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Abstract: A class of 2D hybrid boundary-value time-variable systems is studied, in the general approach of the
coefficient matrices, states, inputs and controls over spaces of functions of bounded variation or of regulated
functions. A generalized variation-of-parameters formula is obtained for differential-difference equations of the
considered type and it is used to derive the formulæ of the state and of the output of these systems. The state space
representation of the adjoints of these 2D hybrid systems is introduced and their input-output map is obtained. The
duality between the 2D hybrid boundary-value systems and their adjoints is expressed by the means of two bilinear
forms.
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1 Introduction
The 2D hybrid continuous-discrete control systems
represent an important branch of Systems and Con-
trol Theory (see [8], [13], [16], [17] etc). They have
both theoretical and practical significance due to their
applications in many domains such as linear repetitive
processes [2], [18], iterative learning control synthesis
[11] or long-wall coal cutting and metal rolling.

This paper extends the study of the continuous-
discrete systems to the general framework represented
by the space of regulated functions. The topic of regu-
lated functions and of differential equations defined in
this approach is studied in a series of monographs or
papers (e.g. [3], [7], [12], [20], [21]). The main device
is the Perron-Stieltjes integral with respect to regu-
lated functions. The properties of the Perron-Stieltjes
integral are reviewed in Section 1 and in Section 2 the
solution of the corresponding generalized differential
equation is presented on the basis of a generalized fun-
damental matrix. Section 3 introduces a class of 2D
hybrid boundary-value time-variable systems, having
the controls over the space of regulated functions, the
drift matrix of bounded variation with respect to the
continuous variable and the other coefficient matrices
being regulated matrix functions.

This class is the 2D hybrid extension of the
1D continuous-time acausal systems introduced by
Krener [9], [10] and developed by Gohberg, Kaashoek
and Lerer [4], [5], [6]. It represents the time-variable

continuous-discrete counterpart of the Attasi’s 2D
discrete-time time-invariant model. Some extended
models were studied in [14] and [17].

A generalized variation-of-parameters formula is
obtained for differential-difference equations of the
considered type and it is used to derive the formula
of the state and the input-output map of these sys-
tems. The state space representation of the adjoints
of the considered systems is introduced in Section 4
and their input-output map is obtained. The duality
between the 2D hybrid boundary-value systems and
their adjoints is expressed by the means of two bilin-
ear forms.

The following definitions and notations will be
used in the paper. A functionf : [a, b] → R which
posseses finite one sided limitsf(t−) andf(t+) for
anyt ∈ [a, b] (where by definitionf(a−) = f(a) and
f(b+) = f(b)) is said to beregulatedon [a, b]. The
set of all regulated functions denoted byG(a, b), en-
dowed with the supremal norm, is a Banach space;
the setBV (a, b) of functions of bounded variation
on [a, b] with the norm ||f || = |f(a)| + varbaf is
also a Banach space; the Banach space ofn-vector
valued functions belonging toG(a, b) andBV (a, b)
respectively are denoted byGn(a, b) andBV n(a, b)
(or simplyGn andBV n); BV n×m denotes the space
of n × m matrices with entries inBV (a, b). The
set of functionsf : [a, b] × Z → R such that
∀k ∈ Z, f (·, k) ∈ G(a, b) (BV (a, b)) will be de-
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notedG1(a, b) (BV1(a, b)) and similar significances
will have the above mentioned spaces with subscript
1 (Gn

1 , BV n
1 , BV n×m

1 ).
A pair D = (d, s) whered = {t0, t1, . . . , tm} is

a division of [a, b] (i.e. a = t0 < t1 < . . . < tm = b)
ands = {s1, . . . , sm} verifies tj−1 ≤ sj ≤ tj , j =
1, . . . , m is called apartition of [a, b].

A functionδ : [a, b] → (0, +∞) is called agauge
on [a, b].

Given a gaugeδ, the partition(d, s) is said to be
δ-fine if

[tj−1, tj ] ⊂ (sj − δ(sj), sj + δ(sj)), j = 1, . . . , m.

Given the functionsf, g : [a, b] → R and a par-
tition D = (d, s) of [a, b] let us associate the integral
sum

SD(f∆g) =
m∑

j=1

f(sj)(g(tj) − g(tj−1)).

Definition 1 The numberI ∈ R is said to be the
Perron-Stieltjes(Kurzweil) integral of f with respect

to g from a to b and it is denoted as
∫ b

a
fdg or

∫ b

a
f(t)dg(t) if for any ε > 0 there exists a gauge

δ on [a, b] such that|I − SD(f∆g)| < ε for all δ-fine
partitionsD of [a, b].

Givenf ∈ G(a, b) andg ∈ G([a, b]× [a, b]) we
define the differences∆+, ∆−, ∆ and ∆+

s , ∆−
s , ∆s

by ∆+f(t) = f(t+) − f(t), ∆−f(t) = f(t) −
f(t−), ∆f(t) = f(t+) − f(t−), ∆+

s g(t, s) =
g(t, s+) − g(t, s), ∆−

s g(t, s) = g(t, s) − g(t, s−);
D−(f), D+(f) denote respectively the set of the left
and right discontinuities off in [a, b] and similarly
for g we can defineD−

t (g), D+
t (g) with respect to

the argumentt. We denote by
∑

t

the sum
∑

t∈D
where

D = D−(f)∪ D+(f) ∪ D−(g)∪ D+(g).
Let us recall some basic properties of the Perron-

Stieltjes integral, by following [18] and [19]. The
existence theorem of the Perron-Stieltjes integral∫ b

a
fdg for f ∈ BV (a, b) andg ∈ G(a, b), due to

Tvrdý [20] is essential for our treatment.

