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Abstract: A class of 2D hybrid boundary-value time-variable systems is studied, in the general approach of the
coefficient matrices, states, inputs and controls over spaces of functions of bounded variation or of regulated
functions. A generalized variation-of-parameters formula is obtained for differential-difference equations of the
considered type and it is used to derive the formulee of the state and of the output of these systems. The state space
representation of the adjoints of these 2D hybrid systems is introduced and their input-output map is obtained. The
duality between the 2D hybrid boundary-value systems and their adjoints is expressed by the means of two bilinear
forms.
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1 Introduction continuous-discrete counterpart of the Attasi's 2D
discrete-time time-invariant model. Some extended

The 2D hybrid continuous-discrete control systems models were studied in [14] and [17].

represent an important branch of Systems and Con- ) o )
trol Theory (see [8], [13], [16], [17] etc). They have A generalized variation-of-parameters formula is
both theoretical and practical significance due to their Obtained for differential-difference equations of the
applications in many domains such as linear repetitive considered type and it is used to derive the formula

processes [2], [18], iterative learning control synthesis ©f the state and the input-output map of these sys-
[11] or long-wall coal cutting and metal rolling. tems. The state space representation of the adjoints

This paper extends the study of the continuous- of the cpn_sidered systems i_s introc_iuced in Section 4
discrete systems to the general framework represented @nd their input-output map is obtained. The duality
by the space of regulated functions. The topic of regu- P&tween the 2D hybrid boundary-value systems and
lated functions and of differential equations defined in their adjoints is expressed by the means of two bilin-
this approach is studied in a series of monographs or €' forms.
papers (e.g. [3], [7], [12], [20], [21]). The main device The following definitions and notations will be
is the Perron-Stieltjes integral with respect to regu- used in the paper. A functiofi : [a,b] — R which
lated functions. The properties of the Perron-Stielties posseses finite one sided limif$t—) and f(t+) for
integral are reviewed in Section 1 and in Section 2 the anyt¢ € [a, b] (Where by definitionf (a—) = f(a) and
solution of the corresponding generalized differential  f(b+) = f(b)) is said to beregulatedon [a, b]. The
equation is presented on the basis of a generalized fun- set of all regulated functions denoted B¥(a, b), en-
damental matrix. Section 3 introduces a class of 2D dowed with the supremal norm, is a Banach space;
hybrid boundary-value time-variable systems, having the setBV (a,b) of functions of bounded variation
the controls over the space of regulated functions, the on [a, b] with the norm||f|| = |f(a)| + valf is
drift matrix of bounded variation with respect to the also a Banach space; the Banach space-wéctor
continuous variable and the other coefficient matrices valued functions belonging t6:(a, b) and BV (a, b)
being regulated matrix functions. respectively are denoted iy (a, b) and BV"(a,b)

This class is the 2D hybrid extension of the (or simplyG™ and BV ™); BV"™*™ denotes the space
1D continuous-time acausal systems introduced by of n x m matrices with entries inBV (a,b). The
Krener [9], [10] and developed by Gohberg, Kaashoek set of functionsf : [a,b] x Z — R such that
and Lerer [4], [5], [6]. It represents the time-variable Vk € Z, f(-,k) € G(a,b) (BV(a,b)) will be de-
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notedGj(a, b) (BVi(a,b)) and similar significances

will have the above mentioned spaces with subscript

1(Gp, BV, BV ™),

A pair D = (d, s) whered = {tg,t1,...,tm} IS
adivision of[a,b] (il.le.a =ty <t1 < ... <ty =0)
ands = {81, .. .,Sm} verifiestj_l < 8 < tj,j =
1,...,mis called apartition of [a, b].

A functiond : [a, b] — (0, +00) is called agauge
onla,b].

Given a gauge, the partition(d, s) is said to be
o-fineif

[tj-1,t5] C (55

Given the functionsf, g :

—5($j),$j+5($j)), j=1,....m

[a,b] — R and a par-

tition D = (d, s) of [a, b] let us associate the integral
sum
p(fAg) = f(s; —9(tj-1)):
7=1

Definition 1 The number/ € R is said to be the
Perron-Stieltjeg Kurzweil) integral of f with respect
b

to g from a to b and it is denoted as/ fdg or
a

b
/ f(t)dg(t) if for any e > 0 there exists a gauge

5'on [a, b] such thatl — Sp(fAg)| < e for all d-fine
partitionsD of [a, b].

Given f € G(a,b) andg € G([a,b] X [a,b]) we
define the differenced™, A= A and Af, A, A,
by AVf(t) = f(t+) — f(t), A f(t) = f(t) -
FE=) AR = flt+) — ft=), Afglts) =
g(t, s+) = g(t,s), Agg(t,s) = g(t,s) — g(t,5-);
D~ (f), D™ (f) denote respectively the set of the left
and right discontinuities off in [a, b] and similarly
for g we can defineD; (g), D; (g) with respect to
the argument. We denote b3§: the sum®» _ where

teD
D=D"(f)uD*(f)uD(yg )UD+( )-

Let us recall some basic properties of the Perron-

Stieltjes integral, by following [18] and [19]. The
existence theorem of the Perron-Stieltjes integral

b
fdg for f € BV(a,b) andg € G(a,b), due to
T(i/rdy [20] is essential for our treatment.

