
Particle Swarm Optimization models applied to Neural Networks
using the R language

NURIA GÓMEZ, LUIS F. MINGO
JESUS BOBADILLA, FRANCISCO SERRADILLA

Universidad Politécnica de Madrid
Escuela Universitaria de Informática

Crta. de Valencia km. 7, 28031 Madrid
SPAIN

{ngomez,lfmingo,jbobi,fserra}@eui.upm.es

JOSE A. CALVO MANZANO
Universidad Politécnica de Madrid

Facultad de Informática
Boadilla del Monte, 28660 Madrid

SPAIN
jacalvo@fi.upm.es

Abstract: There exists a clear difference between cooperative and competitive strategies. The former ones are based
on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information
to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die
and new individuals are created combining information of alive one; or are based on molecular/celular behaviour
passing information from one structure to another. A Grammatical Swarm model is applied to obtain the Neural
Network topology of a given problem, training the net with a Particle Swarm algorithm in R. This paper just shows
some ideas in order to obtain an automatic way to define the most suitable neural network topology for a given
patter set. High dimension problem is also mentioned when dealing with the particle swarm algorithm.

Key–Words: Social Intelligence, Neural Networks, Grammatical Swarm, Particle Swarm Optimization.

1 Introduction
Natural sciences, and especially biology, represented
a rich source of modelling paradigms. Well-defined
areas of artificial intelligence (genetic algorithms,
neural networks), mathematics, and theoretical com-
puter science (L systems, DNA computing) are mas-
sively influenced by the behaviour of various bio-
logical entities and phenomena. In the last decades
or so, new emerging fields of so-called natural com-
puting identify new (unconventional) computational
para-digms in different forms. There are attempts to
define and investigate new mathematical or theoreti-
cal models inspired by nature, as well as investiga-
tions into defining programming paradigms that im-
plement computational approaches suggested by bio-
chemical phenomena. Especially since Adleman’s ex-
periment, these investigations received a new perspec-
tive. One hopes that global system-level behaviour
may be translated into interactions of a myriad of
components with simple behaviour and limited com-
puting and communication capabilities that are able to
express and solve, via various optimizations, complex
problems otherwise hard to approach.

A number of computational paradigms, inspired
or gleaned from biochemical phenomena, are becom-
ing of growing interest building a wealth of models,
called generically Molecular Computing. New ad-
vances in, on the one hand, molecular and theoreti-

cal biology, and on the other hand, mathematical and
computational sciences promise to make it possible in
the near future to have accurate systemic models of
complex biological phenomena.

2 Social Intelligence
This section shows some new computational
paradigms that are based on the co-operation of
individuals instead on the competition of individuals
(typically modelled by genetic algorithms). Such
social intelligence makes individuals to evolve
towards the best solution using information from
other individuals but none of them disappear. This is
a new approach taken from the biology, in essence,
social behaviour helps individuals to adapt to their
environment, as it ensures that they obtain access
to more information than that captured by their own
senses.

Two popular variants of swarm models exist,
those inspired by studies of social insects such as ant
colonies, and those inspired by studies of the flocking
behaviour of birds and fish.

2.1 Ant Colony Optimization
Ant colony optimization (ACO) is a class of opti-
mization algorithms modelled on the actions of an ant

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 192 Issue 2, Volume 9, February 2010

colony. ACO methods are useful in problems that
need to find paths to goals. Artificial ’ants’ - sim-
ulation agents - locate optimal solutions by moving
through a parameter space representing all possible
solutions. Real ants lay down pheromones directing
each other to resources while exploring their environ-
ment. The simulated ’ants’ similarly record their po-
sitions and the quality of their solutions, so that in
later simulation iterations more ants locate better so-
lutions.[2] One variation on this approach is the bees
algorithm, which is more analogous to the foraging
patterns of the honey bee.