Theorem 2 ([20, Theorems 2.8 and 2.15])If f ∈
G(a, b) and g ∈ BV (a, b) then the Perron-Stieltjes

integrals
∫ b

a
fdg and

∫ b

a
gdf existand

∫ b

a
fdg +

∫ b

a
gdf = f(b)g(b)− f(a)g(a)+

+
∑

t

[∆−f(t)∆−g(t)− ∆+f(t)∆+g(t)].
(1)

Theorem 3 ([20, Proposition 2.16])If
∫ b

a
fdg exists,

then the functionh(t) =
∫ t

a
fdg is defined on[a, b]

and
i) if g ∈ G(a, b) thenh ∈ G(a, b) and, for any

t ∈ [a, b]

∆+h(t) = f(t)∆+g(t), ∆−h(t) = f(t)∆−g(t) (2)

ii) if g ∈ BV (a, b) and f is bounded on[a, b],
thenh ∈ BV (a, b).

Theorem 4 (substitution, [20, Theorem 2.19])Let
f, g, h be such thath is bounded on[a, b] and

the integral
∫ b

a
fdg exists. Then the integral

∫ b

a
h(t)f(t)dg(t) exists if and only if the integral

∫ b

a
h(t)d

[∫ t

a
f(s)dg(s)

]
exists, and in this case

∫ b

a
h(t)f(t)dg(t) =

∫ b

a
h(t)d

[∫ t

a
f(s)dg(s)

]
. (3)

Theorem 5(Dirichlet formula, [19, Theorem I.4.32])
If h : [a, b] × [a, b] → R is a bounded function and
varb

ah(s, ·) + varb
ah(·, t) < ∞, ∀t, s ∈ [a, b], then for

anyf, g ∈ BV (a, b)
∫ b

a
dg(t)

(∫ t

a
h(s, t)df(s)

)
=

=
∫ b

a

(∫ b

s
dg(t)h(s, t)

)
df(s)+

+
∑

t

[∆−g(t)h(t, t)∆−f(t)−

−∆+g(t)h(t, t)∆+f(t)].

(4)

2 Generalized Linear Differential
Equations

The symbol
dx = d[A]x+ dg (5)

whereA ∈ BV n×n andg ∈ Gn(a, b) is said to be
a generalized linear differential equation(GLDE) in
the space of regulated functions.

Definition 6 A functionx : [a, b] → Rn is said to be a
solutionof GLDE (5) if for anyt, t0 ∈ [a, b] it verifies
the equality

x(t) = x(t0) +
∫ t

t0

d[A(s)]x(s) + g(t)− g(t0). (6)
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If x satisfies the initial condition

x(t0) = x0 (7)

for given t0 ∈ [a, b] andx0 ∈ Rn thenx is called the
solution of the initial value problem(5), (7).

Theorem 7 ([19, Theorem III.2.10])Assume that for
any t ∈ [a, b] the matrixA ∈ BV n×n verifies the
condition

det[I + ∆+A(t)] det[I − ∆−A(t)] 6= 0. (8)

Then there exists a unique matrix valued function
U : [a, b]× [a, b] → Rn×n such that, for any(t, s) ∈
[a, b]× [a, b]

U(t, s) = I +
∫ t

s
d[A(τ)]U(τ, s). (9)

U(t, s) is called the fundamental matrix solution of
the homogeneous equation

dx = d[A]x (10)

(or the fundamental matrix of A) and it has the follow-
ing properties, for anyτ, t, s ∈ [a, b]:

U(t, s) = U(t, τ)U(τ, s); (11)

U(t, t) = I ; (12)

U(t+, s) = [I + ∆+A(t)]U(t, s),

U(t−, s) = [I − ∆−A(t)]U(t, s);

U(t, s+) = U(t, s)[I + ∆+A(s)]−1,

U(t, s−) = U(t, s)[I − ∆−A(s)]−1;

(13)

U(t, s)−1 = U(s, t); (14)

there exists a constantM > 0 such that

|U(t, s)|+varbaU(t, ·)+varbaU(·, s)+v(U) < M (15)

wherev(U) is the twodimensional Vitali variation of
U on [a, b]× [a, b] ([19, DefinitionI.6.1]).

Some methods for the calculus of the fundamental
matrixU(t, s) were provided in [12].

From [19, Theorem III.3.1] and [21, Proposition
2.5], one obtains

Theorem 8(Variation-of-parameters formula)If A ∈
BV n×n satisfies the condition(8), then the initial
value problem(5), (7)has a unique solution given by

x(t) = U(t, t0)x0 + g(t)− g(t0)−

−
∫ t

t0

ds[U(t, s)](g(s)− g(t0)).
(16)

If g ∈ Gn (g ∈ BV n) thenx ∈ Gn (x ∈ BV n).

3 General response of the 2D hybrid
boundary-value systems

The linear spacesX = Gn
1 , U = Gm

1 andY = G
p
1 are

called respectively thestate,input andoutput spaces.
The time setis T = [a1, b1] × {a2, a2 + 1, . . . , b2},
where[a1, b1] ⊂ R anda2, b2 ∈ Z.