Theorem 2 ([20, Theorems 2.8 and 2.151) f €
G(a,b) and g € BV (a,b) then the Perron-Stieltjes

b b
integrals/ fdg and/ gdf existand

b b
Lf@+£g#=f@mw—ﬂ®ﬂ®+

(1)
+Y [ATF(H)ATg(t) - AT (AT (1))
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b
Theorem 3([20, Proposition 2.16])f / fdg exists,

then the functiorh(¢ / fdg is defined ona, b]

and
i) if g € G(a,b) thenh € G(a,b) and, for any
t € la,b]
ATh(t) = f()ATg(t), Ah(t) = f()A7g(t) (2)
i) if g € BV(a,b) and f is bounded ora, b],
thenh € BV (a,b).

Theorem 4 (substitution, [20, Theorem 2.19))et
f,g,h be such thath is bounded on|a,b] and

b
the integral / fdg exists.  Then the integral

/h

/ U f(s)dg(s )] exists, and in this case

[ rsoaan = [ noa| [ 1]

Theorem 5(Dirichlet formula, [19, Theorem 1.4.32])
If b : [a,b] X [a,b] — R is a bounded function and
varlh(s, ) +varbh(-,t) < oo, Vt, s € [a, b], then for
anyf,g € BV (a,b)

/bdg(t) (/th(s, Dar(s)) =
x/ (/ﬁdg ) df(s)+

) exists if and only if the integral

(4)
+Z [A~g(t)h(t,t) A~ f(t)—
—Ng( Vh(t, ) AT f(t)].
2 Generalized Linear Differential
Equations
The symbol
dz = d[A]z + dg (5)

whereA € BV™*™ andg € G"(a,b) is said to be
a generalized linear differential equatio(GLDE) in
the space of regulated functions

Definition 6 A functionz : [a,b] — R™ is said to be a
solutionof GLDE (5) if for anyt, ty € [a, b] it verifies
the equality

t
= x(to) + [ d[A(s)]z(s) + g(t)

to

x(t) — g(to). (6)
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If z satisfies the initial condition

(7)

for giventy € [a, bl andzy € R™ thenz is called the
solution of the initial value problens), (7).

$(t0) = X

Theorem 7([19, Theorem I111.2.10])Assume that for
anyt € [a,b] the matrix A € BV™ " verifies the
condition

det[I + ATA(t)] det[l — A~A(#)] #0. ()

Then there exists a unique matrix valued function
U : [a,b] x [a,b] — R™™ such that, for any(t, s) €
[a,b] % [a,b]

Ult,s) = I + / CAAOU (). (9)

U(t, s) is called the fundamental matrix solution of
the homogeneous equation
dz = d[A]x (10)

(or the fundamental matrix of A) and it has the follow-
ing properties, for anyr, ¢, s € [a, b]:

U(t,s) =U(t,7)U(T,s); (11)
Ut t) = I; (12)
U(t+,s) = [T+ ATA@)]U(t, s),
U(t—,s)=[I —A7A@1)|U(t, s); (13)
Ut,s+) = U(t, s)[I + At A(s)] L,
Ut,s—) = U(t, s)[I — A~A(s)] Y
Ult,s) ' =U(s,t); (14)

there exists a constat/ > 0 such that
\U(t, s)|+valU(t, ) +valU(-,s)+v(U) < M (15)

wherev(U) is the twodimensional Vitali variation of
U on|a,b] x [a,b] ([19, Definition1.6.1]).

Some methods for the calculus of the fundamental
matrix U (¢, s) were provided in [12].

From [19, Theorem III.3.1] and [21, Proposition
2.5], one obtains

Theorem 8 (Variation-of-parameters formuldf) A €
BV™n satisfies the conditior{8), then the initial
value problem(5), (7) has a unique solution given by

z(t) Ul(t, to)xo + g(t) — g(to)—

"4 [U (1, )] (g(s) — 9(t0))-

to

If g € G" (g € BV") thenz € G" (x € BV™).

(16)
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3 General response of the 2D hybrid
boundary-value systems

The linear spaceX = G7,U = GT"andY = Gﬁ’ are
called respectively thetate,input andoutput spaces.
Thetime setis T = [a1,b1] X {az2,a2 + 1,... b2},
where[ay, b1] C R andag, by € Z.

Definition 9 A 2D generalized hybrid boundary
value (acausal) syste(2Dghbv) is an ensemble

S = (Au(t, k), As(t, k), B(t, k), C(t, k),
D(t, k), N1, No, My, My) €
€ BV x G x GP™ x G x
x G x R x RV x RV x R

whereA; (t, ]{J)Ag(t, k‘) = Ay (t, k‘)Al (t, k‘), V(t, k‘) S
T, with the following state equation, output equation,
boundary condition and output vector equation:

de(t, b+ 1) = d[A; (¢, k + D]a(t, k+ 1)+
Ao (¢, K)dx(t, k) — d[A(t, k)] As(t, k) (t, k)+ (17)
+B(t, k)dul(t, k),

y(t, k)= C(t, k)x(t, k) + D(t, k)u(t, k), (18)
le(al,ag) +N2$(b1,b2) =, (19)
z = M1$(a1,a2) +M2$(b1,b2). (20)

n is called thedimensionof the systen® and it is
denoted dinx.
The system

Yo = (Ai(t, k), As(t, k), B(t, k), C(t, k), D(t, k)) €
€ BV x G x GP™ x G x x G
with the state equation (17) and the output equation

(18) is said to be @ausal system.

