

det
(
D(ρ)

)
= ρI− A0 −

m∑
i=1

Aie
−ρθi = 0.

2.3 Differential Transform Method

The approximate solution of a DDE by using the
Zhou’s differential transform method (DTM) was ex-

6The characteristic equation D(ρ) = 0 with ρ = α+βj, j =√
−1 is numerically solved for (a, b) = (−.5, 1). The set of

equations to be solved is

{a + α + be−α cos β = 0,

β − be−α sin β = 0.

The roots can be computed by using a Newton-Raphson
method, with adequate starting values.

Figure 4: Asymptotic stability of solutions with D-
Subdivision.

tended by Arikoglu and Ozkol [2]. The DTM ap-
proach is used to solve linear and nonlinear DDEs
with variable coefficients.

2.3.1 Introduction to the method

The transformation of the kth derivative of a function
f(t) is

F (k) =
1
k!

f (k)(t)|t=t0 ,

and the inverse transformation is defined by

f(t) =
∞∑

k=0

F (k)(t− t0)k.

The transformation of usual functions is presented in
Appendix B. Let a DDE take the general form

f

(
g(n1)(t+θ1), g(n2)(t+θ2), . . . , g(np)(t+θp)

)
= 0,

(8)
with the boundary conditions (BCs)

g(ai)(t)|t=bi
= ci, i ∈ Nm.

The differential transformation D[.] of the BCs is
given by

T∑
k=0

k!
(k − ai)!

G(k)
(
bi − t0

)k−ai = ci, i ∈ Nm.

Theorem 4 (Arikoglu and Ozhol [2]). Let G(k) =
D[g(t)], the solution of Eq.(8) depends on the solution
of the unknown coefficients G(0), G(1), . . . , G(T ).
We have

Fk

(
G(0), G(1), . . . , G(T )

)
= 0, k ∈ N0,T−m.

(9)
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Eq.(9) consists in m equations, the remaining T−m+
1 standing from the transformation of Eq.(8).

Proof. See Arikoglu and Ozkhol [2]. �

2.3.2 Application to the Kalecki’s system

The continuous-time Kalecki’s business cycle system
[20] is

Y (t) = C(t) + I(t), (10)
C(t) = cY (t)− u(t), c ∈ (0, 1), (11)

I(t) =
1
θ

∫ t

t−θ

B(τ)dτ, (12)

B(t) = λ
(
vY (t)−K(t)

)
, λ ∈ (0, 1), (13)

K ′(t) = B(t− θ). (14)

The aggregate demand in Eq.(10) of consumption C
and investment outlays I equals the total revenue Y .
In Eq.(11), consumption is proportional to the total
revenue and is influenced by a stabilization policy
u(t). In Eq.(12), the investment orders depend on
the past investment decisions B with a fixed delay of
θ. The determination of the investment decisions, in
Eq.(13), is proportional to the gap between the de-
sired level of equipment vY (t) and the existing capi-
tal stock K. According to Eq.(14), a fixed delay sep-
arates the deliveries of capital goods from the orders.
After some algebraic manipulations 7, the system may
be reduced to a linear first-order DDE with constant
coefficients, in the variable K(t)

K ′(t) = aK(t)− bK(t− θ), K(0) = 1, (15)

where a = λv
θ(1−c) and b = λ

(
1 + v

θ(1−c)

)
. Using the

Table B.1, we obtain the transformation of Eq.(15)

(k + 1)K̄(k + 1)− aK̄(k)

+ b
T∑

h1=k

(
h1

k

)
(−1)h1−k − K̄(h1) = 0.

The unique BC is also transformed to K̄(0) = 1.
Taking for numerical values λ = 2/5, θ = 1, c =
3/4, v = 1/2, the coefficients are a = .8 and b = 1.2.
Choosing T = 4, with the BC and k = 0, 1, 2, 3 and
taking for numerical values , a linear system in the

7The integral Eq.(12) is also written as

I(t) = θ−1

Z t+θ

t

K′(x)dx = θ−1`
K(t + θ)−K(t)

´
,

where x = τ + θ.

variables K̄(1), K̄(2), K̄(3), K̄(4) is solved. We have
the system

.2K̄(1)− 1.2K̄(2) + 1.2K̄(3)− 1.2K̄(4) = .4,

.4K̄(1)− .4K̄(2) + 3.6K̄(3)− 4.8K̄(4) = 0,

.4K̄(2)− .6K̄(3) + 7.2K̄(4) = 0,

.4K̄(2)− .8K̄(4) = 0.

