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Abstract: - This paper presents some algorithms for estimation of the state variables in distributed parameter 
systems of parabolic and hyperbolic types. These algorithms are expressed on regression using anterior values 
of adjacent state variables and on auto-regression using the anterior values of the same variable. The momentary 
values may be obtained using sensors from a network placed in the field of the distributed parameter systems. 
The computation of the estimates is done using the adaptive-network-based fuzzy inference scheme. The structure 
of the ANFIS is derived based on training using measured values obtained form the sensor network. The 
algorithms and the method of estimation, emerged from three powerful concepts as theory of distributed 
parameter systems, artificial intelligence, with its tool adaptive-network-based fuzzy inference and the intelligent 
wireless ad-hoc sensor networks allow treatment of large and complex systems with many variables by learning 
and extrapolation. They have applications in monitoring, fault estimation, detection and diagnosis of large and 
complex physical processes. The paper presents some case studies as applications of all four algorithms. 
 
Keywords: - System identification, fault detection and diagnosis, wireless sensor networks, non-linear system 
identification, distributed parameter systems, adaptive-network-based fuzzy inference, multivariable estimation 
techniques, auto-regression, non-linear auto-regression exogenous model, heat distribution, wave equation, 
partial differential equations. 
 

1   Introduction 
Many practical applications may be seen as 
distributed parameter systems, described with partial 
differential equations. The supervision, fault 
detection and fault diagnosis are important to 
improve reliability, safety and efficiency in 
maintenance of industrial processes. For these 
purpose some analytical methods in a classical 
approach in the field of fault detection and diagnosis 
are based on linear models as: parameter estimation, 
state space observers and parity equations [1]. In the 
last decades these methods were applied with 
success in electrical drives, power plants, aircrafts 
or chemical plants. For non-linear systems 
identification usage of the artificial intelligence 
concepts as fuzzy logic, neural networks and the 
adaptive-network-based fuzzy inference [2] 
represents powerful tools in system identification. In 
the theory of non-linear system identification there 
is the non-linear auto-regression exogenous model, 
as a time series [3, 4]. The model uses the present 

and the past values of the time series. Like any other 
estimation model it has an error as a residual term, a 
difference between the estimate and the measured 
value. The distributed parameter systems are in 
practice more complex processes, described using 
partial differential equations, such as the 
propagation of sound or heat, electrostatic 
phenomena, fluid flows or elasticity. Processes 
considered with variables distributed in space may 
be watched using modern wireless intelligent sensor 
networks. The wireless sensor networks are made by 
tiny spatial distributed autonomous sensors [5, 6]. 
They cooperate to monitor physical variables such 
as temperature, sound, acceleration, vibration or 
pressure. Some classical methods are developed for 
identification of the general distributed parameter 
system identification [7, 8]. 
     Some recent references cited in the international 
conferences are presented as it follows. The paper 
[9] presents an identification method, a structure and 
algorithms based on ANFIS, as a better solution 
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then large set of continuous functions defined on a 
compact set to an arbitrary accuracy. A non 
parametric modeling problem for a distributed 
parameter plant is analyzed to verify its quality 
behavior. The paper [11] proposed a strategy for the 
identification of the parameters in a mathematical 
model described by partial differential equations 
based on differential neural networks, on a tubular 
reactor system as application. In [12] ANFIS is used 
to predict chaotic and traffic flow time series, to 
achieve both high accuracy and less computational 
complexity for time series prediction. In [13] 
ANFIS is combined to tune the premise parameters 
and consequent parameters by means of a hybrid 
gradient descent and least-squares estimation. A 
simulation to a dynamic nonlinear system 
demonstrates the effective of this method. Paper 
[14] introduces a new approach for predicting and 
modeling of total solar radiation data from only the 
mean sunshine duration and air temperature using 
an ANFIS. This technique is suitable for time series 
prediction. In this study a database of daily sunshine 
duration, ambient temperature and total solar 
radiation data, which had been recorded for 10 
years. An ANFIS model has been trained based on 9 
years known data from a database. Paper [15] 
presents some aspects related to the estimation of 
average air temperature in the built environment by 
using integer neural networks, ANFIS and 
inferential sensor models. The paper compares the 
results of these models, presenting their advantages 
and disadvantages. In the emerging area of research 
of wireless sensor network applications [16] the 
design of a wireless network sensor information and 
identification system database which archives the 
data reported by distributed sensors is outlined here, 
as well as the implemented support for queries and 
data presentation. The innovations in this research 
include real-time support for data presentation and 
visual presentation of sensor nodes reporting in a 
geographical and temporal context. It provides 
support for pattern identification and data mining in 
sensor systems. The identification of non-linear 
systems continues to be a contemporary problem, 
trying to be solved using different methods, for 
example in [17], for unknown nonlinear system, 
given the distribution knowledge of the system 
inputs. 
     From the international journals we may refer 
some papers as it follows. In the paper [18] a 
spectral approximation based on intelligent 
modeling is proposed for the distributed thermal 
processing in semiconductor industry. Other 
approaches as: the parabolic model for the thermal 
distributed parameter system and state estimation 

