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Abstract: - The present work shows a complete model for longitudinal movement of an automobile, starting 

with the reference coordinate systems; an inertial system, a system considering the vehicle as a rigid body and 

different coordinate systems for considering the center of mass of the tire and the contact element. Then the 

dynamics for subsystems involved in the braking process are described. The interest of the model is around the 

maximum value of the contact force, which physically means that the wheel is closed to a block situation. After 

this we obtained the characteristic values for every subsystem, and the model is evaluated for a metropolitan 

transport bus, Finally, considering the constant time for changes on the angular velocity as characteristic time 

we apply the fractional analysis to obtain a reduced order model of a vehicle, for the simulation the parameters 

of a bus were considered and the result the dynamics with enough accuracy for the conditions considered. 
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1 Introduction 
The changes on the automotive industry include not 

only more powerful engines or improvements on 

interior or exterior designs, fuel consumption, etc. 

one very important factor is the security, passive 

and active systems have been developed. 

Passive security is oriented to minimize the 

consequences on the passenger in case of accident, 

for example; seat belts, Airbags, ergonomic 

interiors, etc. the Active security includes devices 

that the driver can control, for example: ABS, active 

suspension, active steer, etc.). 

The present work deals with a complete vehicle 

model that is reduced by using the fractional 

analysis to get a simpler model that describes the 

brake process, under conditions that can activate the 

ABS. 

The fractional analysis [8] allow us to analyze 

systems according to specific parameters, with this 

we can separate variables according to intervals in 

which the process occurs, in this particular case we 

separated the variables according to time intervals 

so we can talk about fast and slow variables. 

Many works deal with the problem of modeling, in 

order to study more complex dynamics, for example 

vibrations [14]. 
 

 

 

 

 

 

2 Complete system model 

 
2.1 Coordinate systems and translations 
We suppose that the automobile’s movement occurs 

on a horizontal surface, the different coordinate 

systems are shown in fig. 1 and fig. 2. 

We introduce the next coordinate systems: Oξηζ- 

Stationary. The plane Oξη coincides with the 

movement surface.  Axis Oζ is vertical, Oξ - is 

horizontal 
The centre of mass position of the automobile C is 

given in Cartesian coordinates X,Y,Z on the system 

Oξηζ . 

The system Cx₀y₀z₀  - with origin on the centre of 

mass, the axis Cz0 is vertical, the axis Cx0  lies on 

the longitudinal plane of symmetry of the 

automobile. The system Cx₀y₀z₀  can be obtained 

from Oξηζ as a result of a translation of the point C 

and a rotation on ψ over the axis ζ. Where the angle 

ψ  represents the curse angle of the vehicle. 
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The system Cxyz - related with the vehicle’s body 

coincides with the central inertia axis. A change 

from the system Cx₀y₀z₀ to the system Cxyz is 

given by the rotation angles,  γ over the axis x and 

ϑ as the attack angle over the axis y.  

The systems Aijxijyijzij - related with the wheel. The 

index “i” has values i = 1 forward, i = 2 rear, while 

the index “j” has values j = 1 right and j = 2 left, 

according to the movement’s direction. The point Aij 

lies on the intersection of the turn axis of the ij-th 

wheel and the longitudinal symmetry plane. The 

axis Aijyij coincides with the rotation axis of the 

wheel, the axis Aijxij is horizontal. 

The system Oijxijyijzij with origin on the point Oij. 

 
Fig. 1 

 
Fig. 2 

2.2 Dynamic equations for the movement 

of the complete vehicle 
We propose that the movement occurs only over the 

plane x0y0. The movement equations for the centre 

of mass considering a rigid body with six degrees of 

freedom are written on the tridimensional system 

Cx₀y₀z₀ as follows: 

∑
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axzyijx
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dV
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here T - time, M - total vehicle mass (including 

wheels), - (Vx,Vy,Vz) absolute velocity vector 

projections of the point C on the system Cx₀y₀z₀, 
Ωz - absolute angular velocity projection over 

vertical axis, Mg - weight, (Pijx; Pijy;Nij) - contact 

force projections and normal reaction. (MVyΩz, -

MVx Ωz, 0) - inertial force projections, (Fax; Fay) – 

aerodynamic force projections, all the forces acting 

over the system are shown on fig. 3. 