2.2 Particle Swarm Optimization
Particle swarm optimization (PSO) is a global op-
timization algorithm for dealing with problems in
which a best solution can be represented as a point
or surface in an n-dimensional space. Hypotheses are
plotted in this space and seeded with an initial ve-
locity, as well as a communication channel between
the particles [8, 1]. Particles then move through the
solution space, and are evaluated according to some
fitness criterion after each timestep. Over time, par-
ticles are accelerated towards those particles within
their communication grouping which have better fit-
ness values. The main advantage of such an approach
over other global minimization strategies such as sim-
ulated annealing is that the large number of members
that make up the particle swarm make the technique
impressively resilient to the problem of local minima
[6, 5, 17].

3 Grammatical Swarm
Grammatical Swarm (GS) adopts a Particle Swarm
learning algorithm coupled to a Grammatical Evo-
lution (GE) genotype-phenotype mapping to gener-
ate programs in an arbitrary language. Grammatical
Evolution (GE) is an evolutionary algorithm that can
evolve computer programs in any language [12, 13],
and can be considered a form of grammar-based ge-
netic programming. Rather than representing the pro-
grams as parse trees, as in GP [9, 10], a linear genome
representation is used. A genotype-phenotype map-
ping is employed such that each individuals variable
length binary string, contains in its codons (groups of
8 bits) the information to select production rules from
a Backus Naur Form (BNF) grammar. The grammar
allows the generation of programs in an arbitrary lan-
guage that are guaranteed to be syntactically correct,
and as such it is used as a generative grammar, as op-
posed to the classical use of grammars in compilers to
check syntactic correctness of sentences. The user can
tailor the grammar to produce solutions that are purely

syntactically constrained, or they may incorporate do-
main knowledge by biasing the grammar to produce
very specific forms of sentences. BNF is a notation
that represents a language in the form of production
rules.

Let us suppose the following BNF grammar:

<expr> :: = <expr><op><expr>
| <var>

<op> :: = +
| -
| *

<var> :: = x
| y

And the following genotype:

14 8 27 254 5 17 12

In the example individual (see figure 3), the
left-most <expr> in <expr> <op> <expr> is
mapped by reading the next codon integer value
240 and used in 240%2 = 0 to become an-
other <expr> <op> <expr>. The developing
program now looks like <expr> <op> <expr>
<op> <expr>. Continuing to read subsequent
codons and always mapping the left-most non-
terminal the individual finally generates the expres-
sion y * x - x - x + x, leaving a number of
unused codons at the end of the individual, which are
deemed to be introns and simply ignored.

This is the classic benchmark problem in which
evolution attempts to find the five input even-parity
boolean function [2]. The grammar adopted here is:

<prog> ::= <expr>
<expr> ::= <expr> <op> <expr>

| (<expr> <op> <expr>)
| <var> | <pre-op> (<var>)

<pre-op> ::= not
<op> ::= "|" | & | ˆ
<var> ::= d0 | d1 | d2 | d3 | d4

The result is given by the best individual, see tran-
script bellow. Figure 3 shows a graphic with the best,
average and variance of the swarm population. This
figure has been obtained using the GEVA simulator
[2].

(not (d1) | d2 ˆ d4) &
not (d3) ˆ (not (d1) &
(not (d2) &
(not (d2) |
(d1 ˆ not (d3) ˆ not (d1) ˆ
(not (d1) ˆ (d0 | not (d4))))) ˆ d4)
ˆ not (d0)) ˆ d1

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 193 Issue 2, Volume 9, February 2010

Figure 1: Grammatical Swarm Concepts.

Figure 2: Results of even-5-parity problem simulated with GEVA [2].