with neural networks are used. Real time 
experiments are done. In the paper [19] ANFIS is 
applied to sensor data processing, for a calibration 
technique. The paper [20] describes the use of an 
ANFIS model to reduce the delay effects in gaze 
control, by prediction of the target movement. A 
study of fault diagnosis to a rolling bearing used in a 
reciprocating machine by adaptive filtering 
technique and fuzzy neural network is presented in 
[21]. An application of intelligent sensor fault 
detection and identification for temperature control 
is presented in [22]. An application of nonlinear 
system identification with a feedforward neural 
network and an optimal bounded ellipsoid algorithm 
is presented in [23]. 
     The author has developed and published several 
papers related of using multivariable estimation 
techniques based on artificial intelligence for the 
identification of distributed parameter systems [24, 
25], in the new context of intelligent sensor 
networks. As a distributed tool they may be used to 
measure time variables in the complex distributed 
parameter systems. In this application, with a large 
field of interest in science and engineering, all the 
above topics contribute, converging to the same 
objective – identification, detection and diagnosis of 
faults in distributed parameter systems. 
     The paper presents a general theory for 
developing four estimation algorithms in distributed 
parameter systems, using ANFIS as a non-linear 
estimator obtained by training. Also a general 
method is provided for monitoring of distributed 
parameter systems based on measurements made 
with sensor networks and ANFIS as a practical 
platform these estimation algorithms. In the chapter 
2 the development starts from general equations in 
continuous time, using discretization to obtain 
general equations in discrete time, to obtain the 
basic models for estimation. From these time 
discrete equations the algorithms are derived as an 
obvious consequence in chapter 3. The estimator 
mechanism based on a non-linear ANFIS function, 
which may be trained from measured data obtained 
from the sensor networks is presented. In the fourth 
chapter some information on sensor networks is 
presented: technical characteristics, measuring 
capabilities with the practical application structure. 
The fifth chapter presents the considerations on 
estimation and detection, with the estimator 
equation, the detection structure and the monitoring 
method. In the sixth chapter four study cases are 
discussed, for each estimation algorithm presented 
in chapter 3. In the end the conclusion reviews the 
main things of the paper, advantages and possible 
applications. 
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2   Primary General Models 
2.1   Continuous Time Models 
The distributed parameter systems are of different types. 
In the following theory we will make references to the 
parabolic and hyperbolic types, with have many 
applications in practice. For these systems the general 
models in continuous time, as partial differential 
equations, are: 
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where the variables θ(ζ, t) are depending on time t≥0 and 
on space ζ∈V, where ζ is x for one axis, (x, y) for two 
axis or (x, y, z) for three axis, c1, c2 and c3 are 
coefficients, which could be also time variant and Q(ζ, t) 
is an exterior excitation, variable on time and space. In 
the general case, an implicit equation may be used: 
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     For the partial differential equations (1, 2) some 
boundary conditions may be imposed to establish a 
solution. So, when the variable value of the boundary is 
specified there are Dirichlet conditions: 
 

qc =θ4  (4) 
 
     And, when the variable flux and transfer 
coefficient are specified there are Neumann 
conditions: 

 

065 =θ+θ∇ cc  (5) 
 