We obtain the solution

K̄(1) = −.56, K̄(2) = −.4, K̄(3) = .0533,

K̄(4) = .0266.

Using the inverse transformations from Table B.1, the
series solution for the problem is divergent with

K(t) = 1−1.56t− .4t2 + .0533t3 + .0266t4 +O(t5).

3 Generalized DDEs for economic
systems

3.1 Kalecki’s business cycle model with dis-
crete delay

The Laplace transformed variables X(t) are written
L[X(t)] = X̄(s). The Laplace transform uses notably
the following property that8.

L[f(t + θ)] = esθL[f(t)].

The Laplace transform of the system Eqs.(10-14) is

Ȳ (s) =
Ī(s)
1− c

− Ū(s)
1− c

,

Ī(s) =
1
θ
(eθs − 1)K̄(s),

B̄ = λvȲ (s)− λK̄(s),

sK̄(s) = e−θsB̄(s),

where the initial conditions are zero and where
Ū(s) = L[u(t)] denotes the input of the system. Solv-
ing the system w.r.t. K̄(s), the transfer function is

K̄(s)
Ū(s)

=
φ(s, θ)λv

(1− c)
(

s + φ(s, θ)λ− (1−φ(s,θ))λv
θ(1−c)

) ,

8In fact, we have

L[f(t + θ)] =

Z ∞

0

e−stf(t + θ)dt

or
est

Z ∞

0

e−st1f(t1)dt1 = esθL[f(t)],

where t1 = t + θ. QED �
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where φ(s, θ) = e−θs is approximated by the Taylor’s
series 1 − θs + θ2s2

2 + O(s3). Taking the parameter
values λ = 2/5, θ = 1, c = 3/4, v = 1/2 and a unit
delay θ = 1, the transfer function is

H(s) = 2
s2

2 − s + 1
3s2

2 − s
2 + 1

.

The constant is 2 (about 6 dB), the zeros are the com-
plex conjugates 1±j, so as the poles 1

6(1±j
√

23). Us-
ing the MATHEMATICA package ”SchematicSolver”,
the system may be represented by the block-diagram
of the Figure 5. The system has two positive feedback
loops, for the consumption and the investment block
G(s).

Figure 5: Block-diagram of the Kalecki’s model

The Bode diagrams in Figure 6 of the transfer
function show the response of the system to a sine
signal. The impact of a shorter/longer time delay is
illustrated in Figure 7 9.

3.2 Solow’s vintage capital growth model
with variable delay

The purpose of a growth model with heterogeneous
productive capital, is to determine the optimal age
structure of machines by taking adequate investment
decisions.

3.2.1 Equations of the system

The Solow’s vintage capital growth system consists
of four equations. The first two equations describe the

9The block-diagram approach has been applied by Keller [21]
to other macroeconomic models, such as with the linear Phillips’
model and the nonlinear Goodwin model, to the study of the stabi-
lization effects of economic policies in an uncertain environment.

Figure 6: Bode diagrams for different delays
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Figure 7: Impact of time delay on simulation results

vintage technology 10 and the market good equilib-
rium.The next two equations concern the labor mar-
ket (labor demand and equilibrium). We have the sys-
tem11

y(t) =
∫ t

t−T (t)
i(τ)dτ, (16)

l(t) =
∫ t

t−T (t)
i(τ)e−a(τ)τdτ, (17)

i(t) = (1− c)y(t), (18)
l(t) = 1. (19)

Eq.(16) represents an AK technology (A = 1) in
the vintage productive capital, where all existing ma-
chines are supposed to be in use. The variables are de-
fined by: production y, investment i, age T of the old-
est machine, and τ a generation of machines. Eq.(17)
is the labor demand l(t). Each machine at t requires
e−a(t)t workers, and new machines are more produc-
tive, since the element a(t)t with

(
a(t)t

)′
> 0 de-

notes the technological progress. According to the
equilibrium condition Eq.(18) of the good market, a
fixed proportion 1 − c of income is saved and totally
invested. Since the labor supply is assumed to be con-
stant over time, the equilibrium condition on the labor
market is defined by Eq.(19).