 
Fig. 3 

The kinetic moment change equations related to 

point C in tridimensional projections Cx₀y₀z₀, 
considering the absences of jumping due to road 

irregularities are the next: 
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Where I – represents the inertial moment of the 

whole vehicle as well as any of the wheels 

according to the suffixes [3], [11], [5]. 

 

2.3 Cinematic equations of the vehicle's 

movement 
We write the cinematic equations of the system on 

the form: 
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ψψ sincos yx VV
dT

dX
−=                         (7) 

ψψ cossin yx VV
dT

dY
−=              (8) 

zV
dT

dZ
=                (9) 

z
dT

d
Ω=

ψ
             (10) 

and the equations for the angular velocity on a linear 

approach are: 

x
dT

d
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γ
             (11) 

y
dT

d
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ϑ
             (12) 

 

2.4 Relations for the contact force 

between the wheel and the road  
We have the next expressions: 
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Fig. 4 shows the forces appearing on the last 

expressions [13], [6]. 

 

 

Fig. 4 

 

2.5 Model for the contact element 

movement  
The movement equations are written as projections 

on Oijxijyijzij 

ijxijxijxijijxc PKCRV
dT

d
M +−−=
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⌣ɺ⌣ɺ⌣
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ijijzijz NKC +−−= ζζ
⌣ɺ⌣

0              (20) 

Where Pijx, Pijy, Nij - projections of the contact force 

over the contact element, -Kxξij, -Kyηij, -Kzζij - 

elastic forces vector projections for the contact 

element, considering the nondeformable part of the 

tire, Kx, Ky, Kz - elasticity coefficients, -Cxξ’ij, -

Cyη’ij, -Czζ’ij,- damping forces vector projections, 

Cx, Cy, Cz - damping coefficients.  

At this point we suppose that there are no vertical 

movements of the contact element, fig. 5 shows the 

contact element [9]. 

 
Fig. 5 

 

2.6 Wheel rotation equation 
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The next equation describes the wheel rotation 

shown in fig. 6. 

( )
ijijijx

ijy

j LRP
dT

d
I +−−=

Ω
ζ
⌣

            (21) 

Here Ij  - inertial moment for the wheel, Lij - brake 

moment. 

 

Fig. 6 

2.7 Contact force model 
From the model obtained on [7]. Slip rate is 

represented by s 

ij

ij

ij
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Ox

x
V

V
s =              (22) 

ij

ij

ij
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Oy

y
V

V
s =              (23) 

Where VOxij - longitudinal velocity of the contact 

shadow, VAxij - longitudinal velocity of the mass 

centre of the wheel. 

Then we have the next expressions for the contact 

force: 
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By substituting in the last equations we have: 
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For the contact force we have: 
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Where 
22

ijij yxij sss +=  

Function ϕ(s) is defined experimentally and it will 

be described further. 

When the vehicle moves only over x axis we have 

syij = 0 and Pyij = 0, then the equation takes the form: 

( ) ( )
ijij xijx ssignsNP ϕν−=         (30) 

 

2.8 Model for the vertical vibrations of 

the wheel 
We study the mechanical system composed by the 

elements of the suspension, the chassis and the 

support elements [1], [2]. The movement equation 

for the centre of mass of such system is: 

dT

zd
DzCN

dT

zd
m

ij

jijjzij

Aij

A

∆
+∆+=

2

2

       (31) 

Here mA - equivalent mass of the system, zAij=R-

ζij+const - centre of mass coordinates, ∆zij - springs 

deformation, Dj, Cjz - damping coefficients, that is in 

general different for front and rear wheels. 