Definition 9 A 2D generalized hybrid boundary
value (acausal) system(2Dghbv) is an ensemble

Σ = (A1(t, k), A2(t, k), B(t, k), C(t, k),

D(t, k), N1, N2, M1, M2) ∈

∈ BV n×n
1 × Gn×n

1 × Gn×m
1 × Gp×n

1 ×

×Gp×m
1 × Rn×n × Rn×n × Rn×n × Rn×n

whereA1(t, k)A2(t, k) = A2(t, k)A1(t, k), ∀(t, k) ∈
T , with the following state equation, output equation,
boundary condition and output vector equation:

dx(t, k + 1) = d[A1(t, k + 1)]x(t, k + 1)+

+A2(t, k)dx(t, k)− d[A1(t, k)]A2(t, k)x(t, k)+

+B(t, k)du(t, k),

(17)

y(t, k) = C(t, k)x(t, k) + D(t, k)u(t, k), (18)

N1x(a1, a2) + N2x(b1, b2) = v, (19)

z = M1x(a1, a2) + M2x(b1, b2). (20)

n is called thedimensionof the systemΣ and it is
denoted dimΣ.

The system

Σc = (A1(t, k), A2(t, k), B(t, k), C(t, k),D(t, k)) ∈

∈ BV n×n
1 × Gn×n

1 × Gn×m
1 × Gp×n

1 × ×Gp×m
1

with the state equation (17) and the output equation
(18) is said to be acausal system.

Let U(t, t0; k) be the fundamental matrix of
A1(t, k), k ∈ {a2, a2 + 1, . . . , b2} andF (t; k, k0) the
discrete fundamental matrix ofA2(t, k), t ∈ [a, b], i.e.

F (t; k, k0) =

=

{
A2(t, k−1)A2(t, k−2)· · ·A2(t, k0) for k > k0

In for k = k0.

SinceA1(t, k) andA2(t, k) are commutative ma-
trices for any(t, k) ∈ T , by the Peano-Baker type
formula for U [12] and by the definition ofF it re-
sults thatU(t, t0; k) andF (t; k, k0) are commutative
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matrices too. We shall use the following notations:
∆+f(s, l) = f(s+, l) − f(s, l), ∆+

s U(t, s; k) =
U(t, s+; k) − U(t, s; k) and similarly we define
∆−f(s, l) and∆−

s U(t, s; k).

Definition 10 A vector x0 ∈ X is called theinitial
stateof the causal systemΣc at the moment(t0, k0) ∈
T if ∀(t, k) ∈ T with (t, k) ≥ (t0, k0)

x(t, k0) = U(t, t0; k0)x0,

x(t0, k) = F (t0; k, k0)x0.
(21)

Proposition 11 (2D generalized variation of pa-
rameters formula). If

det[(I−∆−Ai(t, k))(I+∆+Ai(t, k))] 6= 0, i = 1, 2,
(22)

∀t ∈ [a, b], k ∈ Z, then the solution of the general-
ized differential-difference equation

dx(t, k + 1) = d[A1(t, k + 1)]x(t, k + 1)+

+ A2(t, k)dx(t, k)−

− d[A1(t, k)]A2(t, k)x(t, k)+

+ df(t, k)

(23)

with the initial conditions(19) is

x(t, k) = U(t, t0; k)F (t0; k, k0)x0+

+
∫ t

t0

k−1∑

l=k0

U(t, s; k)F (s; k, l + 1)df(s, l)+

+
∑

a≤s<t

∆+
s U(t, s; k)

k−1∑

l=k0

F (s; k, l + 1)·

· ∆+f(s, l)−

−
∑

a<s≤t

∆−
s U(t, s; k)

k−1∑

l=k0

F (s; k, l + 1)·

· ∆−f(s, l).
(24)

Proof. We shall use the notation

dg(t, k) = dx(t, k)− d[A1(t, k)]x(t, k). (25)

The equation (24) becomes

dg(t, k + 1) = A2(t, k)dg(t, k) + df(t, k). (26)

Then

dg(t, k0 + 1) = A2(t, k0)dg(t, k0) + df(t, k0) =

= F (t; k0 + 1, k0)dg(t, k0)+

+ F (t; k0 + 1, k0 + 1)df(t, k0).

Let us assume that

dg(t, k) = F (t; k, k0)dg(t, k0)+

+
k−1∑

l=k0

F (t; k, l + 1)df(t, l). (27)

Then, by (26), (27) and by the definition of
F (t; k, k0), we get

dg(t, k + 1) = A2(t, k)F (t; k, k0)dg(t, k0)+

+
k−1∑

l=k0

A2(t, k)F (t; k, l + 1)df(t, l)+

+ df(t, k) =

= F (t; k + 1, k0)dg(t, k0)+

+
k∑

l=k0

F (t; k + 1, l + 1)df(t, l)

hence (27) is true∀k > k0. Moreover, from (19), (25)
and (10) one obtains

dg(t, k0) = dx(t, k0)−

− d[A1(t, k0)]x(t, k0) =

= d[U(t, t0; k0)]x0 − d[A1(t, k0)]x(t, k0) =

= d[A1(t, k0)]U(t, t0; k0)x0−

− d[A1(t, k0)]U(t, t0; k0)x0 = 0

hence (27) becomes

dg(t, k) =
k−1∑

l=k0

F (t; k, l + 1)df(t, l). (28)

Equation (25) is equivalent to the generalized dif-
ferential equation

dx(t, k) = d[A1(t, k)]x(t, k)+ dg(t, k)

with the solution given by Theorem 8

x(t, k) = U(t, t0; k)x(t0, k)−

−
∫ t

t0

ds[U(t, s; k)]
∫ s

t0

dg(τ, k)+

+
∫ t

t0

dg(s, k).

