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Abstract: - Skeletal muscle force and surface electromyographic (sEMG) signals are closely related. Hence, the 
later can be used for the force estimation. Usually, the location for the sEMG sensors is near the respective 
muscle motor unit points. EMG signals generated by skeletal muscles are temporal and spatially distributed 
which results in cross talk that is recorded by different sEMG sensors. This research focuses on modeling 
muscle dynamics in terms of sEMG signals and the generated muscle force. Here, an array of three sEMG 
sensors is used to capture the information of the muscle dynamics in terms of sEMG signals and generated 
muscle force. Optimized nonlinear Half-Gaussian Bayesian filters and a Chebyshev type-II filter are used for 
the filtration of the sEMG signals and the muscle force signal, respectively. A Genetic Algorithm is used for the 
optimization of the filter parameters. sEMG and skeletal muscle force is modeled using multi nonlinear Auto 
Regressive eXogenous (ARX) and Wiener-Hammerstein models with different nonlinearity estimators/classes 
using System Identification (SI) for three sets of sensor data. An adaptive probabilistic Kullback Information 
Criterion (KIC) for model selection is applied to obtain the fusion based skeletal muscle force for each sensor 
first and then for the final outputs from each sensor. The approach yields good skeletal muscle force estimates. 
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1 Introduction 
Aftereffects of the loss of upper limbs are a 
reduction of functionality and psychological 
disturbance for the person. According to [1] there 
are 1.7 million peoples with amputation in the 
United States and this number is on rise after the 
Afghanistan and Iraq war in 2003 [2]. Conversely, a 
prosthetic limb can considerably increase the 
functionality of an amputee and benefit the person 
in everyday life. 

In the past, there have been various research 
works towards prosthetic hand design, having 
similar functionality and appearance as human hand 
[3-4]. Most of these research works are based on 
electromyography (EMG). The EMG signal is 
activated and controlled by the central nervous 
system, which depends on the flow of specific ions 
such as sodium ( ), potassium ( ) and calcium 
( ). 

An EMG signal recorded on the surface of the 
limb is expressed as an electric voltage ranging 
between -5 and +5 mV. This method is known as 
surface electromyography (sEMG). sEMG is 

utilized as an input to the controller to realize the 
movements of the prosthesis and force control [5-6]. 
Past research results show that EMG signal 
amplitude generally increases with skeletal muscle 
force. However, this relationship is not always rigid; 
various factors affect this relationship. EMG signals 
are a result of the varying motor unit recruitments, 
crosstalk, and biochemical interaction within the 
muscular fibres. This makes EMG signals random, 
complex and dynamic in nature and the control of 
the prosthesis difficult. Moreover, it changes 
continuously due to the onset and progression of 
muscle fatigue which results because of continuous 
high frequency stimulation or because of titanic 
stimulation [7]. Synchronization of active motor 
units along the muscle fibres, and a decrease in 
conduction velocity are reflected in the EMG signal 
as an increase of amplitude in time domain and a 
decrease of medium frequency in frequency domain 
[7]. All these factors make the relationship between 
EMG and force nonlinear. Correct interpretation of 
EMG signal is vital to achieve precise motion and 
force control of prosthesis. 
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Fig. 1: The Flow Chart for Skeletal Muscle Force Estimation. 

 

The present work presents a novel approach to 
estimate skeletal muscle force using an adaptive 
multi-sensor data fusion algorithm with hybrid 
nonlinear ARX and Wiener-Hammerstein models. 
Here, an array of three sEMG sensors is used to 
capture the information of muscle dynamics in 
terms of sEMG signals. The recorded sEMG signals 
are filtered utilizing optimized nonlinear Half-
Gaussian Bayesian filter parameters, and the 
skeletal muscle force signal is filtered by using a 
Chebyshev type-II filter. A simple Genetic 
Algorithm code is used to optimize the Bayesian 
filter parameters. Using an input/output approach, 
the EMG signal measured at the skin surface is 
considered as input to the skeletal muscle, whereas 
the resulting hand/finger force constitutes the 
output. Multi nonlinear ARX and Wiener-
Hammerstein models with different nonlinearity 

estimators/classes are obtained using SI for three 
sets of sensor data obtained from the vicinity of a 
single motor unit. Different nonlinearity 
estimators/classes are used for nonlinear modeling 
as they capture the dynamics of the system 
differently. The outputs of estimated nonlinear 
models are fused with a probabilistic Kullback 
Information Criterion (KIC) for model selection and 
an adaptive probability of KIC. First, the outputs are 
fused for the same sensor and for different models 
and then the final outputs from each sensor. The 
final fused output of three sensors provides good 
skeletal muscle force estimates. 

Fig. 1 shows the flow chart for skeletal muscle 
force estimation. This paper is structured as follows. 
First, the experimental set-up, pre-processing and 
filter parameter optimization for sEMG signals are 
discussed. Second, nonlinear ARX and Wiener-  
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Fig. 2: Experimental Set-Up. 

 

 

Fig. 3: (a) Raw and (b) Chebyshev Type-II Filtered Skeletal Muscle Force Signals. 

 

Hammerstein modeling is covered. Third, the fusion 
of various nonlinear model outputs using KIC and 
adaptive probability of KIC is covered. Finally, the 
results, discussion and future work are provided 
followed by a conclusion to summarize the 
importance of this work.  
 
 

2 Experimental Set-Up and Pre-
Processing 
The experimental set-up is shown in Fig. 2. Both 
sEMG and muscle force signals were acquired 
simultaneously using LabVIEW™ at a sampling 
rate of 2000 Hz. The sEMG data capturing was 
aided by a DELSYS® Bagnoli-16 EMG system 
with DE-2.1 differential EMG sensors. The  
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Fig. 4(a): Rectified EMG and Half-Gaussian Filtered EMG Signal for Motor Point Sensor. 