     Limit and initial conditions of the equations (1, 2) are 
imposed in the practical application case studies: 
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2.2   Discrete Time Models 
Models with finite differences may be associated to 
the equations (1) and (2). For this purpose the space 
S is divided into small pieces of dimension lp: 
 

nll p /=  (7) 
 
     In each small piece Spi, i=1,…,n of the space S 
the variable θ could be measured at each moment tk, 
using a sensor from the sensor network, in a 

characteristic point Pi(ζi), of coordinate ζi. Let it be 
θi

k the variable value in the point Pi(ζi) at the 
moment tk. It is a general known method to 
approximate the derivatives of a variable with small 
variations. In the equation with partial derivatives 
there are derivatives of first order, in time, and 
derivatives of first and second order in space. 
     So, theoretically, we may approximate the 
variable derivative in time with a small variation in 
time, with the following relation: 
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     The first and the second derivatives in space may 
be approximated with small variations in space to 
obtain the following relations: 
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     We may consider the variable is measured as 
samples at equal time intervals with the value: 
 

kk tth -1+=  (10)
 
called sample period, in a sampling procedure, with 
a digital equipment, from a sensor network. 

A linear approximate system of derivative 
equations of first order may be used: 
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where, this time, θ is a vector containing the values 
of the variable θ(ζ, t) in different points of the 
space, at different time moments. 

Combining the equations (8, 9) in the equation 
(1) a system of equations with differences results for 
the parabolic equation: 
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and combining the equations (8, 9) in the equation 
(2) an equivalent system with differences results as 
a model for the hyperbolic equation: 
     Combining the equations (8, 9) in the equation 
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(2) an equivalent system with differences results as 
a model for the hyperbolic equation: 
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     Taking account of equations (12, 13) it is 
obvious that several estimation algorithms may be 
developed as it follows, based on the discrete 
models of the partial differential equations. We may 
use several estimation algorithms based on discrete 
models of the partial derivative equation. 
 
 
3   Estimation Algorithms 
3.1   Algorithms for Parabolic Systems 
Estimation algorithm 1. It estimates the value of the 
variable 1+θki  at the moment tk+1, measuring the 
values of the variables k

i
k
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k
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moment tk: 
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     This is a multivariable estimation algorithm, 
based on the adjacent nodes. 
     Estimation algorithm 2. It estimates the value of 
the variable 1+θki  at the moment tk+1, measuring the 
values of the same variable 321 --- θ,θ,θ,θ k
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four anterior moments tk, tk-1, tk-2 and tk-3. 
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     This is an autoregressive algorithm. 
 
 
3.2   Algorithms for Hyperbolic Systems 
Estimation algorithm 3. It estimates the value of the 
variable 1+θki  at the moment tk+1, measuring the 
values of the variables k

i
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This is a multivariable estimation algorithm, 

based on the adjacent nodes and 2 time anterior 
moments. 

Estimation algorithm 4. It estimates the value of 
the variable 1+θki  at the moment tk+1, measuring the 
values of the same variable 
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3.3   Estimator Mechanism 
The estimator is a non-linear one, described by the 
function y=f(u1, u2, u3, u4), using the adaptive-
network-based fuzzy inference [2, 10]. Its general 
structure is presented in Fig. 1. 
 

 
     The estimator has nr inputs u1, u2, u3, …, u4 and 
one output y. The number of inputs depends on the 
algorithm type. For the 1st and 2nd algorithms there 
are 4 inputs, because of the first order derivation in 
time of the parabolic model. For the 3rd and the 4th 
algorithms there are 6 inputs, because of the second 
order derivation in time of the hyperbolic model. 
     The ANFIS procedure may use a hybrid learning 
algorithm to identify the membership function 
parameters of single-output, Sugeno type fuzzy 
inference system. A combination of least-squares 
and backpropagation gradient descent methods may 
be used for training membership function 
parameters, modeling a given set of input/output 
data. 
     In the inference method and may be 
implemented with product or minimum, or with 
maximum or summation, implication with product 
or minimum and aggregation with maximum or 
arithmetic media. 
     The first layer is the input layer. The second 
layer represents the input membership or 
fuzzification layer. The neurons represent fuzzy sets 
used in the antecedents of fuzzy rules determine the 
membership degree of the input. The activation 
function represents the membership functions. The 
3rd layer represents the fuzzy rule base layer. Each 
neuron corresponds to a single fuzzy rule from the 
rule base. The inference is in this case the sum-prod 
inference method, the conjunction of the rule 
antecedents being made with product. The weights 
of the 3rd and 4th layers are the normalized degree of 
confidence of the corresponding fuzzy rules. These 
weights are obtained by training in the learning 