 

2.9 Model for the brake system 

 
Fig. 7 

The brake system shown in fig. 7 includes two 

different tanks, the main cylinder and the brake 
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cylinder, from each one comes out a pipe, from the 

main cylinder to the brake cylinder (1) and from the 

brake cylinder to the atmosphere (2). We analyze 

the system with a single valve that acts on both 

pipes, when 1 is closed 2 is opened and when 1 is 

opened 2 is closed [12]. 

We suppose that the brake force is proportional to 

the pressure on the brake cylinder, and the direction 

is opposite to the angular velocity of the wheel. 

ijmLij signPKL
ij

Ω−=  

By using a first order approximation for the pressure 

change on the brake cylinder we have: 
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      (32) 

Where Pmij - pressure on the pipes arriving to the 

brake cylinder, Te - characteristic time of the pipe, 

and ∆tb - time delay due to the valve's movement. 

 

2.10 Pade approximation of the 

characteristic ϕϕϕϕ(s) 
We study the behavior of the system on the region 

around the maximum value of the brake moment, 

that means the maximum value for the function ϕ(s), 

on the range 0.12≤s≤0.52, We propose the next 

approximation function [10], [13]: 
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in order to define the coefficients the equation is 

written in the next form: 
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Where “i” indicates the value for experimental tests. 

Then we can build the next system: 
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Matrix P is not square and it size depends on the 

number of experimental tests. 
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Calculating A by least square method we have: 

( ) BPPPA TT 1−
=  

 
Fig. 8 

 

3 Fractional Analysis 

 
3.1 Time constants description 

 
3.1.1 Characteristic time for longitudinal 

movement of the vehicle  

We study the longitudinal movement of the vehicle, 

considering a symmetrical system and the absence 

of any lateral force 

From (1) we have 

∑
=

=
2

1, ji

ijx
x P

dT

dV
M  

Analyzing the movement for the case when  

Pijx = P*  

for every i, j. The equation takes the form form 

M

P

dT

dVx *4
=  

and 

( )
00

*4
xx VTT

M

P
V −−=  

Then the characteristic time shall be the time 

for wich Vx increces from 0 to a given value 

Vx*, considering Vx0 = 0, T0 = 0 and Vx = Vx* 

we have: 
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*

*
0

4P

MV
T x=               (35) 

T0 – Characteristic time for the longitudinal 

movement of the vehicle. 

 

 
3.1.2 Characteristic time for vertical vibrations 

of the vehicle’s body  

We study the elastic vertical vibrations of the 

vehicle’s body on the springs; we take the model 

shown on fig. 9.  The damping force for both front 

and rear is not considered. 

 
Fig. 9 
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Rewriting we have: 
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+
 

Taking as a constant time the vibration’s period of 

the chassis over the spring we have 

( )21

1
2 CC

M
T

+
=              (36) 

T1 – Time constant for vertical vibrations of the 

body due to the suspension springs. 

3.1.3 Characteristic time for vibrations of the 

nondeformable mass of the tire and 

suspension 
We study the vertical vibrations due to the 

longitudinal movement of the vehicle over the road 

surface 

Writing the equations for vertical vibrations of the 

wheel as in (28) for a stationary body with a flat 

contact surface. 
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Since zAij=R- ζij and ∆zij= zAij- zAij0 we can write the  

next 
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Then the period of vertical vibrations is 

jzz
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m
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T2 – Characteristic time for the vibrations of the 

nondeformable mass. 
 

3.1.4 Characteristic time for velocity changes on 

the angular velocity of the wheel due to a 

longitudinal contact force 

We study the movement of the wheel in horizontal 

direction. Considering that neither blocking 

situations nor slipping are present, we also 

consider that the deformable part of the tire is 

very small, compared with the whole tire, the 

vehicle moves with a constant longitudinal 

velocity Vx*. 
From equations (4), (28) and (30) we have 
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Rewriting we have 
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xj
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T3 – Time constant for changes on the angular 

velocity of the wheel due to a longitudinal contact 

force. 
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3.1.5 Characteristic time the tire’s deformation 

in the longitudinal direction 

We study the changes on the deformation of the tire, 

considering that no vertical vibrations are present, as 

well as lateral forces and the movement occurs in 

longitudinal direction only. We also consider Vijx y 

Ωijy as constants. 