(29)
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By Theorem 3, (29) becomes

x(t, k) = U(t, t0; k)x(t0, k)+

+
∫ t

t0

U(t, s; k)d
∫ s

t0

dg(τ, k)+

+
∑

a≤s<t

∆+
s U(t, s; k)∆+

∫ s

t0

dg(τ, k)−

−
∑

a<s≤t

∆−
s U(t, s; k)∆−

∫ s

t0

dg(τ, k).

(30)
We replace (28) in (30). One obtains the formula

of the state of the systemΣ (24) from (30) taking into
account the following equality

∫ t

t0

dg(s, k) =
k−1∑

l=k0

∫ t

t0

F (s; k, l + 1)df(s, l)

and also (19) and Theorem 3, Theorem 4 and Theorem
5.

ut

Proposition 12 If (22)holds, then the state of the
causal systemΣc at the moment(t, k) ∈ T , deter-
mined by the initial statex0 at the moment(t0, k0) ∈
T and the controlu : [t0, t]×{k0, k0+1, . . . , k−1} →
Rm is given by the following formula:

x(t, k) = U(t, t0; k)F (t0; k, k0)x0+

+
∫ t

t0

k−1∑

l=k0

U(t, s; k)·

· F (s; k, l + 1)B(s, l)du(s, l)+

+
∑

a≤s<t

∆+
s U(t, s; k)

k−1∑

l=k0

F (s; k, l + 1)·

· B(s, l)∆+u(s, l)−

−
∑

a<s≤t

∆−
s U(t, s; k)

k−1∑

l=k0

F (s; k, l + 1)·

· B(s, l)∆−u(s, l).
(31)

Proof. The state equation (17) can be obtained
from (19) by replacingf(t, k) by

f(t, k) =
∫ t

t0

B(s, k)du(s, k).

Then (31) results from (24) and (2).
ut

Now we replace the statex(t, k) given by (31)
into the output equation ofΣ (18). One obtains the
formula of the general response of the systemΣ

Theorem 13Under the hypothesis(22) the gen-
eral response of the2Dghcausal systemΣc (17), (18)
is

y(t, k) = C(t, k)U(t, t0; k)F (t0; k, k0)x0+

+
∫ t

t0

k−1∑

l=k0

C(t, k)U(t, s; k)F (s; k, l + 1)·

·B(s, l)du(s, l) + D(t, k)u(t, k)+

+
∑

a≤s<t

C(t, k)∆+
s U(t, s; k)·

·
k−1∑

l=k0

F (s; k, l + 1)B(s, l)∆+u(s, l)−

−
∑

a<s≤t

C(t, k)∆−
s U(t, s; k)·

·
k−1∑

l=k0

F (s; k, l + 1)B(s, l)∆−u(s, l).

(32)

Corollary 14 If u ∈ Gm
1 (u ∈ BV m

1 ) thenx ∈
Gn

1 andy ∈ Gp
1 (x ∈ BV n

1 andy ∈ BV p
1 ).

Proof. We apply Theorems 8 and 13 and Propo-
sition 12.

ut

Definition 15 The boundary condition (7) is said
to bewell-posedif the homogeneous problem corre-
sponding to (17) and (19) (i.e. withu ≡ 0 andv = 0)
has the unique solutionx = 0.

Proposition 16 The boundary condition(19) is well-
posed if and only if the matrix

R = N1 + N2U(b1, a1; b2)F (a1; b2, a2)

is nonsingular.

Proof: By (31) with u ≡ 0 we get

x(b1, b2) = U(b1, a1; b2)F (a1; b2, a2)x(a1, a2);

we replacex(b1, b2) and v = 0 in (19). It results
that (19) is well-posed if and only if the equation
[N1+N2U(b1, a1; b2)F (a1; b2, a2)]x(a1, a2) = 0 has
the unique solutionx(a1, a2) = 0, condition which is
equivalent toR nonsingular.

ut

WSEAS TRANSACTIONS on SYSTEMS Valeriu Prepelita

ISSN: 1109-2777 86 Issue 1, Volume 9, January 2010



In the sequel we shall consider boundary value
systemsΣ with well-posed boundary condition (19)
and which verify (22). Moreover, the discrete-time
character ofΣ with respect to the variablek im-
poses the following assumption: the matricesA2 de-
pend only onk and A2(k) are nonsingular for any
k ∈ {a2, a2 + 1, . . . , b2}.

Then the discrete fundamental matrix ofA2 does
not depends on the real variablet and it becomes
F (k, l). In this case we can define this fundamental
matrix even for the casek < l, by the following for-
mula:

F (k, l) = [A2(l−1)A2(l−2) · · ·A2(k+1)A2(k)]−1.

In this case the semigroup property

F (k, l)F (l, i) = F (k, i)

is true for anyk, l, i ∈ {a2, a2 + 1, . . . , b2}.