Let U(t,to; k) be the fundamental matrix of
Al(t, k‘), ke {CLQ, as+1,..., bg} andF(t; k, k‘g) the
discrete fundamental matrix ofy (¢, k), ¢t € [a, ], i.€.

Ag(t, k‘—l)AQ(t, ]{5—2) . -Ag(t, k‘g) for k> kg
B I, for k= kop.

SinceA; (t, k) and Ay (¢, k) are commutative ma-
trices for any(t,k) € T, by the Peano-Baker type
formula for U [12] and by the definition off it re-
sults thatU (t, to; k) and F'(¢; k, ko) are commutative
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matrices too. We shall use the following notations:

AJrf(Sa l) f(5+a l) o f(sa l)a A;FU(ta 53 k)
Ul(t,s+;k) — U(t,s; k) and similarly we define
A~ f(s,l)andAF U(t, s; k).

Definition 10 A vectorxy € X is called theinitial
stateof the causal system,. at the momentty, ko) €
Tif V(t, k‘) € T with (t, k‘) > (tg, k‘g)

x(t, ko) = U(t, to; ko)xo,

(21)
ZL‘(tg, k‘) F(tg; k‘, k‘g)ZL‘Q.

Proposition 11 (2D generalized variation of pa-
rameters formula). If

det[(I-A7A;(t, k) (I+ATA;(t, k)] #0, i = 1,2,

(22)
Vt € [a,b], k € Z, then the solution of the general-
ized differential-difference equation

dz(t,k+1) = d[A(t,k+1)]x(t, k+1)+
+  As(t, k)dx(t, k)—
2(t, k)dz(t, k) (23)
- d[Al(ta k)}AQ(ta k‘)ZL‘(t, k)+
+ df(t, k)
with the initial conditions(19)is
z(t, k) = UL, to; k) F(to; k, ko)wo+
¢+ k=1
[ 3 Ul sk F(sik o+ Ddf (s, D)+
to =,
k—1
+ Z ATU(t, s; k) Z F(s;k,1+1)-
a<s<t l=ko
AJrf(Sa l)i
k—1
— D AJU(, s k) Y Fsik, L+ 1)-
a<s<t l=kg
A7 f(s,1).
(24)
Proof. We shall use the notation
dg(ta k) = dZL‘(t, k) - d[Al (ta k‘)}ZL‘(t, k) (25)
The equation (24) becomes
dg(t,k+ 1) = As(t, k)dg(t, k) +df(t, k). (26)

Then

dg(t, ko +1) As(t, ko)dg(t, ko) + df(t, ko) =
F(t; ko + 1, ko)dg(t, ko)+
F(t;ko+ 1, ko + 1)df(t, ko).
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Let us assume that

k—1

+ 3 Pt by 1+ 1)df (D). (27)
l=ko
Then, by (26), (27) and by the definition of

F(t; k, ko), we get

dg(tak+1) = A2(ta k)F(ta ka k(])dg(ta k0)+

k—1

+ ) Ap(t k) F(t k, L+ 1)df (8, 1)+
l=ko

+ df(t k) =

= F(t;k+1,ko)dg(t, ko)+
k

+ > F(tk+ 1,0+ 1)df(t,0)
l=ko

hence (27) is tru&k > kq. Moreover, from (19), (25)
and (10) one obtains

dg(ta kU) dZL‘(t, ko)i

hence (27) becomes

k—1

dg(t, k)= Y F(t;k, 1+ 1)df(t,1).
l=ko

(28)

Equation (25) is equivalent to the generalized dif-
ferential equation

dz(t, k) = d[As(t, k)]z(t, k) + dg(t, k)

with the solution given by Theorem 8

x(t, k) = Ul(t, to; k)x(to, k)—
- t: d[U(t, 5; k)] t: dy(r. k) (99,
+ tt dg(s, k).
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By Theorem 3, (29) becomes

x(t, k) U(t, to; k)x(to, k)+

t S
U(t,s;k)d [ dg(r,k)+
to to

Z ATU(t, s k) AT

a<s<t

+
dg(Tv k) -
to

- Z AJU(t, s; k)A™ | dg(T, k).
a<s<t to
(30)
We replace (28) in (30). One obtains the formula
of the state of the systed (24) from (30) taking into
account the following equality

t k=1 4
dg(s, k) = Z/ F(s; k, 1+ 1)df (s, 1)
to I=kq to

and also (19) and Theorem 3, Theorem 4 and Theorem

5.
a

Proposition 121f (22) holds, then the state of the
causal systent. at the momentt, k) € T, deter-
mined by the initial stater, at the momentt, ko) €
T and the controk: : [to, t] x{ko, ko+1,...,k—1} —
R™ is given by the following formula:

LL'(t, k) U(tv tO; k)F(tO; ka k0)$0+

¢ k—1

D>

0 |=kq

+ Ul(t,s; k)-

F(s;k, 1+ 1)B(s,)du(s,1)+

k—1
+ Z ATU(t, s k) Z F(s;k, 14 1)-
a<s<t l=ko
B(s,[)ATu(s,1)—
k—1
- Z A U(t, s k) Z F(s;k, 14 1)-
a<s<t l=ko

B(s,l)A™u(s,1).
(31)

Proof. The state equation (17) can be obtained
from (19) by replacingf (¢, k) by
t
ft,k)= [ B(s, k)du(s,k).
to

Then (31) results from (24) and (2).
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Now we replace the state(t, k) given by (31)
into the output equation oE (18). One obtains the
formula of the general response of the systém

Theorem 13Under the hypothesi@?2) the gen-
eral response of theDghcausal systenx.,. (17), (18)
is

y(tv k) = C(tv k)U(tv lo; k)F(tO; ka k0)$0+
t k—1

+ [ > Ct kU, s;k)F(s; k, 1+ 1)-
to 1=k,

-B(s,)du(s, 1) + D(t, k)u(t, k)+
+ > Ct,k)ATU(E, s;k)-

a<s<t

k—1
: Z F(s;k, 1+ 1)B(s, ) ATu(s,1)—
I=ko
— Y C(t,k)AJU(L, s k)-

a<s<t

k—1
: Z F(s;k, 1+ 1)B(s,))A™u(s,1).
I=ko

Corollary 14 If w € Gy (v € BV{™) thenz €
GV andy € GY (x € BV{* andy € BVY).

Proof. We apply Theorems 8 and 13 and Propo-
sition 12.
0

Definition 15 The boundary condition (7) is said
to bewell-posedf the homogeneous problem corre-
sponding to (17) and (19) (i.e. with = 0 andv = 0)
has the unique solution = 0.

Proposition 16 The boundary conditio19) is well-
posed if and only if the matrix

R = N1 + NoU(by, a1; b2) F(aq; ba, as)

is nonsingular

Proof: By (31) withu = 0 we get

x(b1, b2) = U(b1, a1; b2) F'(a1; ba, az)x(ay, az);
we replacez(by, be) andv = 0 in (19). It results
that (19) is well-posed if and only if the equation
[Nl —I—NQU(bl, ai; bg)F(al; ba, ag)]x(al, ag) = 0has
the unique solution:(aq, az) = 0, condition which is
equivalent toR nonsingular.

O
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In the sequel we shall consider boundary valu
systems> with well-posed boundary condition (19)

e

and which verify (22). Moreover, the discrete-time

character ofY with respect to the variablé: im-
poses the following assumption: the matricés de-
pend only onk and As(k) are nonsingular for any
k e {ag,ag—i- 1,...,b2}.

Then the discrete fundamental matrix 4§ does
not depends on the real variabteand it becomes

F(k,1). In this case we can define this fundamental

matrix even for the cask < [, by the following for-
mula:

F(k,1) = [Ag(1—=1)Az(1—2) - - - Ag(k+1) Ay (k)]

In this case the semigroup property

F(k,)F(1,i) = F(k,1)

is true for anyk, 1,i € {ag,a2 + 1,...,ba}.

Definition 17 The matrix

P=PFPs = R_1N2U<b1, ai; b2)F<b2, ag)

is called thecanonical boundary value operataof the
2Dghbv system® with well-posed boundary condi-
tion .

Theorem 18If the system is with well-posed bound-
ary condition then the state of the 2Dghbv systEm
determined by the contral : T" — R™ and by the
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input vectorv € R™ is

z(t, k) =

by bo—1
_/a 3

1 l=aq

-PU(ay, s;b2)F(ag, 1+ 1)B(s, [)du(s, 1)+

Ul(t,ar; k)F(k,a2) R~ v—

U(t, a1; k) F(k, az)-

¢ k—1

+/az

1l=as

Ult,s;k)F(k, 1+ 1)B(s,)du(s, )+

—U(t,a1; k)F(k,ag)P-

-B(s,1)ATu(s, 1)

ba—1
> AlU(ay, sib2) > Flag, I+1)-

1<8<b1 l:a2

— Y AJU(ar, s;ba)-

a1 <s<t
) +

(33)

ba—1
. Z F(ag,l+1)B(s, 1) A™u(s,1)

l=asy

k—1
+ > ATU(t s k) > F(k,1+1)-
a1 <s<t l=as
-B(s,1)Atu(s, 1) Z A;U(t, s; k)-
a1 <s<t
ZFk 14+ 1)B(s,1)A™u(s,1).

l=asy

Proof: We replacex(b, b2) given by (31) in the
boundary condition (19). We get

[N1 + NoU (b1, ar; b2) F'(ba, az)]xo+

b1b2 1
+N2/ > U(by, s;b) F

1 l=aq

bg,l-i— ) (s,l)du(s,l)+

ba—1
+ Y AfU(by,s502) Y F(ba, 1 +1)-

a1<s<b;