 
Fig. 1. The estimator input-output general structure 
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process. The 4th layer represents the output 
membership function. The activation function is the 
output membership function. The 5th layer 
represents the defuzzification layer, with single 
output, and the defuzzification method may be the 
centre of gravity. 
 
 
4   Sensor Network Capabilities 
4.1   General Technical Characteristics 
A Crossbow sensor network was used in practice. It 
has the following components: a starter kit, a 
MICA2 2,4 GHz wireless module, and an MTS320 
sensor board. Their nodes are 2 MICAz 2,4 GHz 
modules, with 2 sensors MTS400, which are 
measuring temperature, humidity, pressure, ambient 
light intensity; 1 MICAz 2,4 GHz with 2 sensors 
MTS310 and 1 module MICAz 2,4 GHz working as 
a central node when it is connected through the UB 
port. A gateway MIB520 for node programming and 
a data acquisition board MDA320 with 8 analogue 
channels are provided. The network has the 
following software: MoteView for history sensor 
network monitoring and real time graphics and 
MoteWorks for nod programming in MesC 
language. The user interface allows some facilities, 
as: administration, searching, connections options 
and so on. 
 
 
4.2 Measuring Capabilities 
This modern wireless sensor network has multiple 
measuring capabilities. So, it can measure 
temperature, humidity, light intensity or acceleration 
on 2 axes. For these kind of physical variables the 
mathematical models are as follows. 
     For temperature: 
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where Q is the time variable source of heating, 
positioned in space and θ is the temperature. 
     For light intensity: 
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where I is the luminous intensity of the light source, 
at the distance x and high h, as a measure of the 
source intensity as seen by the eye, E is the 
luminance at the specific point, defined as a ratio, 
with ΔΦ representing the flux that strikes a tiny area 
ΔS, calculated considering a spherical surface of 

radius r, with Δα representing the solid angle. 
     For acceleration: 
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where the above notations represents the 
acceleration ax, ay, the speed vx, vy and the space x, y 
on two axis for an object of the mass m, under a 
force F. Some characteristics measured for the 
sensor network are presented in Fig. 2. 
 

 
Fig. 2. Temperature am humidity transient 

characteristics measured with the sensor network 
 
 
4.3   Application Structure 
A sensor network is made by ad-hoc tiny sensor 
nodes spread across the space S. Sensor nodes 
collaborate among themselves, and the sensor 
network provides information anytime, by 
collecting, processing, analyzing and disseminating 
temperature measured data. Sensor network is 
working as a distributed sensor. The constructive 
and functional representation of a sensor network is 
presented in Fig. 3. 
 

 
Fig. 3. A sensor network with mobile access 
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5   Estimation and Detection 
5.1   Estimation Equation 
The present paper considers four multivariable 
estimation models, two as regressive and other two 
as autoregressive, both based on nonlinear ANFIS 
estimator, which can efficiently approximate the 
time evolution in space of the measured values 
provided by each and every sensor within the 
coverage area. An estimation model describes the 
evolution of a variable measured over the same 
sample period as a non-linear function of past 
evolutions. This kind of systems evolves due to its 
“non-linear memory", generating internal dynamics. 
The estimation model definition is: 
 

))(),...,(()( 1 tutufty n=  (21)

 
where u(t) is a vector of the time series under 
investigation (in our case is the series of values 
measured by the sensors from the network): 
 

[ ]Tnuuuu ...21=  (22)

 
and f is the non-linear estimation function of non-
linear regression, n is the order of the regression. By 
convention all the components u1(t),…,un(t) of the 
multivariable time series u(t) are assumed to be zero 
mean. The function f may be estimated in case that 
the time series u(t), u(t-1),…, u(t-n) is known 
(recursive parameter estimation), either predict 
future value in case that the function f and past 
values u(t-1),…, u(t-n) are known (AR prediction). 
 