3.2.2 System of DDEs with flexible delays

The differentiation of the system Eqs.(16− 19) leads
to a system of two DDEs in y′(t) and T ′(t) with flex-
ible delays 12. We have

y′(t) = (1− c)y(t)
(
1−Ψ(t)

)
,

T ′(t) = 1− y(t)
y
(
t− T (t)

)Ψ(t),

where

Ψ(t) = e−a(t)t/e−a
(
t−T (t)

)
×
(
t−T (t)

)
.

The function Ψ(t) is a ratio between the labor require-
ment of the new machines at t to the replaced ones at
t− T (t).

10The productive capital stock is made up of different homoge-
neous vintages (Allen [1]). Each vintage consists of a comparable
set of machines, in use at t but installed at t− T .

11This presentation is inspired from Boucekkine et al.[8].
12Differentiating Eq.(16), we obtain

y′(t) = (1− c)

„
y(t)− y

`
t− T (t)

´
×

`
1− T ′(t)

´«
.

The differentiation of Eq.(17) leads clearly to l′(t) = 0, which is
solved w.r.t. T ′(t).
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3.2.3 Modified Method of Steps Algorithm

The MSA cannot be extended directly to the time-
varying state-dependent DDE

y′(t) = f

(
t, y(t), y

(
t− θ(t, y(t)

))
,

where θ

(
t, y(t)

)
is the lag function of time t and

state variable y(t). In fact, the successive mesh-
points {0, σ1, σ2, . . . , σk, . . .} will differ from each
other and are unknown. At each step k, the mesh-
point σk+1 must be determined, given the computed
solution y(t) = yi+1(t) on [σi, σi+1] for i = 0, . . . , k.
The equation

σk+1 − θ(σk+1, y(σk+1)) = σi

is solved for the meshpoint σi corresponding to the
smallest σk+1 > σk. One illustration of the process
is given by Boucekkine et al. [8]. Suppose that the
generalized DDE is given by

y′(t) = y
(
t− θ(t)

)
,

where the lag function is defined by θ(t) = t + sin t
and the initial function y0(t) = 1.
At the step 1, for i = 0, i ∈ {0, 1} we have to solve
y′(t) = y0(t) = 1 on [0, σ1]. We find the solution
y(t) = y1(t) = 1 + t. At this step, for i = 1, we have
to solve y′(t) = y1(− sin t), which gives contradic-
tory results on [0, 2π]. Indeed, the solution of y′(t) =
− sin t + 1, y(0) = 1 is t + cos t on [0, 2π], whereas
the solution of y′(t) = − sin t + 1, y(π) = 1 + π is
2+ t+cos t on [π, 2π]. Since, the smallest value may
be chosen in practice, we retain σ1 = π. The modified
algorithm then introduces two substeps for each step
of the MSA (Boucekkine et al.[8]):
(i) Replacing the solution yi(t) on [σi−1, σi] for i =
0, . . . , k in the DDE, the resulting ODE is solved and
gives yk+1(t).
(ii) The largest meshpoint value σk+1 is such that
y′k+1(t) is consistent with the DDE over [σk, σk+1].
The solution is y(t) = yk+1(t) on [σk, σk+1. The nu-
merical code used by Boucekkine et al. [8] is based
on the 5th-order Runge-Kutta method.

A Laplace transform solution of
equation y′(t) = −by(t− 1)

The Laplace transform method is used to solve a linear
first-order DDE:

y′(t) + by(t− 1) = 0, t > 0, (A.1)

which BCs are y(t) = 0, t ∈ [−1, 0], and
where b is a constant. We know that13 L[y(t)] =∫∞
0

y(t1)e−st1dt1 = Y (s), s ∈ C, and L[y′(t)] =
sY (s) − y0. Multiplying Eq.(A.1) by e−st, and inte-
grating from 1 to infinity, we have also∫ ∞

1

y′(t)e−stdt + b

∫ ∞

1

y(t− 1)e−stdt = 0. (A.2)

Let us examine the two integrals of Eq.(A.2). In-
tegrating by parts the first integral and assuming
y(t)e−st → 0 as t →∞, we obtain∫ ∞

1

y′(t)e−stdt = −y(1)e−s + s

∫ ∞

1

y(t)e−stdt.