‘B(s,1)Atu(s, 1)

l=asy
Z A U bl,S bg)
a1<s<by
bo—1

~ZF(bz,l+l)

l=asy

B(s,)A™u(s,l) =

hence, by the semigroup properties of the fundamental
matricesU (t, s; k) and F'(k, ), we obtain the initial
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state of the systernl where

y(t, k) = C(t,k)U(t, a1; k) F(k,az) R~ 1v—

by bo—1
bt - [1Y et Ut e HF( @)
1 a

ro=Rw—P [ Y Ular,sbo)F(az,1+1)- b=
a1 —g, -PU(ay, s;b2)F(ag, 1+ 1)B(s, [)du(s, 1)+
-B(s,)du(s,l) — P ATU(ay, s;b)- ¢ k-1
(s, D)du(s, 1) algszl ( ) +/ S C(t k)U(t, 3 k) F(k, 1+ 1)B(s, (s, 1)+
YOl [—qq
by—1
. Z F(ag, 1+ 1)B(s,)ATu(s, 1)+ (34) +D(t, k)u(t, k) — C(t,k)U(t,a1; k) F(k, az) P-
t=az by—1
+P Z A;U(ay, s;b2)- . ( Z ATU(ay, s;b2) Z F(ag,l+1) -
a1<s<bi a1<s<bi l=asy
(35)
by—1 B(s, 1) Atu(s, 1) — Z A;U(ay, s;b2)-
> Flag, 1+ 1)B(s, 1) A" u(s,1). oy <act
l=asy by—1
. Z F(ag,l+1)B(s,[)A™u(s,l) | +
l=asy
i . k—1
We replace the initial statey = x(a1, a2) given by +O(t k) S ATU(tsik) Y. Fk,1+1)-
(34) in (31); then (33) results by using the semigroup a1 <s<t ’ I=as
property of the fundamental matric€gb,, s; b2) and +_ B
F(by, 1 +1),i.e. B(s,)ATu(s,1) = C(t,k) > AU, s;k)-
a1 <s<t
k—1
> F(k, 1+ 1)B(s, 1) A7 u(s, ).
l=asy

U(b1, 8;b2) = U(b1, a1;b2)U(a, s; ba) _
and, by denotingQ = M; + MU(by,aq;be)-
~F<b2, CLQ), S = Q(I — P) — Ml,

by bo—1
and z2=QR v+ S Z Ul(ay, s;b2)F(ag,l +1)-

YO 1—qq

~B(s,l)du(s,l)+5( > AfU(ar, 55 b)-

F(bg, 1 +1) = F(ba, az)F(az, 1 + 1) - mss<by

. Z F(ag, 1+ 1)B(s, ) AT u(s, 1)~ (36)
l=az

— > A[U(ay, s3bo)-

al <S§b1

|:| b2—1
> F(ag, 1+ 1)B(s,1)A"u(s, 1) | .
Theorem 19The input-output map of thie2Dghbvsys- I=az

tem:is Proof: We obtain (35) by replacing the stai€t, k)
given by (33) in the output equation (18). Then, by
replacingz (a1, a2) = zo (34) andz(by, ba) given by
(33) in (20) and by a long calculus which uses the

H:GPxR"— GY xR", semigroup property and which is omitted, we get (36).
H(u,v) = (y,2) O
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Corollary 20 If u € G7* thenz € G} andy € GY.

If Ay € BV/" B € BV;{"™ C € BVP*", D ¢
BV™™ andu € BV" thenz € BV|*andy € BV.

Proof: We apply Theorems 8, 18 and 19.
O

Definition 21 Thespace of admissible controls the
set

U = {u € G (a,b)|Df (Ai(-, k) 1 DF (u(-, k) = 0,
Dy (Ai(-, k) N Dy (u(-, k) =0, i = 1,2, Vk € Z}.

Corollary 22 If w € U, then the state and the output
of the systenXx. are given by the following formulzae

x(t, k) = U(t,a1; k) F(k,az) R~ 1v—

by b2—1
—/ N Ut ay; K)F(k, az)-
e (37)
-PU (a1, s;b2) F(az, 1 + 1)B(s, l)du(s, 1)+
t k—
+ 2:1 U(t,s; k)F(k,l+1)B(s,1)du(s,1),

1 |—=q,

y(t, k) = C(t,k)U(t,a1; k) F(k,a2) R 1v—

b1
_/b > C(t,k)U(t, ar; k) F(k, az)-
A1 =g,
-PU(ay, s;b2) F(az, 1+ 1)B(s, [)du(s, 1)+ (38)
t k=
+ 2:1 C(t,k)U(t, s; k)F(k, 1+ 1)-

A1 [—qq

-B(s,l)du(s,l) + D(t, k)u(t, k).

Remark 23 The 2D "classical” continuous-discrete
systems [15] with the state equation

%(t, k+1)= Ayt k+ D)t b+ 1)+
+Ay(t, k’)%(t, k) — Ay (t, k) Ag(t, k)a(t, k)+

+B(t, k)a(t, k)

represent particular cases of 2Dghbv (18) with abso-

t
lutely continuous matrices\;(t, k) = / A;i(s, k)ds,

t
i =1,2and controlsu(t, k) = / u(s, k)ds.

a
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4 Adjoints 2D generalized hybrid
boundary value systems

We consider the 2Dghbv systemX =
(Al(t)7 A2(k)7 B(t7 k)' C(t7 k)' D(t7 k)- Ny, N2)
with well-posed boundary conditions, given by
(17)-(19), where the matriced, (k) are nonsingular
Vk € {ag,as + 1,...,b2}. In order to cover the
ground of systems ove we shall denote byl* the
adjoint of a matrixA. Obviously, if A is a real matrix,
A* = AT, By A= we denotg A*) L.