Definition 17 The matrix

P = PΣ = R−1N2U(b1, a1; b2)F (b2, a2)

is called thecanonical boundary value operatorof the
2Dghbv systemΣ with well-posed boundary condi-
tion .

Theorem 18 If the system is with well-posed bound-
ary condition then the state of the 2Dghbv systemΣ
determined by the controlu : T → Rm and by the

input vectorv ∈ Rn is

x(t, k) = U(t, a1; k)F (k, a2)R−1v−

−
∫ b1

a1

b2−1∑

l=a2

U(t, a1; k)F (k, a2)·

·PU(a1, s; b2)F (a2, l + 1)B(s, l)du(s, l)+

+
∫ t

a1

k−1∑

l=a2

U(t, s; k)F (k, l + 1)B(s, l)du(s, l)+

−U(t, a1; k)F (k, a2)P ·

·


 ∑

a1≤s<b1

∆+
s U(a1, s; b2)

b2−1∑

l=a2

F (a2, l + 1) ·

·B(s, l)∆+u(s, l)−
∑

a1<s≤t

∆−
s U(a1, s; b2)·

·
b2−1∑

l=a2

F (a2, l + 1)B(s, l)∆−u(s, l)


+

+
∑

a1≤s<t

∆+
s U(t, s; k)

k−1∑

l=a2

F (k, l + 1)·

·B(s, l)∆+u(s, l)−
∑

a1<s≤t

∆−
s U(t, s; k)·

·
k−1∑

l=a2

F (k, l + 1)B(s, l)∆−u(s, l).

(33)

Proof: We replacex(b1, b2) given by (31) in the
boundary condition (19). We get

[N1 + N2U(b1, a1; b2)F (b2, a2)]x0+

+N2

∫ b1

a1

b2−1∑

l=a2

U(b1, s; b2)F (b2, l + 1)B(s, l)du(s, l)+

+
∑

a1≤s<b1

∆+
s U(b1, s; b2)

b2−1∑

l=a2

F (b2, l + 1)·

·B(s, l)∆+u(s, l)−
∑

a1<s≤b1

∆−
s U(b1, s; b2)·

·
b2−1∑

l=a2

F (b2, l + 1)B(s, l)∆−u(s, l) = v

hence, by the semigroup properties of the fundamental
matricesU(t, s; k) andF (k, l), we obtain the initial
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state of the systemΣ

x0 = R−1v − P

∫ b1

a1

b2−1∑

l=a2

U(a1, s; b2)F (a2, l + 1)·

·B(s, l)du(s, l)− P
∑

a1≤s<b1

∆+
s U(a1, s; b2)·

·
b2−1∑

l=a2

F (a2, l + 1)B(s, l)∆+u(s, l)+

+P
∑

a1<s≤b1

∆−
s U(a1, s; b2)·

·
b2−1∑

l=a2

F (a2, l + 1)B(s, l)∆−u(s, l).

(34)

We replace the initial statex0 = x(a1, a2) given by
(34) in (31); then (33) results by using the semigroup
property of the fundamental matricesU(b1, s; b2) and
F (b2, l + 1), i.e.

U(b1, s; b2) = U(b1, a1; b2)U(a1, s; b2)

and

F (b2, l + 1) = F (b2, a2)F (a2, l + 1)

.

ut

Theorem 19The input-outputmap of the2Dghbvsys-
temΣ is

H : Gm
1 × Rn → Gp

1 ×Rn,
H(u, v) = (y, z)

where

y(t, k) = C(t, k)U(t, a1; k)F (k, a2)R−1v−

−
∫ b1

a1

b2−1∑

l=a2

C(t, k)U(t, a1; k)F (k, a2)·

·PU(a1, s; b2)F (a2, l + 1)B(s, l)du(s, l)+

+
∫ t

a1

k−1∑

l=a2

C(t, k)U(t, s; k)F (k, l + 1)B(s, l)du(s, l)+

+D(t, k)u(t, k)− C(t, k)U(t, a1; k)F (k, a2)P ·

·


 ∑

a1≤s<b1

∆+
s U(a1, s; b2)

b2−1∑

l=a2

F (a2, l + 1) ·

·B(s, l)∆+u(s, l)−
∑

a1<s≤t

∆−
s U(a1, s; b2)·

·
b2−1∑

l=a2

F (a2, l + 1)B(s, l)∆−u(s, l)


+

+C(t, k)
∑

a1≤s<t

∆+
s U(t, s; k)

k−1∑

l=a2

F (k, l + 1)·

·B(s, l)∆+u(s, l)− C(t, k)
∑

a1<s≤t

∆−
s U(t, s; k)·

·
k−1∑

l=a2

F (k, l + 1)B(s, l)∆−u(s, l).

(35)

and, by denotingQ = M1 + M2U(b1, a1; b2)·
·F (b2, a2), S = Q(I − P ) − M1,

z = QR−1v + S

∫ b1

a1

b2−1∑

l=a2

U(a1, s; b2)F (a2, l + 1)·

·B(s, l)du(s, l) + S


 ∑

a1≤s<b1

∆+
s U(a1, s; b2)·

·
b2−1∑

l=a2

F (a2, l + 1)B(s, l)∆+u(s, l)−

−
∑

a1<s≤b1

∆−
s U(a1, s; b2)·

·
b2−1∑

l=a2

F (a2, l + 1)B(s, l)∆−u(s, l)


 .