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 194 Issue 2, Volume 9, February 2010

4 Neural Networks and Grammati-
cal Swarm

Neural networks are non-linear systems whose struc-
ture is based on principles observed in biological neu-
ronal systems. A neural network could be seen as a
system that can be able to answer a query or give an
output as answer to a specific input. The in/out com-
bination, i.e. the transfer function of the network is
not programmed, but obtained through a ”training”
process on empiric datasets. In practice the network
learns the fuction that links input together with output
by processing correct input/output couples. Actually,
for each given input, within the learning process, the
network gives a certain output which is not exactly
the desired output, so the training algorithm modifies
some parameters of the network in the desired direc-
tion. Hence, every time an example is input, the al-
gorithm adjusts its network parameters to the optimal
values for the given solution: in this way the algo-
rithm tries to reach the best solution for all the exam-
ples. These parameters we are speaking about are es-
sentially the weights or linking factors between each
neuron that forms our network.

Neural Networks application fields are tipically
those where classic algorithms fail because of their
unflexibility (they need precise input datasets). Usu-
ally problems with unprecise input datasets are those
whose number of possible input datasets is so big that
they cant be classified. For example in image recogni-
tion are used probabilistic algoithms whose efficency
is lower than neural networks and whose caratheristics
are low flexibility and high development complexity.
Another field where classic algorithms are in troubles
is the analisys of those phenomena whose matemati-
cal rules are unknown. There are indeed rather com-
plex algorithms which can analyse these phenomena
but, from comparisons on the results, it comes out that
neural networks result far more efficient [3, 7]: these
algorithms use Fouriers trasform to decompose phe-
nomena in frequential components and for this reason
they result highly complex and they can only extract
a limited number of harmonics generating a big num-
ber of approximations. A neural network trained with
complex phenomenas data is able to estimate also fre-
quential components, this means that it realizes in its
inside a Fouriers trasform even if it was not trained for
that! One of the most important neural networks ap-
plications is undoubtfully the estimation of complex
phenomena such as meteorological, financial, socio-
economical or urban events.

Thanks to a neural network its possible to pre-
dict, analyzing hystorical series of datasets just as with
these systems but there is no need to restrict the prob-
lem or use Fouriers tranform. A defect common to all

those methods its to restrict the problem setting cer-
tain hypothesis that can turn out to be wrong. We just
have to train the neural network with hystorical series
of data given by the phenomenon we are studying.
Calibrating a neural network means to determinate
the parameters of the connections (synapsis) through
the training process. Once calibrated there is need to
test the netowrk efficency with known datasets, which
has not been used in the learning process. There is a
great number of Neural Networks which are substan-
tially distingushed by: type of use, learning model
(supervised/non-supervised), learning algorithm, ar-
chitecture, etc.

But the most common trouble consists on what
architecture must be used in order to get better results.
That is the reason this paper proposes a Grammati-
cal Swarm algorithm to get a right architecture/topol-
ogy. Moreover, the training process can be done using
Particle Swarm Optimization. With these two models
the whole neural network is obtained (topology and
weights) using ideas from social intelligence. Next
sections describe how to implement a model in order
to get a neural network topology and how to train this
topology.

4.1 Training using Particle Swarm Opti-
mization

Given a fixed neural network architecture, all weights
in connections can be coded as a genotype and apply
the particle swarm optimization algorithm in order to
train the network where the fitness function must be
the mean squared error of the net with the training set.
Some variations can be done just using validation and
testing sets to get better fitness values with more gen-
eralization properties.

Equations used in the particle swarm optimization
training process are the following ones, where c1 and
c2 are two positive constants, R1 and R2 are two ran-
dom numbers belonging to [0, 1] and w is the inertia
weight. This equations define how the genotype val-
ues are changing along iterations, in our case, how
neural network weights are changing.

vin(t + 1) = wvin(t) + (1)
c1R1(pin − xin(t)) +

c2R2(pgn − xin(t))

xin(t + 1) = xin(t) + vin(t + 1) (2)

Previous equations will modified the network
weights till a stop conditions is achieved, that is, a
lower mean squared error or a maximum number of
iterations is reached.

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 195 Issue 2, Volume 9, February 2010

NEURAL INPUTS

NEURAL O
UTPUTS

NEURAL INPUTS

NEURAL O
UTPUTS

a) First grammar with individual b) Second grammar with
{2, 1, 3} { 2 -- 1, 2 --, 1 -- 1 --, 3 -- 1 --}

Figure 3: Neural Network obtained using grammatical swarm.