 
5.2   Detection Structure 
The method uses the time series of measured data 
provided by each sensor and relies on an (auto)-
regressive multivariable predictor placed in base 
stations as it is presented in Fig. 4. 
 

 

Fig. 4. Detection structure 

 
     The principle is the following: the sensor nodes 
will be identified by comparing their output values 

θ(t) with the values y(t) predicted using past/present 
values provided by the same sensors or adjacent 
sensors (adj). After this initialization, at every 
instant time t the estimated values are computed 
relying only on past values θA(t-1), …, θA(0) and 
both parameter estimation and prediction are used as 
in the following steps. First the parameters of the 
function f are estimated using training from 
measured values with a training algorithm as 
backpropagation for example. After that, the present 
values )(θ tA  measured by the sensor nodes may be 
compared with their estimated values y(t) by 
computing the errors: 
 

)(-)()( tytte AA θ=  (23)

 
     If these errors are higher than the thresholds Aε  
at the sensor measuring point a fault occurs. Here, 
based on a database containing the known models, 
on a knowledge-based system we may see the case 
as a multi-agent system, which can do critics, 
learning and changes, taking decision based on node 
analysis from network topology. Two parameters 
can influence the decision: the type of data 
measured by sensors and the computing limitations. 
Because both of them are a priori known an off-line 
methodology is proposed. Realistic values are 
between 3 and 6.We are choosing 4 for the 
algorithms 1 and 2 and 6 for the algorithms 3 and 4. 
So, the method for fault detection and diagnosis 
provided by this paper may be synthesized as 
follows. 
 
 
5.3   Monitoring Method 
The method recommended for fault detection and 
diagnosis based on identification, sensor network 
and ANFIS is the following. It is according to the 
objectives of monitoring of defined distributed 
parameter system from the practical application in 
the real world, as heat distribution, wave 
propagation and so on. These systems have known 
mathematical model as partial differential equations 
as primary models from physics, with well-defined 
boundary and initial conditions for the system in 
practice. These represent the basic knowledge for a 
reference model from real data observation. The 
primary physical model must be discretized, to 
obtain a mathematical model as a multi input - multi 
output state space model in discrete time. The 
unstructured meshes may be generated. The sensors 
must be placed in the field according to the meshes 
structured under the form of nodes and triangles. A 
scenario for practical applications could be chosen 
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and simulated. The simulation and the practical 
measurements are producing transient regime 
characteristics. On these transient characteristics, 
seen as times series, the estimation algorithms may 
be applied. ANFIS is used to implement the non-
linear estimation algorithms. With these algorithms 
future states of the process may be estimated. 
Possible fault in the system are chosen and 
strategies for detection may be developed, to 
identify and to diagnose them, base on the state 
estimation. In practice applying the method 
presumes the following steps: -placing a sensor 
network in the field of the distributed parameter 
system; -acquiring data, in time, from the sensor 
nodes, for the system variables; -using measured 
data to determine an estimation model based on 
ANFIS; -using measured data to estimate the future 
values of the system variables; -imposing an error 
threshold for the system variables; -comparing the 
measured data with the estimated values; -if the 
determined error is greater then the threshold a 
default occurs; -diagnosing the default, based on 
estimated data, determining its place in the sensor 
network and in the distribute parameter system field. 
 
 
6   Case Studies 
6.1   Parabolic Case 
In this paper a parabolic case study consisting in a 
heat distribution flux through a plane square surface 
of dimensions l=1, with Dirichlet boundary 
conditions as constant temperature on three margins: 
 

rh =θθ  (24) 
 
with r=0, and a Neuman boundary condition as a 
flux temperature from a source 
 

gqnk =θ+θ∇  (25) 
 
where q is the heat transfer coefficient q=0, g=0, 
hθ=1. 
     The heat equation, of a parabolic type, is: 
 

)()( θ−θ++θ∇∇=
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where ρ is the density of the medium, C is the 
thermal (heat) capacity, k is the thermal 
conductivity, coefficient of heat conduction, Q is the 
heat source, hθ is the convective heat transfer 
coefficient, θext is the external temperature. Relative 
values are chosen for the equation parameters: 
ρC=1, Q=10, k=1. 
     With the above conditions the equation may be 

solved using the finite element method. The 
optimized mean meshes and nodes are presenting in 
Fig. 5. 
 