(36)

Proof: We obtain (35) by replacing the statex(t, k)
given by (33) in the output equation (18). Then, by
replacingx(a1, a2) = x0 (34) andx(b1, b2) given by
(33) in (20) and by a long calculus which uses the
semigroup property and which is omitted, we get (36).
ut
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Corollary 20 If u ∈ Gm
1 thenx ∈ Gn

1 andy ∈ Gp
1.

If A2 ∈ BV n×n
1 , B ∈ BV n×m

1 , C ∈ BV p×n
1 , D ∈

BV n×m
1 andu ∈ BV m

1 thenx ∈ BV n
1 andy ∈ BV p

1 .

Proof: We apply Theorems 8, 18 and 19.
ut

Definition 21 Thespace of admissible controlsis the
set

U = {u ∈ Gm
1 (a, b)|D+

t (Ai(·, k)∩ D+
t (u(·, k)) = ∅,

D−
t (Ai(·, k))∩ D−

t (u(·, k)) = ∅, i = 1, 2, ∀k ∈ Z}.

Corollary 22 If u ∈ U , then the state and the output
of the systemΣ are given by the following formulæ:

x(t, k) = U(t, a1; k)F (k, a2)R−1v−

−
∫ b1

a1

b2−1∑

l=a2

U(t, a1; k)F (k, a2)·

·PU(a1, s; b2)F (a2, l + 1)B(s, l)du(s, l)+

+
∫ t

a1

k−1∑

l=a2

U(t, s; k)F (k, l + 1)B(s, l)du(s, l),

(37)

y(t, k) = C(t, k)U(t, a1; k)F (k, a2)R−1v−

−
∫ b1

a1

b2−1∑

l=a2

C(t, k)U(t, a1; k)F (k, a2)·

·PU(a1, s; b2)F (a2, l + 1)B(s, l)du(s, l)+

+
∫ t

a1

k−1∑

l=a2

C(t, k)U(t, s; k)F (k, l + 1)·

·B(s, l)du(s, l) + D(t, k)u(t, k).

(38)

Remark 23 The 2D ”classical” continuous-discrete
systems [15] with the state equation

∂x

∂t
(t, k + 1) = Ã1(t, k + 1)x(t, k + 1)+

+Ã2(t, k)
∂x

∂t
(t, k)− Ã1(t, k)Ã2(t, k)x(t, k)+

+B̃(t, k)ũ(t, k)

represent particular cases of 2Dghbv (18) with abso-

lutely continuous matricesAi(t, k) =
∫ t

a
Ãi(s, k)ds,

i = 1, 2 and controlsu(t, k) =
∫ t

a
ũ(s, k)ds.

4 Adjoints 2D generalized hybrid
boundary value systems

We consider the 2Dghbv systemΣ =
(A1(t), A2(k), B(t, k), C(t, k), D(t, k), N1, N2)
with well-posed boundary conditions, given by
(17)-(19), where the matricesA2(k) are nonsingular
∀k ∈ {a2, a2 + 1, . . . , b2}. In order to cover the
ground of systems overC we shall denote byA∗ the
adjoint of a matrixA. Obviously, ifA is a real matrix,
A∗ = AT . By A−∗ we denote(A∗)−1.

Let us assume that

det[(I− ∆−A1(t))(I − ∆+A1(t))·

·(I + ∆−A1(t))(I + ∆+A1(t))] 6= 0
(39)

Definition 24 The 2Dghbv system̃Σ having the state
space representation

dx̃(t, k + 1) = −d[A1(t)∗]x̃(t, k + 1)+

+A2(k)−∗dx̃(t, k)+

+d[A1(t)∗]A2(k)−∗x̃(t, k)− C(t, k)∗dũ(t, k),

(40)

ỹ(t, k) = B(t, k)∗x̃(t, k) + D(t, k)∗ũ(t, k), (41)

x̃(a1, a2) = N∗
1 λ, x̃(b1, b2) = −N∗

2 λ (42)

whereũ ∈ Gp
1, x̃ ∈ Gn

1 , ỹ ∈ Gm
1 is called theadjoint

of Σ.

Therefore, the system̃Σ is characterized by the
matrices Ã1(t) = −A1(t)∗, Ã2(k) = A2(k)−∗

(= (A2(k)∗)−1), B̃(t, k) = −C(t, k)∗, C̃(t, k) =
B(t, k)∗, N∗

1 and−N∗
2 .

From [19, §III 4] one obtains, by denoting by
V (t, s) the corresponding fundamental matrix, the
following result:

Proposition 25 The general linear differential equa-
tion

dx = d[−A∗]x + dg, x(t0) = x0 (43)

whereA ∈ BV n×n and g ∈ Gn(a, b), has the solu-
tion

x(t)∗ = x(t0)∗V (t0, t) +
∫ t

t0
(g(s)∗−

−g(t0)∗)ds[V (s, t)] + g(t)∗ − g(t0)∗
(44)
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and

V (t, s) = U(t, s) + V (t, s)(∆+A(s))2−

−(∆−A(s))2U(t, s) +
∑

s<τ<t

V (t, τ)[(∆+A(τ))2−

−(∆−A(τ))2]U(τ, s), if t > s,
V (t, s) = U(t, s) + V (t, s)(∆−A(s))2−

−(∆+A(s))2U(t, s) +
∑

t<τ<s

V (t, τ)[(∆−A(τ))2−

−(∆+A(τ))2]U(τ, s), if t < s,
V (t, t) = U(t, t) = I

(45)

We shall consider for the system̃Σ boundary con-
ditions of the form (21):

x̃(t, a2) = V (a1, t)∗x0, x̃(a1, k) = F (a2, k)∗x0. (46)

We assume that̃R := N1 + N2V (b1, a1) F (b2, a2)
is a nonsingular matrix and we denotẽP =
R−1N2V (b1, a1)F (b2, a2).