From equations (15), (28) y (30) we have 
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Where the contact force for small slipping is 

considered lineal. 
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Rewriting 
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T4 – Time constant for tire’s partial deformation. 

 

3.1.6 Characteristic time of the tire’s 

deformation in lateral diurection 

We study the tire’s deformation in the lateral 

direction, considering the absence of vertical 

vibrations and external lateral forces. The vehicle’s 

movement ocuurs only in the longitudinal direction. 

From equations (16), (28) and (30) we have 
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For the lineal dependency of ϕ(s) we have 
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T5 – characteristic time of the lateral deformation of 

the tire. 

 

3.1.7 Characteristic time of the lateral vibration 
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Fig. 10  

We study the lateral movement of the vehicle for the 

case when the lateral forces reach a value around the 

maximum of ϕ(s), as is shown in fig. 10, then we 

can model this characteristic by using the next lineal 

function. 

( ) sKs 0=ϕ                     (49) 

We consider that the vehicle is moving in horizontal 

direction due to a constant force 

F1~Mg. 

This is true when Vy, Ωz (A1+A2) << Vx 

then we have 
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The time constant for this equation is 
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3.1.8 Characteristic time of the brake system 

We suppose the pressure on the brake cylinder P* = 

const, for the fill phase P* = Pc, and for the exhaust 

phase P*= Pa. 

Then we choose Tein as the characteristic time for 

fill phase and Teout as the characteristic time for 

exhaust phase. 

We choose the smaller of them as the characteristic 

time for brake system. 

ine
TT =7         (51) 

 
Since we want to describe a specific behavior of the 

system, it is necessary to select the time interval 

according to that specific behavior; in this case, we 

are interested in the movements related with the 

brake process we choose the time constant for 

changes on the angular velocity due to the 

longitudinal contact force. 

 

 

 

 

3.2 Fractional analysis of the movement 

equations 
We introduce dimensionless variables (symbol "*" 

means the characteristic dimensional value of the 

chosen variable). 

xxx vVV *=         (52) 

Here Vx∗ -  characteristic velocity on longitudinal 

direction. For Vx∗ we choose the initial velocity in 

longitudinal direction. If the time interval analyzed 

is small enough the this velocity doesn't have a 

significant change and vx∼1 

yyy vVV *=         (53) 

Where Vy* - characteristic velocity on lateral 

direction.  For Vy* we choose the initial velocity in 

lateral direction. We consider that the movement on 

lateral direction is not bigger than 0.1Vx* 

zzz vVV *=         (54) 

Vz* - characteristic velocity on vertical direction. 

For Vz* we choose the characteristic amplitude for 

the change on velocity due to the vertical vibrations 

of the suspension at the characteristic frequency. 

1

*
*

2

T

Z
Vz

π
=  

ijij nNN *=         (55) 
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N* - characteristic value for normal reaction, 

for N* we choose the value 
4

*

Mg
N =  

ijxijx pPP *=         (56) 

ijyijy pPP *=         (57) 

Here P* - characteristic value of the contact force. 

We consider movement only in longitudinal 

direction and absence of vertical vibrations.  Then 

P*=ν∗N*, where ν∗ =1 

xxx ω*Ω=Ω         (58) 

Here Ωx* - characteristic value for the angular 

velocity over axis x, in absence of vertical 

vibrations. The spin occurs around the center of 

mass. We choose 
B

Vz
x

*
* =Ω  

yyy ω*Ω=Ω       (59) 

Here Ωy* - characteristic value for the angular 

velocity over axis y, in absence of vertical 

vibrations. The spin occurs around the center of 

mass. We choose 
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*
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zzz ω*Ω=Ω         (60) 