Let us assume that

det[(1— A=Ay (1)) (I — AT Ay (t))-

(39)
(I + A7 A () (I + AT A1) #0

Definition 24 The 2Dghbv systert having the state
space representation

di(t, b+ 1) = —d[A; (£)*]E(t, k + 1)+

+ Ao (k) dE(t &)+ (40)
+d[Ay (8] Aa(k)~*E(t, k) — C(t, k)*da(t, k),

y(t, k) = B(t, k)" z(t, k) + D(t, k)" u(t, k), (41)

i(al,ag) = Nik)\, (i(bl,bg) = —NQ*)\ (42)

whereu € GY, & € GY, § € G7"is called theadjoint
of 3.

Therefore, the syster® is characterized by the
matrices A1 (t) = —Ai(t)*, Ax(k) = Ag(k)™*
(= (Ao(k)*)71), B(t,k) = —C(t.k)*, C(t.k) =
B(t, k)*, N and—N3.

From [19, §lll 4] one obtains, by denoting by
V(t,s) the corresponding fundamental matrix, the
following result:

Proposition 25 The general linear differential equa-
tion

dz = d[—A%|z + dg, z(to) = o (43)

whereA € BV™*™ andg € G"(a,b), has the solu-
tion

=
—g(t0)")[V (s, 0)] + g(0)" — glt0)*
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and
V(t,s)=Ul(t,s)+ V(t,s)(ATA(s))>—
—(ATA()2U(t, s)+ > V(t,T)[(ATA(1))*~
—(A~A(T))U(1,s), if t>s,
V(t,s) =U(t,s)+ V(t,s)(A™A(s))2— (45)
—(ATA()2Ut,s)+ > VIt D[(AA(T))*-
—(ATA(T))U (1, s), if
V(t,t)=U(t,t)=1

t <s,

We shall consider for the systemboundary con-
ditions of the form (21):

Z(t,a2) = Z(ay, k)

We assume thak := Ny + NoV (b1, a1) F(by, as)
is a nonsingular matrix and we denot® =
R_INQV(bl,al)F(bg,ag).

V(ay, t)*xg, T = F(ag, k) xg. (46)

Theorem 26 The input-output map of the adjoint sys-
temY is the ~operatorH : GY — GT* x R" given by

H(a) = (7, \), where

by b2—1
G(t, k) :/a S dii(s, 1)"C(s, )V (s, a1)-

1 l=aq
F(l+1,a2)(I — P)F(az, k)V(ay, ) B(t, k)~
¢ k—1

_/az

1i=aq

di(s, ))*C(s, )V (s, ) F(I + 1, k) B(t, k)+
+a(t, k) D(t, k)+

bo—1

Z Z ATa(s, 1)*C(s,1)-

a1<s<by l=a2
F(l +1, CLQ)A;’_V(S, (11)_

bo—1

S 3 Ava(s, 1)*C(s, )F(1+ 1, a)-

a1<s<by l=a2

ATV (s,a1)|(I — P)F(ag, k)V(ay,t)B(t, k)—

> kf Ata(s, 1)*C(s, ) F(I + 1, k)-

a1 <s<tl=asg

ATV (s, )B(t, k)+

(47)

k—1
+ 3 > ATa(s, )*C(s, DF(L+ 1, k)-

a1<s<tl=as

AZV(s, )B(t, k),
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by bo—1
A* :/ > di(s, 1)*C(s, 1)
A =g,
F(l+1,a2)V(s,a1)R '+
bo—1

+ Y Y Ata(s, 1)*C(s, 1)

a1<s<by l=aqg

(48)

F(l+1,a)AfV(s,a1)R71—

by—1
— Z ZA‘&(S,Z)*C’(S,Z)-

a1<s<by l=ag

F(l4+1,a2)A;V(s,a1)R™".

Proof: By Proposition 25 the fundamental matrix of
Ay = —ATis Uy (t,s) = V(s,t)". Then the (dis-
crete) fundamental matrix ofl, = (A43)~' is, for
k>I1,Vk,leZ

Fj, (k1) = [Ao(k = 1) Ap(k — 2) --- Ay (1)] =
= [(Az(k = 1)) 7H(Az(k = 2)*) 71 (Ax(1)) 7] =
= ([A2(k — D) Az(k = 2) - - A ()] ™) = Fa, (I, k)

and similarly we can prove that (k1) =
Fa,(l, k)" fork <.

By applying (31) to the adjoint systeid one ob-
tains:

.%(t, k)* = «%(ala a2)*v(a1, t)F(ag, k)—
[ ™ da(s, 1) Cls, DV (s, )P+ 1, )

1l=aq
bo—1

Y Ata(s,1)*C(s, 1)

a1<s<by l=asg
F(I+1,k)ATV (s, 1)~

bo—1

Z Z A~ a(s, 1)*C(s,1)-

a1<s<by l=aqg

F(l+1,k)AZV (s, 1).