Here it is the algorithm to train the network with
the particle swarm optimization model:

Initialize population with random values $[-1,1]$
WHILE not finish condition is satisfied

FOR i=1 TO n DO
Compute fitness particle Ji (MSE of the net)
IF Ji < pid

pid = Ji
END IF
IF Ji < pig

pig = Ji
END IF
Compute new velocity of i (equation 2)
Compute new position of i (equation 1)

END FOR
END WHILE

This particle swarm optimization model is similar
to genetic algorithms model but it uses a collaborative
approach instead a competitive one.

Figure 4 shows different neural network archi-
tectures and their learning evolution according to the
number of PSO iteration (maximunm 30 iterations).
We can see that any multilayer perceptron, with at
least 2 hidden neurons, can successfully solve the
XOR problem. While a multilayer perceptron with
only one hidden neuron will never achive a mean
squared error lower than 2.0.

4.2 Grammatical Topology
Previous PSO model applied to a fixed neural network
is a good solution to train a net, but it does not de-
fine any kind or topology properties it only obtains
the best weights configuration. Next grammars can be
used with Grammatical Swarm algorithms in order to
obtain a network topology for a given problem.

This grammar can specify a feed-forward neural
network topology just with consecutive layers, that is,
a classical Multilayer Perceptron, see figure 3–a).

<layers> ::= <layer> | <layer>, <layers>
<layer> ::= <digit>
<digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Next grammar is able to generate feed-forward
connections not only with one consecutive layer
but also with more than one consecutive layers,
see figure 3–b). Such connections are defined
by the <connections> non terminal, where the
<digit> means the n-consecutive layer.

<layers> ::= <layer> | <layer>, <layers>
<layer> ::= <digit> -- <connections> --
<connections> := <digit> | <digit>, <connections>
<digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The whole algorithm, could be summarize as fol-
lows:

1. Create an initial population of genotypes.

2. For genotype i

(a) Using genotype and grammar to obtain a
neural architecture.

(b) Compute Fitness of genotype.

• Apply previous PSO algorithm to train
the genotype network.

(c) Modified the best individual if appropiate.

3. Update velocity of genotype i.

4. Update position of genotype i.

5. If stop condition is not satisfied go to step 2.

This neural network model is a powerful one
since only with the input and output pattern sets a
network topology is chosen and also trained. Both
tools, topology and training, are based on grammatical
swarm and particle swarm optimization respectively.

Figure 4 shows different multilayer perceptrons
obtained with previous grammars. Depending on the
topology that each individual codes the mean squared
error will be lower or greater.

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 196 Issue 2, Volume 9, February 2010

0

2,
5 5

7,
5 10

12
,5 15

17
,5 20

22
,5 25

0,5

1

1,5

2

2,5

3

3,5

4

MLP: 2 - 5 - 1

MLP: 2 - 4 - 1

MLP: 2 - 3 - 1
MLP: 2 - 2 - 1

MLP: 2 - 1 - 1

Figure 4: Neural Network Topologies and Training results obtained with a grammatical swarm for the topology
and particle swarm optimization to train the net – XOR problem –.

5 R Implementation of the PSO

R is a system for statistical computation and graphics
[16]. It provides, among other things, a programming
language, high level graphics, interfaces to other lan-
guages and debugging facilities. The R language is
a dialect of S which was designed in the 1980s and
has been in widespread use in the statistical commu-
nity since. Its principal designer, John M. Chambers,
was awarded the 1998 ACM Software Systems Award
for S. The language syntax has a superficial similarity
with C, but the semantics are of the FPL (functional
programming language) variety with stronger affini-
ties with Lisp and APL. In particular, it allows com-
puting on the language, which in turn makes it possi-
ble to write functions that take expressions as input,
something that is often useful for statistical modeling
and graphics.