Ωz* - characteristic angular velocity for vehicle's 

steering. We have 
1

*

*
A

Vy

z =Ω  

ijij ω*Ω=Ω        (61) 

Where Ω* - characteristic angular velocity for 

wheel's rotation. For Ω* we choose the angular 

velocity in absence of blocking and slip. The vehicle 

moves longitudinally with velocity Vx*, 

then
R

Vx*
* =Ω  

ijij θ*Θ=Θ        (62) 

Aquí Θ* - characteristic angle for rotation of forward 

wheels around the vertical axis. We choose the 

maximum possible value for this angle. 

ψ*Ψ=Ψ        (63) 

Ψ∗ - characteristic angle for vehicle’s steering. We 

choose Ψ∗, as the change on the angle Ψ due to the 

chassis rotation with an angular velocity Ωz* in a 

time T6, then Ψ∗= Ωz* T6 

γ*Γ=Γ        (64) 

Γ* - characteristic yaw angle of the vehicle. We 

choose Γ* as the change on the angle Γ due to the 

chassis movement during the vertical vibrations 

time, we have Γ*= Ωx*T1 

ϑ*Ξ=Ξ        (65) 

Ξ* - characteristic curse angle for the vehicle. We 

choose the change on the angle after the time for the 

vertical vibrations, then we have Ξ*=Ωy*T1 

ijij ξξξ *

⌣⌣
=        (66) 

*ξ
⌣

- characteristic value for tire deformation in the 

longitudinal direction. We choose the deformation 

due to the longitudinal velocity during the 

characteristic time T3, then we have 3** TVx=ξ
⌣

 

ijijij ηηη *

⌣⌣ =        (67) 

*η⌣  - characteristic value for tire deformation in the 

lateral direction. We choose as *η⌣  the deformation 

due to a lateral velocity Vy* during the characteristic 

time T5, we have 5** TVy=η⌣  

ijij ζζζ *

⌣⌣
=       (68) 

*ζ
⌣

 - characteristic value for tire deformation in the 

vertical direction. We choose as *ζ
⌣

 the deformation 

due to the normal reaction, then we have 
zK

Mg

4
* =ζ
⌣

 

tTT *=                 (69) 

T* - characteristic time, for our case it shall be T3. 

 

 

3.3 Simulation 

 
We used the parameters for a metropolitan transport 

bus with the next numerical values: 

M=9584kg∼10⁴,  
K₀=10, ν∼1 (it changes according to road situation, 

dry road 0.8, and wet road 0.5), 

C₁=248487Ns/m∼2.5×10⁵, 
C₂=407115Ns/m∼4×10⁵,  
mA=390kg,  

Kz=841960N/m∼8.5×10⁵,  
Ij=18.9kgm²∼20,  

R=0.53m∼0.5m,  

with a longitudinal velocity Vx=20m/s 

 T∗ from 1/300 til 1/60 depending on ν 

With these parameter th characteristic times have 

the next values: 

1 ~0T  

10

1
 ~1T  
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Fig. 11 

On fig. 11 we show the response of the reduced 

system, for the main output parameters: angular 

velocity, contact force and brake torque. 
 

4 Conclusion 
A complete vehicle's model was presented, 

considering different dynamics that affect the 

movement, first, was considered a rigid body with 

six freedom degrees, and then some subsystems 

were considered as single cases. 

For the fractional analysis, every characteristic time 

was obtained, so that the model can be reduced 

considering different dynamics. 

The resultant complete model was reduced by 

fractional analysis method, and, since the interest 

here is the study of the brake system dynamics we 

considered a characteristic time related with the 

changes on the angular velocity due to the contact 

force between the wheel and the road, finally a four 

equation model was obtained, with angular velocity, 

longitudinal deformation of the contact element, 

pressure on the brake cylinder and slip rate as 

variables of the system. This model is normalized 

and dimensionless and can be use to design a 

control for the brake system.  
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