(A.3)
Using a change of variable for the second integral
yields

b

∫ ∞

1

y(t− 1)e−stdt = b

∫ ∞

−1

y(t1)e−s(t1+1)dt1,

= by0e
−s

∫ 0

−1

e−stdt + be−s

∫ ∞

−1

y(t1)e−st1dt1,

= by0e
−s

[
−est

s

]0

−1

+ be−sY (s),

=
by0(1− e−s)

s
+ be−sY (s). (A.4)

Placing Eqs.(A.3) and (A.4) into Eq.(A.2) yields

sY (s)− y0 +
by0(1− e−s)

s
+ be−sY (s) = 0. (A.5)

Solving Eq.(A.5) for Y (s) and assuming that s −
e−s 6= 0, we get

Y (s) =
y0

s
− by0

s(s + be−s)
. (A.6)

Theorem 5 (Pinney [29]). Let f(t) be integrable
over every finite interval such that

(i)
∫∞
0

f(t)e−st converges absolutely on the real
line Re s = c
(ii) f(t) is of bounded variation in the neighborhood
of t, then∮

(c)
F (s)estds =

1
2

(
f(t + 0)− f(t− 0)

)
,

13The inverse Laplace transform is given for a suitable c by

L−1[Y (s)] = (2πj)−1

Z c+j∞

c−j∞
Y (s)estds = y(t).
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where the LHS is a contour integral, taken along the
line from c− jT to c + jT in the complex plane14.

From Eq.(A.6), Y (s) may also be expressed as

Y (s) =
y0

s
− by0

s2(1 + b e−s

s )
,

= y0

(
1
s
−

∞∑
p=0

(−1)pbp+1e−pss−p−2

)
.

Applying the theorem 5, we have

y(t) =
∮

(c)
y0

(
est

s
−
∞∑

p=0

(−1)pbp+1es(t−p)/ep+2

)
ds,

= y0

(∮
(c)

est

s
ds−

∞∑
p=0

(−1)pbp+1

∮
(c)

es(t−p)/sp+2ds

)
.

Giving that (see Pinney [29], page 8)∮
(c)

ehk

kn+1
=

{
hn

n! , Re h > 0,

0, Re h < 0,

we obtain the solution

y(t) = y0

(
1−

[t]∑
p=0

(−1)p bp+1 (t− p)p+1

(p + 1)!

)
,

where [t] denotes the largest integer less or equal to t.

B Differential Transform Method
Evaluation)

Let a nonlinear DDE with backward-foreward delays,
and variable coefficients 15

y′′(t)− e−ty′(t− 1)y(t + 1) = 0, (B.1)

where the BCs are y(0) = y′(0) = 1, t ∈ [0, 1].
The exact solution is clearly et. Using the table B.1
16, knowing that D[e−x] = (−1)k/k!, we obtain the

14The contour integral is represented byI
(c)

F (s)estds ≡ lim
T→∞

1

2πj

Z c+jT

c−jT

F (s)estds.

15This example is drawn from Arikoglu and Ozhol [2] with
adapted notations, and using the package MATHEMATICA.

16The Table B.1 of usual differential transforms is derived from
the theorems by Arikoglu and Ozhol [2].

transformation of Eq.(B.1)

(k + 1)(k + 2)Y (k + 2)

−
k∑

k2=0

k2∑
k1=0

T∑
h1=k1+1

T∑
h2=k2−k1

(k1 + 1)
(

h1

k1 + 1

)

×
(

h2

k2 − k1

)
(−1)h1−k1−1Y (h1)Y (h2)

× (−1)k−k2

(k − k2)!
= 0.

The BCs are also transformed to Y (0) = Y (1) = 1.
Choosing T = 8, with the BCs and k = 0, 1, 2, a
nonlinear system in Y (1), Y (2), . . . , Y (8) is solved
17. Using the inverse transformations from Table B.1,
the series solution for the problem is obtained

y(t) = 1 + t + .499973t2 + .166615t3 + .041599t4

+.008289t5+.001373t6+.000187t7+.000016t8+O(t9).

The errors increase significantly with time in Figure
B.1.

Figure B.1: DTM errors

17Solving the nonlinear system by using the primitives of
MATHEMATICA, 128 solutions are obtained. The 20 real solu-
tions are shown in the LHS Figure B.1.
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f(t) F(k)=D[f(t)]

g(t)± h(t) G(k)±H(k)

c g(t) c G(k1)

tn δ(k − n) =

{
1, k = n

0, k 6= n

g(t) h(t)
∑k

k1=0 G(k1)H(k − k1)

g(n)(t) (k+n)!
k! G(k + n)

p(t) g(n)(t)
∑k

h1=0 P (k1)
(k−k1+n)!

(k−k1)!