Theorem 26The input-output map of the adjoint sys-
temΣ̃ is the operatorH̃ : G

p
1 → Gm

1 × Rn given by
H̃(ũ) = (ỹ, λ̃), where

ỹ(t, k)∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)V (s, a1)·

·F (l + 1, a2)(I − P̃ )F (a2, k)V (a1, t)B(t, k)−

−
∫ t

a1

k−1∑

l=a2

dũ(s, l)∗C(s, l)V (s, t)F (l + 1, k)B(t, k)+

+ũ(t, k)∗D(t, k)+

+[
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆+
s V (s, a1)−

−
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗C(s, l)F (l + 1, a2)·

·∆−
s V (s, a1)](I − P̃ )F (a2, k)V (a1, t)B(t, k)−

−
∑

a1≤s<t

k−1∑

l=a2

∆+ũ(s, l)∗C(s, l)F (l + 1, k)·

·∆+
s V (s, t)B(t, k)+

+
∑

a1<s≤t

k−1∑

l=a2

∆−ũ(s, l)∗C(s, l)F (l + 1, k)·

·∆−
s V (s, t)B(t, k),

(47)

λ∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)·

·F (l + 1, a2)V (s, a1)R̃−1+

+
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆+
s V (s, a1)R̃−1−

−
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆−
s V (s, a1)R̃−1.

(48)

Proof: By Proposition 25 the fundamental matrix of
Ã1 = −A∗

1 is UÃ1
(t, s) = V (s, t)∗. Then the (dis-

crete) fundamental matrix of̃A2 = (A∗
2)

−1 is, for
k > l, ∀k, l ∈ Z

FÃ2
(k, l) = [Ã2(k − 1)Ã2(k − 2) · · ·Ã2(l)] =

= [(A2(k − 1)∗)−1(A2(k − 2)∗)−1 · · · (A2(l)∗)−1] =

= ([A2(k − 1)A2(k − 2) · · ·A2(l)]−1)∗ = FA2(l, k)∗

and similarly we can prove thatFÃ2
(k, l) =

FA2(l, k)∗ for k < l.

By applying (31) to the adjoint system̃Σ one ob-
tains:

x̃(t, k)∗ = x̃(a1, a2)∗V (a1, t)F (a2, k)−

−
∫ t

a1

k−1∑

l=a2

dũ(s, l)∗C(s, l)V (s, t)F (l + 1, k)−

−
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, k)∆+
s V (s, l)−

−
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗C(s, l)·

·F (l + 1, k)∆−
s V (s, l).

(49)
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By (4.4) and (4.10) we have the following equalities:

−λ∗N2 = x̃(b1, b2)∗ =

= x̃(a1, a2)∗V (a1, b1)F (a2, b2)−

−
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗·

·C(s, l)V (s, b1)F (l + 1, b2)−

−
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, b2)∆+
s V (s, b1)+

+
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗C(s, l)·

·F (l + 1, b2)∆−
s V (s, b1).

(50)

We replace the initial statẽx(a1, a2)∗ by λ∗N1

and we postmultiply the obtained equality by
V (b1, a1)F (b2, a2); by applying the semigroup prop-
erty of the matricesV (s, t) andF (k, l, we get

λ∗[N1 + N2V (b1, a1)F (b2, a2)] =

=
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)V (s, a1)F (l + 1, a2)−

−
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆+
s V (s, a1)+

+
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆−
s V (s, a1).

From this equality we obtain the expression
(48) of λ∗. Now we postmultiply again (50) by
V (b1, a1)F (b2, a2) and we replaceλ∗ by (48). We

obtain

x̃(a1, a2)∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗·

·C(s, l)V (s, a1)F (l + 1, a2)−

−
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗·

·C(s, l)V (s, a1)F (l + 1, a2)P̃−

−
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗·

·C(s, l)F (l + 1, a2)∆+
s V (s, a1)+

+
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗·

·C(s, l)F (l + 1, a2)∆−
s V (s, a1)+

+
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗·

·C(s, l)F (l + 1, a2)∆+
s V (s, a1)P̃−

−
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗·

·C(s, l)F (l + 1, a2)∆−
s V (s, a1)P̃ ,

hence the initial statẽx(a1, a2)∗ becomes

x̃(a1, a2)∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)·

·V (s, a1)F (l + 1, a2)(I − P̃ )+

+
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆+
s V (s, a1)(I − P̃ )−

−
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆+
s V (s, a1)(I − P̃ ).