There are many modified versions of PSO by im-
proving convergence property to a certain problem.
While, a standard PSO is defined in Kennedy [8] to
give a real standard for PSO studies. Thus, a lot of
studies have demonstrated the effectiveness of PSO
family in optimizing various continuous and discrete
optimization problems. And a plenty of applications
of PSO, such as the neural network training, PID con-
troller tuning, electric system optimisation have been
studied and achieved well results. Using the satan-
dard PSO, table 1 shows the particle swarm algorithm

coded using R.
This implementation follows the classical steps in

the PSO algorithm:

• initialize the population with random values,

• compute fitness of all indiviuals and choose the
winner,

• modify positon and velocity of individuals ac-
cording to the winner.

Fitness function to evaluate individuals (weight
parameters of the neural network) in the particle
swarm algorithm is shown in table 2. First of all, a
mapping from individuals to neural network param-
eters is defined (individualToNn) and after that,
the fitness function will build a multilayer perceptron
with such parameters and compute the mean squared
error of the net as the fitness of the particle swarm al-
gorithm using the pso settings data structure that
will be analyzed below.

Some parameters must be defined in order to run
the particle swarm algorithm (see equation (1)) among
them, the c1 and c2 parameters, the initial velocity
vin(0) and the weight inertia w, the number and length
of individuals, the number of iterations and the func-
tion to compute the fitness evaluation. Fitness func-
tion depends on the problem, when dealing with neu-
ral networks such fitness function will correspond to

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 197 Issue 2, Volume 9, February 2010

Table 1: Listing of the particle swarm optimization algoritm implemented in R
1 ######## TOOLS MATRIX GENERATION
2 mRUniform <- function(m,n) {
3 return(array(runif(m*n,min=-0.5,max=0.5), dim = c(m,n)))
4 }
5

6 mRNormal <- function(m,n) {
7 return(array(rnorm(m*n,0,0.5), dim = c(m,n)))
8 }
9

10 ############## DEFAULT FITNESS FUNCTION
11 fit <- function(ind) {
12 sum(abs(ind))
13 }
14

15 ############# ALGORITHM
16 pso <- function(settings) {
17 fit_evolution <- rnorm(settings$it)
18 population <- mRNormal(settings$num_ind, settings$length_ind)
19 velocity <- array(settings$init_vel*rnorm(1), c(settings$num_ind, settings$length_ind))
20 fitness <- array(0,c(settings$num_ind,1))
21 best <- population
22 best_fitness <- fitness
23

24 best_individual <- population[which.min(fitness),]
25 best_individual_fitness <- min(fitness)
26

27 for (j in 1:settings$num_ind) {
28 fitness[j] <- settings$func(population[j,])
29 }
30 best <- population
31 best_fitness <- fitness
32

33 for(i in 1:settings$it) {
34 for (j in 1:settings$num_ind) {
35 fitness[j] <- settings$func(population[j,])
36 if (!is.nan(fitness[j])) {
37 if (fitness[j] < best_fitness[j]) {
38 best_fitness[j] <- fitness[j]
39 best[j] <- population[j]
40 }
41 }
42 }
43

44 best_individual_fitness <- min(best_fitness)
45 best_individual <- best[which.min(best_fitness),]
46 fit_evolution[i] <- best_individual_fitness
47

48 velocity_update <- settings$c1 * mRUniform(settings$num_ind,settings$length_ind) * (best - population) +
49 settings$c2 * mRUniform(settings$num_ind,settings$length_ind) * (best_individual - population)
50

51 velocity <- settings$inertia * velocity + (velocity_update)
52 population <- population + velocity
53

54 cat ("Iteration: ", i, " fitness: ", best_individual_fitness, "\n")
55 }
56

57 list(best_individual=best_individual, best_fitness=best_individual_fitness, fit_evo=fit_evolution)
58 }

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 198 Issue 2, Volume 9, February 2010

Table 2: Fitness function of the particle swarm optimization algorithm applied to Neural Networks. Mean Squared
Error is used as the fitness function.