×G(k − k1 + n)

g(t + a) limT→∞
∑T

h1=k

(
h1

k

)
×ah1−kG(h1)

g(n)(t + a) limT→∞
(k+n)!

k!

∑T
h1=k+n(

h1

k + n

)
ah1−k−nG(h1)

p(t) g(n)(t + a) limT→∞
∑k

k1=0

∑T
h1=k−k1+n

(k−k1+n)!
(k−k1)!

(
h1

k − k1 + n

)
×ah1−k+k1−nP (k1)G(h1)

Table B.1: Differential transforms F (k) = D[f(t)]

C Tinbergen’s shipbuilding cycle

The Tinbergen’s equation [32] is of the form 18

y′(t) = −by(t− θ), b > 0, t > θ. (C.1)

It is also assumed that y(t) = h(t), t ∈ [0, θ), where
h(t) is some given function. In this application to the
shipbuilding industry, y denotes the deviation of the
tonnage from a mean value and θ a given constant con-
struction time. In this equation, Tinbergen assumes
the rate of new shipbuilding to be proportional to a
delayed tonnage deviation, with a one to two years
delay θ and a ranged intensity reaction b ∈ [12 , 1]. An
endogenous cycle is found for the shipbuilding indus-
try, with a period of 7 years 6 months for θ = 1 and 8
years 9 months for θ = 2.

C.1 Characteristic equation

Let the form of the unknown function be y(t) = eρt,
the characteristic equation from Eq.(C.1) is

D(ρ) ≡ ρ + be−ρθ = 0, ρ ∈ C, (C.2)

where ρ = β + αj, j =
√
−1. Inserting ρ into

Eq.(C.1) and separating the real and imaginary parts,
we get the system

cos u =
−v

θb
ev,

sin u

u
=

1
θb

ev,

where u ≡ αθ and v ≡ βθ. Eliminating v, we obtain
an even function f(u) in which the structural coeffi-
cients θ, b are not explicit. We have

f(u) =
u

tan u
+ ln

sin u

u
= C, (C.3)

where C ≡ − ln(θb). A further analysis of the charac-
teristic equation is given by Pinney [29] by means of
the (x, k)-root plateau in the parameter space19. The
properties of the characteristic equation are summa-
rized in Figure C.1(see also Hayes [17])

18A nonlinear DDE version is given by Pinney [29]

y′(t) = −by(t− θ)− εy3(t− 1), ε, b > 0.

19According to this concept, the parameters may be chosen in
order to achieve some desired properties for the system. Let the
complex number be ρ = x + jy, the (x,k)-root plateau represents
the sets of parameter values for which the caracteristic equation
has k pseudo roots greater than x. The equations of the (x, k)-root
plateau on the b-line are

Re D(ρ) = x + be−x cos y,

Im D(ρ) = y − be−x sin y.
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Figure C.1: Characteristic equation properties

C.2 Existence of exponential components

Let z ≡ ρθ, Eq.(C.2) may be expressed as

− z

θb
= e−z. (C.4)

The two parts of Eq.(C.2) are plotted 20 in Figure
C.2. The condition for tangency of the two curves
1/(θb) = e−z is z = ln(θb). Inserting in Eq.(C.3),
we get C = 1. The solution of the DDE Eq.(C.1) is a
pure exponential 21 of the type

y(t) = (C1 + C2t)eρt.

For C > 1, the solutions are composed of two expo-

Figure C.2: Exponential behavior

nentials in the period ranges

T ∈
(

θ

k
,

θ

k − 1
2

)
, k ∈ N.

20Figure C.2 shows a state of a dynamic interactive MATHE-
MATICA plotting, with automatic sliders and controls.

21A degenerate cycle with infinite period.

C.3 Existence of cyclical components

A cycle corresponds to each real solution of Eq.(C.4)
when C < 1. The two sides of this equation are repre-
sented in Figure C.3. Real branches of f(u) decrease
monotically in all the intervals [k2π, (2k + 1)π], k ∈
N0. According to u = αθ and α = 2π

T , the corre-
sponding period ranges are

T ∈
(

θ

k
,

θ

k − 1
2

)
, k ∈ N0.

The sine curves may be damped or undamped. A dict-
inction is made between the major cycle of the first pe-
riod and the minor cycles The corresponding patterns

Figure C.3: Cyclical pattern

of components are shown in Figure C.4.

Figure C.4: Pattern of the components
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