 
Fig. 5. The optimized meshes and nodes 

 
     The temperature represented height 3D over the 
surface analyzed is presented in Fig. 6. 
 

 
Fig. 6. The temperature over the plane 

 
 In practice we are using a reduced number of 
sensors, which could be equivalent to a number 
reduced of nodes and meshes, for example a sensor 
network with only 13 nodes, placed like in Fig. 7. 
 

 
Fig. 7. Sensor network position in the field 

 
     For this case of approximation with a reduced 

WSEAS TRANSACTIONS on SYSTEMS Constantin Volosencu

ISSN: 1109-2777 289 Issue 3, Volume 9, March 2010



number of meshes the solution with the finite 
element method is represented in Fig. 8. 
 

 
Fig. 8. Solution for 13 meshes 

 
     This could be the worst case of approximation, 
equivalent to the worst case of estimation. 
     The repartition of temperature on isotherms in 
plane is presented in Fig. 9. 
 

 
Fig. 9. Temperature in plane 

 
     In the application we are choosing the nodes 8, 
13, 12 5 and 11 from the Fig. 7 to apply the 
estimation method. The transient characteristics of 
the temperature are presented in Fig. 10 for 101 
samples. 
 

 
Fig.10. Temperature transient characteristics 

     The time period was 1 and the sampling period 
was 0,01. In Fig. 10 the temperature for nodes 13 
and 12 are the same, because they are on the same 
isotherm. 
     We are chosen as an example the node 5 to be 
the node with the estimated temperature, based on 
the first recursive algorithm: 
 

)θ,θ,θ,θ(=θ + kkkkk f 1112138
1

5  (27) 
 
     And also for the node 5 we will apply the second 
algorithm, auto-recursive: 
 

)θ,θ,θ,θ(=θ ---+ 3
5

2
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     The fuzzy inference system structure is presented 
in Fig. 11. 
 

 
Fig. 11. FIS structure 

 
     The comparison transient characteristics for 
training and testing output data are presented in Fig. 
12. 
 

 
Fig. 12. Comparison between training and testing 

output 
 
     The average testing error is 2,017.10-5. Number 
of training epochs is 3. 
 For the second algorithm the training error was 
of 0,007, number of epochs 3 and the testing error 
0,007. 
     The FIS general structure is the same, but with 
different parameter values. 
     The estimated output for the second algorithm is 
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presented in Fig. 13. 
 

 
Fig. 13. The estimated output for the second 

algorithm 
 
 Comparing the two algorithms the first one had a 
better testing error. 
     If a fault appears at the sensor 5 an error occurs 
in estimation, like in Fig. 14. 
 

 
Fig. 14. Error at the fifth node for a fault in the 

network 
 
     Detection of this error is equivalent to a default 
at sensor 5, from other point of view in the place of 
the sensor 5 in the space of the distributed parameter 
systems and in the heat flow around the sensor 5. 
 
 
6.2   Hyperbolic Case 
In this paper a hyperbolic case study is presented, 
useful for example at wave propagation in plane. 
     The equation used in analysis is: 
 

43212

2
)( cccc

t
+θ+θ∇∇=

∂

θ∂  
 
(29) 

 
where the parameter have the following values: 
c1=1, c2=1, c3=0, c4=10. 
     The space on which is made the analysis is a 
square with unitary dimension l=1. Boundary 
conditions were imposed as follows: on the left, 
right and front Dirichlet conditions: h=1, r=0. On 
the square’s base Neumann conditions: q=0, g=0. 
     The discrete optimized number and position of 

meshes are presented in Fig. 15. 
 

 
Fig.15 The optimized meshes 

 
     For these meshes the approximated solution is 
presented in Fig. 16 in 3D. 
 

 
Fig. 16 3D plotted solution 

 
     The contour solution is presented in Fig. 17. 
 