1 evaluate <- function(ind) {
2 z <- individualToNn(ind,nn_settings$inputs,nn_settings$hiddens,nn_settings$outputs)
3 neurons <- c(nn_settings$inputs,nn_settings$hiddens,nn_settings$outputs)
4 output <- mlp(entrada,z[[1]],z[[2]],neurons,functions)
5 mean((salida-output)*(salida-output))
6 }
7

8 individualToNn <- function(ind, inp, hid, out) {
9 ########################### WEIGHTS

10 weights <- array(0,dim=c(inp,hid))
11 for (i in 1:inp)
12 for (j in 1:hid)
13 weights[i,j] <- ind[(i-1)*(hid)+j]
14 x <- list(weights)
15 weights <- array(0,dim=c(hid,out))
16 for (i in 1:hid)
17 for (j in 1:out)
18 weights[i,j] <- ind[(hid*inp)+(i-1)*(out)+j]
19 x <- list(x[[1]],weights)
20 ########################### BIAS
21 y <- list(NULL)
22 dis <- 1:hid
23 for (j in 1:hid)
24 dis[j] <- ind[(inp*hid)+(hid*out)+j]
25 y <- list(y[[1]],dis)
26 dis <- 1:out
27 for (j in 1:out)
28 dis[j] <- ind[(inp*hid)+(hid*out)+(hid)+j]
29 y <- list(y[[1]],y[[2]],dis)
30 ##########
31 list(x,y)
32 }

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 199 Issue 2, Volume 9, February 2010

the mean squared error or some other measure able to
evaluate the desired response of the network, see table
2.

1 pso_settings <- list(
2 c1 = 1.0,
3 c2 = 2.0,
4 inertia = 0.75, # inertia
5 init_vel = 1.00, # initial velocity
6 num_ind = 20, # population size
7 length_ind = tamano_ind, # individual length
8 it = 10, # number of generations
9 func = evaluate # fitness function

10)

Main problem is the dimension of individual in
the particle swarm algorithm. Figure 5 shows such
problem, as the number of dimensions increases then
the convergence of the algorithm is worst. This is a
handicap in neural networks since a multilayer per-
ceptron with i inputs, o outputs, h hidden neurons
will have, at least, (i + 1) ∗ h + (h + 1) ∗ o dimen-
sions. Some PSO variants could be taken into account
to avoid such problem but it is not in the scope of this
paper.

Neural networks parameters can be output when
the particle swarm optimization training is finished.
Individual information is decoded as network weights
and bias values, corresponding to the best fitness eval-
uation (mean squared error in this neural network ex-
ample). Next output shows the network parameters of
the XOR problem for a multilayer perceptron with 2
hidden neurons. This is one of the 9 rounds, see table
3, each round starts with a different random popula-
tion in order to evaluate the convergence of algorithm.

Desired Output
1 1 -1 -1
Neural Network Output
0.999756 0.9485043 -0.9999969 -0.9682595

WEIGHT VALUES
[[1]]
[[1]][[1]]

[,1] [,2] [,3]
[1,] 4.160567 2.8819753 -1.287110
[2,] 3.637939 -0.2741027 3.088520

[[1]][[2]]
[,1]

[1,] -7.348808
[2,] 5.751979
[3,] 3.396366

BIAS VALUES
[[2]]
[[2]][[1]]

[,1]
[1,] 0

[[2]][[2]]
[1] 4.3329053 -0.7112471 0.6386734

[[2]][[3]]
[1] 3.010704

MSE: 0.0009148323

This R implementation is focused only on the
PSO training not in the grammatical swarm topology
learning. Future works will present an implementa-
tion of the whole process (grammatical swarm and
particle swarm) in R as the shown in Java (see section
4).