(49)
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By (4.4) and (4.10) we have the following equalities:

—)\*Ng = f(bl, bg)* =

= i(al, ag)*V(al, bl)F(ag, bg)—
by bo—1

—/ S di(s, 1)

1 I=as

C(s, )V (s,01)F(l +1,b3)—

b2—1 (50)

- Z ZAJra(s,l)*C’(s,l)-

a1<s<b; l=az
F(l+1,b0) ATV (s,b1)+

ba—1

+ Y > Aa(s, 1)*C(s, 1)-

a1<s<b; l=az

F(L+1,b2) ASV (s, b1).

Valeriu Prepelita

obtain

C(s,1)V(s,a1)F(l+1,a2)—

by bo—1
—/ S di(s, 1)

1 I=as
'C(Sa Z)V(Sa al)F(l + 1a a2)p—

ba—1

- Z ZA+&(5,Z)*-

a1<s<b; l=az
'C(Sa Z)F(l +1, GQ)A;FV(Sa a1)+

ba—1

+ Y > Aras, )

a1<s<b; l=az
'C(Sa Z)F(l +1, GQ)A;V(Sa a1)+

ba—1

+ > Y Ata(s, )t
a1<s<b; l=az

'C(Sa Z)F(l +1, GQ)A;FV(Sa al)P_

We replace the initial staté(aq, a2)* by A*V;
and we postmultiply the obtained equality by ba—1
V (b1, a1)F(bs, az); by applying the semigroup prop- - > > Ava(s, )
erty of the matriced/ (s, t) andF'(k, [, we get a1<s<by I=az

'C(Sa Z)F(l +1, a2)A;V(5a al)Pa

N[Ny + NoV (b1, a1)F(ba, a2)] = hence the initial staté(a;, a2)* becomes

by ba—1
= Z da(s,1)*C(s, )V (s,a1)F(l + 1, a2)—
a1 j—q, by b2—1
bt iar,ar)" = [ Y da(s, ) °C(s. )
— 3 Y Ata(s, 1)*C(s, )- M i=a
a1<s<b; l=as -V(S, al)F(l +1, ag)(l — P)+
F(l+1,a2) ATV (s,a1)+ by—1
byt + > > Ata(s,1)*C(s, 1)
+ Z Z Ai’&(s, l)*C(S, l) a1<s<b; l=az (51)
a1<s<by l=asz F(l+1,a2) ATV (s,a1)(I — p)—
F(l+1,a2)A;V(s,a1). ba—1

- Y > Ata(s, 1) C(s, 1)

a1<s<b; l=az

F(l+1,a9) AV (s,a1)(I — P).

From this equality we obtain the expression
(48) of A\.. Now we postmultiply again (50) by

V(b1,a1)F (b2, as) and we replace\* by (48). We We replacet(aq, az)* (51) in (49) and we obtain
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the formula of the state state of the adjoint system

s, )V (s,a)-

OF(L+1,k)+

—/a S da(s, 1)*C(s. )V (s,

ba—1

Z Z Ati(s, 1)*C s, 1)-

a1§s<b1 l=as
F(l+1,a2)AFV(s,a1)—
ba—1

S Ai(s, 1) C(s, ) (52)

a1<s§b1 l=asy
F(l+1,a2) A7V (s,a1)](I = P)-
~F(a2, k)V(al,t)—

k—1
Z Z Ata(s, 1)*C(s,1)-

a1<s<tl=as

F(l+1,k)ATV(s,t)+

k—1
+ >0 Y Aras, 1)*C(s, )

a1<s<tl=as

P+ 1,K)AV (s, ),

and (47) results by replacing(t, k)* given by (52) in
the output equation (41).
0
Now let us consider the Banach spadé&Vy,
and N BV}, of the functionsf € BV which ver-
ify f(a1,k) = 0, Yk € {ag,...,ba — 1} and are

continuous on the right and left respectively. One ob-

tains the dual pair¢ BVY’, N BV{,) and (N BV["} x
R"™, BV]™ x R") with respect to the bilinear forms

b1b21
<y,u>1—/ Zdusl
YO =gy
and
b1b21
< (u,v), (g, A) > /\v—i-/ Zysl *du(s, )

1 l=as

respectively.

We shall emphasize the duality relationship be-

tween the 2Dghbv systerii and its adjoint> with
respect to these bilinear forms.
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In order to simplify, we shall consider the follow-
ing sets ofadmissible controls

U = {u e NBV{(a,b)|D; (Ai(-)N
ND} (u(-, k) =04 =1,2, Vk € Z}.

= {i € NBVY{,(a,0)|Dy (4 ()N
D; (a(-, k) =0, i =1,2, Vk € Z}

and the following assumption:
(ATAL(1)? = (A A1(1)? =0, Vt € [a1, b1]. (53)

Theorem 27 If (39) and (53) hold, thenVu <
U, vVu e U,Vv € R"

< Hy(u,v), @ >1=< (u,v), H(@) >, (54)

where H; andNﬁ are the input-output operators
Hy(u,v) =y, H(a) = (7, \).