 
Fig. 17 Contour plotted solution 

 
     We are considering the case of using of a 
reduced number of sensors (ns = 15), placed in the 
field as in Fig. 18. 
 

WSEAS TRANSACTIONS on SYSTEMS Constantin Volosencu

ISSN: 1109-2777 291 Issue 3, Volume 9, March 2010



 
Fig. 18 Positions of sensors in the field 

 
     The solution approximated in this case, as 
samples in space for these sensors, is presented in 
Fig. 19. 
 

 
Fig. 19 3D approximated values for 15 points 

 
     The contour values for 15 approximation points 
are presented in Fig. 20. 
 

 
Fig. 20 Contour of measurements for 15 points 

 
     We are using the node 15, according to Fig. 18, 

as a node for monitoring to obtain the estimate 15
^
θ , 

at the moment t+1, based on measurements θ13, θ14, 

θ6, θ5, θ8 and θ6 from the adjacent nodes 13, 14, 6, 
5, 8 and 6 at the moment t. 
 

)θ,θ,θ,θ,θ,θ(=θ
+^

tttttt
t

f 68751413

1

15  
 
(30) 

 
for the algorithm 3. 
     To apply the algorithm 4 we are using the past 
values of the sensor 15: θ15

t, θ15
t-1, θ15

t-2, θ15
t-3, θ15

t-4, 
θ15

t-5 at six anterior moments, to obtain the estimate 
at the moment t+1: 
 

)θ,θ,θ,θ,θ,θ(=θ
+^

5
15

4
15

3
15

2
15

1
1515

1

15
tttttt

t
f  

 
(31) 

 
     The first operation is to train the ANFIS scheme. 
This training is done using the transient 
characteristics of the seven nodes presented in Fig. 
21, obtained from the approximated values for 15 
sensors. 
 

 
Fig. 21 The transient characteristics used for ANFIS 

training 
 
     From these characteristics the variation in the 
15th point is presented in Fig. 22. 
 

 
Fig. 22 Transient characteristic for the 15th node 
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     The FIS structure from Fig. 23 has 6 inputs with 
3 membership functions for each input. 
 

 
Fig. 23 The FIS structure for the hyperbolic case 

 
     Number of training epochs was 3. The compared 
outputs and error for ANFIS for the 3rd estimation 
algorithm test is presented in Fig. 24. 
 

 
Fig. 24 FIS testing output and error for the 3rd 

algorithm 
 
    The compared outputs and error for ANFIS for 
the 4th estimation algorithm test is presented in Fig. 
25. 
 

 
Fig. 25 FIS testing output and error for the 4th 

algorithm 
 
     In both cases, for the 3rd and 4th algorithms small 
errors at tests were obtain. The comparison 
characteristics are the same, according to the 
experiments. 
 
 

7   Conclusion 
The paper presents four algorithms for estimation of 
state variables in distributed parameter systems of 
parabolic and hyperbolic cases. Also, a method for 
monitoring distributed parameter systems based on 
these algorithms, sensor networks and ANFIS for 
non-linear system identification is presented. The 
sensor network is seen as a distributed sensor. The 
algorithms are two based on regression using the 
values provided by the adjacent nodes of the sensor 
network and the other two are based on 
autoregressive relation with the values from anterior 
time moments of the same node. 
     The method described the way how to use all 
these concepts for fault detection and diagnosis in 
distributed parameter systems, using the measured 
values provided by the sensor and the estimated 
values computed by the ANFIS estimator, 
calculating an error and detecting the fault based on 
a decision taken after a threshold comparison. 
     Four case studies for all four algorithms are 
presented for parabolic type and for hyperbolic type 
of equations. A comparison between the algorithms 
is made. Good approximations were obtained. 
     Developing of the algorithms and the method are 
taken in consideration in the future, in other 
applications, considering all the capabilities of the 
sensor nodes to measure physical variables. This 
approach allows treatment of large and complex 
systems with many variables by learning and 
extrapolation. Estimations methods may be applied 
in the case of discovery of malicious nodes in 
wireless sensor networks. An interesting application 
could be the monitoring of earth environment at low 
and high altitudes, based on new types of sensor 
networks specialized for this purpose. 
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