6 Conclusions
This paper has reviewed some natural computation
strate- gies as a survey concerning optimization strate-
gies. Some competitive and collaborative models has
been exposed in order to understand the ability to ex-
tract some biological concepts and apply them in com-
putational models as de- scribed along the paper. Such
bio-inspired models have proof to be a powerful tool
in order to solve non common problems in a collabo-
rative/competitive way.

As a powerful application, neural networks can
take advantage of such swarm optimization models.
This paper has proposed a grammatical definition in
order to choose the better network topology using
grammatical swarm and the training of such networks
(to compute the fitness function) is done with the PSO
approach.

Particle Swarm Optimization is often failed in
searching the global optimal solution in the case of
the objective function has a large number of dimen-
sions. The reason of this phenomenon is not only ex-
istence of the local optimal solutions, the velocities
of the particles sometimes lapsed into the degeneracy,
so that the successive range is restricted in the sub-
plain of the whole search hyper-plain [15]. The sub-
plane that is defined by finite number of particle ve-
locities is a partial space in the whole search space.
The issue of local optima in PSO has been studied
and proposed several modifications on the basic par-
ticle driven equation [14, 11, 4]. There used a kind
of adaptation technique or randomized method (e.g.
mutation in evolutionary computations) to keep parti-
cles velocities or to accelerate them. Although such
improvements work well and have ability to avoid fall
in the local optima, the problem of early convergence
by the degeneracy of some dimensions is still remain-
ing, even if there are no local optima. Hence the PSO
algorithm does not always work well for the high-
dimensional function.

Usually, neural network parameters are in a high-
dimensional space and then PSO algorithms are not
very efficient ones dealing with such individuals. Best
solution could be the integration of PSO and GA in a
new model GPSO taking advantages of both models,
or at least to improve the impact of the high dimen-
sional individuals in the PSO algorithm.

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 200 Issue 2, Volume 9, February 2010

3.5254124873834e−07

10

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

0.0119054755061007

20

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

0.000299209027677219

30

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

0.164182223835855

40

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

5.85155058176332

50

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

2.11828194785645

60

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

8.07214203048387

70

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

7.96827788314849

80

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

3.47956962436059

90

F
itn

es
s

0

5

10

15

50 100 150 200 250 300 350

Figure 5: PSO algorithm with different dimensions (from N = 10 to N = 90) applied to function
∑N

i=0 x2
i .

Convergence of the pso is better with lower dimensions than with higher ones.

Table 3: Results of the training a XOR Neural Network (MLP 2-3-1) with the particle swarm algorithm.

Output 1 Output 2 Output 3 Output 4 MSE
Round 1 0.9999917 1 -0.6773486 -1 0.02602597
Round 2 1 1 -0.9999999 -0.999962 3.594795e-10
Round 3 0.06365612 0.623899 -0.9990188 -0.994997 0.2545544
Round 4 0.4452416 0.8356855 -0.9338923 -0.9290893 0.08603868
Round 5 0.9999777 0.9999724 -0.999958 -0.9999847 8.14248e-10
Round 6 0.3620248 0.6908745 -0.9815965 -0.7450217 0.1419809
Round 7 0.6807203 0.9488 -0.9816844 -0.929081 0.02748148
Round 8 1 1 -0.9999745 -0.9830038 7.221789e-05
Round 9 0.4224904 0.7102605 -0.9966216 -0.6679007 0.1319419

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 201 Issue 2, Volume 9, February 2010

Acknowledgements: The research was supported by
the Spanish Research Agency projects CCG08-UAM
TIC-4425-2009 and TEC2007-68065-C03-02.

References:

[1] E. Bonabeau, M. Dorigo and G. Theraulaz,
”Swarm Intelligence: From Natural to Artifi-
cial Systems”, Oxford University Press, Oxford,
1999.

[2] Grammatical Evolution Group.
http://www.grammatical-evolution.org/

[3] Yu Hen Hu, Jeng-Neng Hwang; ”Handbook of
Neural Network Signal Processing VE Profil-
ing”. ISBN: 0849323592. CRC Press. Septem-
ber 2001.