(51)

We replacẽx(a1, a2)∗ (51) in (49) and we obtain
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the formula of the state state of the adjoint systemΣ̃:

x̃(t, k)∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)V (s, a1)·

·F (l + 1, a2)(I − P̃ )F (a2, k)V (a1, t)−

−
∫ t

a1

k−1∑

l=a2

dũ(s, l)∗C(s, l)V (s, t)F (l + 1, k)+

+[
∑

a1≤s<b1

b2−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆+
s V (s, a1)−

−
∑

a1<s≤b1

b2−1∑

l=a2

∆−ũ(s, l)∗C(s, l)·

·F (l + 1, a2)∆−
s V (s, a1)](I − P̃ )·

·F (a2, k)V (a1, t)−

−
∑

a1≤s<t

k−1∑

l=a2

∆+ũ(s, l)∗C(s, l)·

·F (l + 1, k)∆+
s V (s, t)+

+
∑

a1<s≤t

k−1∑

l=a2

∆−ũ(s, l)∗C(s, l)·

·F (l + 1, k)∆−
s V (s, t),

(52)

and (47) results by replacing̃x(t, k)∗ given by (52) in
the output equation (41).

ut
Now let us consider the Banach spacesNBV p

1,r

and NBV p
1,l of the functionsf ∈ BV p

1 which ver-
ify f(a1, k) = 0, ∀k ∈ {a2, . . . , b2 − 1} and are
continuous on the right and left respectively. One ob-
tains the dual pairs(BV

p
1 , NBV

p
1,r) and(NBV m

1,l ×
Rn, BV m

1 ×Rn) with respect to the bilinear forms

< y, ũ >1=
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗y(s, l)

and

< (u, v), (ỹ, λ) >2= λ∗v +
∫ b1

a1

b2−1∑

l=a2

ỹ(s, l)∗du(s, l)

respectively.
We shall emphasize the duality relationship be-

tween the 2Dghbv systemΣ and its adjointΣ̃ with
respect to these bilinear forms.

In order to simplify, we shall consider the follow-
ing sets ofadmissible controls:

U = {u ∈ NBV m
1,l(a, b)|D+

t (Ai(·)∩

∩D+
t (u(·, k)) = ∅ i = 1, 2, ∀k ∈ Z}.

Ũ = {ũ ∈ NBV p
1,r(a, b)|D−

t (Ai(·))∩

∩D−
t (ũ(·, k)) = ∅, i = 1, 2, ∀k ∈ Z}

and the following assumption:

(∆+A1(t))2 = (∆−A1(t))2 = 0, ∀t ∈ [a1, b1]. (53)

Theorem 27 If (39) and (53) hold, then∀u ∈
U , ∀ũ ∈ Ũ , ∀v ∈ Rn

< H1(u, v), ũ >1=< (u, v), H̃(ũ) >2, (54)

where H1 and H̃ are the input-output operators
H1(u, v) = y, H̃(ũ) = (ỹ, λ).

Proof: By (45) and (53) we getV (t, s) =
U(t, s). For admissible controlsu andũ, the formulæ
(47) and (48) become

ỹ(t, k)∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)U(s, a1)·

·F (l + 1, a2)(I − P̃ )F (a2, k)U(a1, t)B(t, k)−

−
∫ t

a1

k−1∑

l=a2

dũ(s, l)∗C(s, l)U(s, t)·

·F (l + 1, k)B(t, k) + ũ(t, k)∗D(t, k),

(55)

λ∗ =
∫ b1

a1

b2−1∑

l=a2

dũ(s, l)∗C(s, l)·

·F (l + 1, a2)U(s, a1)R̃−1.

(56)

By a long calculus which is omitted, we obtain
by (38), (55) and (56) the following equality, which is
equivalent with (54):

∫ b1

a1

b2−1∑

l=a2

dũ(t, k)∗y(t, k) =

= λ∗v +
∫ b1

a1

b2−1∑

l=a2

ỹ(t, k)∗du(t, k).
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5 Conclusion
The state space representation was studied for a
class of time-varying 2D hybrid boundary-value time-
variable systems in the general framework of the co-
efficient matrices, states, inputs and outputs over the
space of regulated functions. The adjoints of these
systems were introduced and the duality between the
2D hybrid systems and their adjoints was expressed
by the means of two bilinear forms.
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mat., 116, 1991, pp. 20-59.

[4] I. Gohberg and M.A. Kaashoek, Time varying
linear systems with boundary conditions and in-
tegral operators,Integral Equations and Opera-
tor Theory, 7, 1984, pp. 325-391.

[5] I. Gohberg and M.A. Kaashoek, Minimality and
irreducibility of time invariant linear boundary-
value systems,Int. J. Control, 44, 1986, pp. 363-
379.

[6] I. Gohberg and M.A. Kaashoek, Minimal repre-
sentations of semiseparable kernels and systems
with separable boundary conditions.J. Math.
Anal. Appl, 124, 1987, pp. 436-458.

[7] Ch. S. Hönig,The adjoint equation of a linear
Volterra-Stieltjes integral equation with a linear
constraint, Lecture Notes in Mathematics 957,
Springer-Verlag, Berlin Heidelberg New York
1982.

[8] T. Kaczorek, Controllability and minimum en-
ergy control of 2D continuous-discrete linear
systems,Appl. Math. and Comp. Sci., 5, 1995,
pp. 5-21.

[9] A.J. Krener, Acausal linear systems,Proc. 18th
IEEE Conference on Decision and Control, Ft.
Lauderdale, Fl., 1979.

[10] A.J. Krener, Boundary value linear systems,
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