Proof: By (45) and (53) we getV(t,s) =
U(t, s). For admissible controls anda, the formulee
(47) and (48) become

by ba—1
J(t, k) = / S dii(s, 1)*C(s, U (s, a1)-

1 l=as

F(l+1,a2)(I — P)F(ag, k)U(ay,t)B(t, k)—<55>
¢ k-1
_/a S dii(s, 1)*C(s, U (s, t)-

Y 1=qy

F(l+1,k)B(t, k) + a(t, k)*D(t, k),

by bo—1
N — / S dii(s, 1)*C(s, 1)
A1 [=qq (56>

F(l+1,a0)U(s,a1)R".

By a long calculus which is omitted, we obtain
by (38), (55) and (56) the following equality, which is
equivalent with (54):

by b2—1
/a Zdutk k) =
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The state space representation was studied for a
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Conclusion

class of time-varying 2D hybrid boundary-value time-

vari

efficient matrices, states, inputs and outputs over the

able systems in the general framework of the co-

[10]

[11]

space of regulated functions. The adjoints of these [12]

systems were introduced and the duality between the

2D

hybrid systems and their adjoints was expressed

by the means of two bilinear forms.

References:

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

S. Attasi, Introduction d’'une classe de systemes
linéaires reccurents a deux indiceBomptes
Rendus Acad. Sc. Parig77, série A (1973),
1135.

M. Dymkov, F. Gaishun, K. Gatkovski, E.
Rogers, D.H. Owens, Exponential stability of
discrete linear repetitive processést. J. Con-
trol, 75, 2002, pp. 861-869.

D. Frankova, Regulated functioréasopis pést.
mat., 116, 1991, pp. 20-59.

I. Gohberg and M.A. Kaashoek, Time varying
linear systems with boundary conditions and in-
tegral operatordntegral Equations and Opera-
tor Theory, 7, 1984, pp. 325-391.

I. Gohberg and M.A. Kaashoek, Minimality and
irreducibility of time invariant linear boundary-
value systemdnt. J. Control 44, 1986, pp. 363-
379.

I. Gohberg and M.A. Kaashoek, Minimal repre-

[13]

[14]

[15]

[16]

[17]

sentations of semiseparable kernels and systems [18]

with separable boundary conditiond. Math.
Anal. Appl, 124, 1987, pp. 436-458.

Ch. S. Honig,The adjoint equation of a linear
\olterra-Stieltjes integral equation with a linear
constraint, Lecture Notes in Mathematics 957,
Springer-Verlag, Berlin Heidelberg New York
1982.

T. Kaczorek, Controllability and minimum en-
ergy control of 2D continuous-discrete linear
systems Appl. Math. and Comp. S¢i5, 1995,
pp. 5-21.

A.J. Krener, Acausal linear systenRroc. 18th
IEEE Conference on Decision and Control, Ft.
Lauderdale, FI., 1979.

ISSN: 1109-2777 93

[19]

[20]

[21]

Valeriu Prepelita

A.J. Krener, Boundary value linear systems,
Astérisque, 75/76, 1980, pp. 149-165.

J. Kurek and M.B. Zaremba, lterative learning
control synthesis on 2D system theoeEE
Trans. Aut. ContrglAC-38, 1993, pp. 121-125.
V. Prepelita, Calculus of the Fundamental Ma-
trix for Generalized Linear Differential Equa-
tions,Ann. Sci. Math. Quebe@3, 1999, pp. 87-
96.

V. Prepelita, A Class of gD Continuous-Time
Time-Varying Acausal SystemBroceedings of
the 7th WSEAS Int. Conf. on INSTRUMENTA-
TION, MEASUREMENT, CIRCUITS and SYS-
TEMS (IMCAS’08) Hangzhou, China, April 6-
8, 2008, pp. 90-97.

V. Prepelita, Structural properties of Linear Gen-
eralized System3a/NSEAS Transactions on Sys-
tems and Contrgl3, 2008, pp. 701-711.

V. Prepelita, Minimal realization algorithm for
(q,n-D hybrid systemsWSEAS Transactions on
Systems and ControB, 2009, pp. 22-33.

V. Prepelita, Linear 2D Hybrid Systems over
Spaces of Regulated Functions, Mathematical
Reports, 11(61), 3 (2009).

V. Prepelita, Generalized 2D continuous-
discrete systems with boundary conditions,
V. Prepelita, Proceedings of the 8th WSEAS
International Conference on SYSTEM SCI-
ENCE AND SIMULATION IN ENGINEERING
(ICOSSSEO09) Genova, lItaly, October 17-19,
2009, pp. 67-72.

E. Rogers, D.H. OwensStability Analysis for
Linear Repetitive Processeecture Notes in
Control and Information Sciences, 175, Ed.
Thoma H., Wyner W., Springer Verlag, Berlin
Heidelberg New York 1999.

S. Schwabik, M. Tvrdy, O. Vejvoddifferential
and Integral Equations. Boundary Value Prob-
lems and Adjoints D. Reidel Publishing Co.,
Dordrecht Boston London 1979.

M. Tvrdy, Regulated Functions and the Perron-
Stieltjes IntegralCasopis pést. matl14, 1989,
pp. 187-2009.

M. Tvrdy, Generalized Differential Equations in
the Space of Regulated FunctiodMathematica
Bohemica, 116, 1991, pp. 225-244.

Issue 1, Volume 9, January 2010