[4] T. Hendtlass; ”A particle swarm algorithm
for high dimensional, multi-optima problem
spaces”, Proceedings of Swarm Intelligence
Symposium 2005. pp. 149-154, Pasadena, June
2005

[5] Piao Haiguo, Wang Zhixin, Zhang Huaqiang,
”Cooperative-PSO-Based PID Neural Network
Integral Control Strategy and Simulation Re-
search with Asynchronous Motor Controller De-
sign”, WSEAS Transactions on Circuits and
Systems Volume 8, pp. 136-141, ISSN: 1109-
2734, 2009.

[6] T Jayabarathi, Sandeep Chalasani, Zameer
Ahmed Shaik, Nishchal Deep Kodali; ”Hybrid
Differential Evolution and Particle Swarm Opti-
mization Based Solutions to Short Term Hydro
Thermal Scheduling”, WSEAS Transactions on
Power Systems Issue 11, Volume 2, pp. , ISSN:
1790-5060, 2007.

[7] Shigeru Katagiri; ”Handbook of Neural Net-
works for Speech Processing”. Artech House.
ISBN 0890069549. 2000.

[8] J. Kennedy, R. Eberhart and Y. Shi, ”Swarm
Intelligence”, Morgan Kauff-man, San Mateo,
California, 2001.

[9] J.R. Koza, D. Andre, F.H. Bennett III and M.
Keane ”Genetic Programming 3: Darwinian In-
vention and Problem Solving”, Morgan Kauf-
mann, 1999.

[10] J.R. Koza, M. Keane, M.J. Streeter, W. Myd-
lowec, J. Yu, and G. Lanza, ”Genetic Pro-
gramming IV: Routine Human-Competitive Ma-
chine Intelligence”. Kluwer Academic Publish-
ers, 2003.

[11] J. J. Liang, A. K. Qin, P. N. Suganthan &
S. Baskar; ”Comprehensive learning particle

swarm optimizer for global optimization of mul-
timodal functions”, IEEE Transactions on Evo-
lutionary Computation, Vol.10, No.3, 281-295,
1089-778X, 2006.

[12] M. ONeill and C. Ryan, ”Grammatical Evolu-
tion”, IEEE Trans. Evolutionary Computation,
Vol. 5, No.4, 2001.

[13] M. ONeill, C. Ryan, M. Keijzer and M. Cat-
tolico, ”Crossover in Grammatical Evolution”,
Genetic Programming and Evolvable Machines,
Vol. 4 No. 1. Kluwer Academic Publishers,
2003.

[14] K. Parsopoulos, V. P. Plagianakos, G. D.
Magoulas & M. N. Vrahatis; ”Stretching tech-
nique for obtaining global minimizers through
particle swarm optimization”, Proceedings of
the Particle Swarm Optimization Workshop, pp.
22-29, Indianapolis, 2001.

[15] Milan R. Rapaic, Zeljko Kanovic, Zoran D.
Jelicic; ”A Theoretical and Empirical Analy-
sis of Convergence Related Particle Swarm Op-
timization”, WSEAS Transactions on Systems
and Control, Volume 4, pp. , ISSN: 1991-8763,
2009.

[16] R Development Core Team, ”R: A Language
and Environment for Statistical Computing”, R
Foundation for Statistical Computing, Vienna,
Austria, ISBN 3-900051-07-0, 2009.

[17] Lijia Ren, Xiuchen Jiang, Gehao Sheng, Wu B;
”A New Study in Maintenance for Transmission
Lines”, WSEAS Transactions on Circuits and
Systems Volume 7, pp. 53-37, ISSN: 1109-2734,
2008.

WSEAS TRANSACTIONS on SYSTEMS
Nuria Gomez, Luis F. Mingo, Jesus Bobadilla,
Francisco Serradilla, Jose A. Calvo Manzano

ISSN: 1109-2777 202 Issue 2, Volume 9, February 2010