 

 

Fig. 4(b): Rectified EMG and Half-Gaussian Filtered EMG Signal for Ring 1 Sensor. 
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Fig. 4(c): Rectified EMG and Half-Gaussian Filtered EMG Signal for Ring 2 Sensor. 

 

corresponding force data was captured using 
Interlink Electronics FSR 0.5” circular force sensor. 
One sEMG sensor was placed on the motor point of 
the ring finger and two adjacent to the motor point 
of a healthy subject. Prior to placing the sEMG 
sensors, the skin surface of the subject was prepared 
according to International Society of 
Electrophysiology and Kinesiology (ISEK) 
protocols. According to previous research, the 
Bayesian based filtering method yields the most 
suitable sEMG signals [8]. The nonlinear filter 
significantly reduces noise and extracts a signal that 
best describes EMG signals and may permit 
effective use in prosthetic control. An instantaneous 
conditional probability density |  provides 
the resulting EMG for the latent driving signal  [8]. 
The model for the conditional probability of the 
rectified EMG signal     | | is used in this 
current estimation algorithm. EMG signals are 
usually described as amplitude-modulated zero 
mean Gaussian noise sequence [9]. For the rectified 
EMG signal, the “Half-Gaussian measurement 
model” in [8] is given by Equation (1). 

     |
∗

√
.                              (1) 

     The EMG signal is modeled for the conditional 
probability of the rectified EMG signal as a filtered 
random process with random rate. The likelihood 
function for the rate evolves in time according to a 
Fokker–Planck partial differential equation [8]. The 
discrete time Fokker–Planck Equation is given by 
equation (2). 
     , ∗ , 1 1 2 ∗ ∗ 

, 1 ∗ , 1 1 ∗  
               , 1 .                                               2  
Here,  and  are two free parameters,  is the 
expected rate of gradual drift in the signal, and  is 
the expected rate of sudden shifts in the signal. The 
unknown driving signal  is discretized into bins of 
width . These two free parameters of the non-linear 
Half-Gaussian filter model are optimized for the 
acquired EMG data using elitism based GA. GA 
belongs to a class of optimization algorithms that 
are based on observing nature and its corresponding 
processes to imitate solving complex problems, 
most often optimization or estimation problems, see 
[10-12]. A Chebyshev type II low pass filter with a 
550 Hz pass frequency is used to filter the force 
signal. Fig. 3 depicts the raw and Chebyshev type-II 
low pass filtered force signals. Fig. 4(a), (b) and (c) 
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show the rectified EMG and Half-Gaussian Filtered 
EMG signal for three sensors. 
 
 

3 Nonlinear ARX and Wiener-
Hammerstein Modeling 

In this paper, we are using nonlinear ARX and 
Wiener-Hammerstein models with different 
nonlinearity estimators/classes to model three 
sEMG sensors data as input and skeletal muscle 
force data as output. The nonlinear ARX model uses 
a parallel combination of nonlinear and linear 
blocks [13].  

Fig. 5 shows the nonlinear ARX model structure. 
The nonlinear ARX model uses regressors as 
variables for nonlinear and linear functions. 
Regressors are functions of measured input-output 
data [13]. The predicted output  of a nonlinear 
model at time  is given by the general Equation (3): 
                                                      (3)  
where  represents the regressors,  is a 
nonlinear regressor command, which is estimated by 
nonlinearity estimators/classes [13]. As shown in 
Fig. 5, the command  can include both linear and 
nonlinear functions of . Equation (4) gives the 
description of . 
     ∑                        (4) 
where  is the unit nonlinear command,  is the 
number of nonlinearity units, and ,  and  are 
the parameters of the nonlinearity estimators/classes 
[13]. 

The Wiener-Hammerstein model uses one or two 
static nonlinear blocks in series with a linear block. 
Structural representation of a nonlinear Wiener-
Hammerstein is shown in Fig. 6 [13]. 

The general Equations (5), (6), and (7) can 
describe the Wiener-Hammerstein structure [13]. 
                                                     (5) 

     ,

,
                                            (6) 

     .                                                (7) 
where  and  are input and output of the 
system, respectively,  and  are nonlinear 
functions, which corresponds to input and output 
nonlinearity, respectively,  and  are 
internal variables, where  has the same 
dimensions as  and  has the same 
dimensions as , and  and  corresponds 
to the linear dynamic block, these are polynomials 
in the backward shift operator. 

The nonlinearity classes used in this work are 
Wavenet, Treepartition, Sigmoidnet, Pwlinear, 
Saturation, and Deadzone. For motor point and 
ring1 sensors, three nonlinear ARX and four 

nonlinear Wiener-Hammerstein models with 
different nonlinearity estimators/classes are 
obtained. For ring2 sensor, three nonlinear ARX and 
five nonlinear Wiener-Hammerstein models with 
different nonlinearity estimators/classes are 
obtained. Tables 1, 2 and 3 gives the nonlinearity 
estimators/classes for different sensors and their 
corresponding model fit values. 

 

 
Fig. 5: Nonlinear ARX Model Structure. 

 

 
Fig. 6: Nonlinear Wiener-Hammerstein Model 

Structure. 
 
 

4 Data Fusion and Adaptive KIC 
Probability 

Data fusion of multiple outputs of nonlinear ARX 
and Wiener-Hammerstein models is done by 
assigning a particular probability to each individual 
model [14]. First, the fusion algorithm is applied to 
the outputs of different nonlinear ARX and Wiener-
Hammerstein models for each sensor obtained using 
different nonlinearity estimators. Second, the fusion 
algorithm is again applied to the final fusion based 
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Table 1: Different Nonlinearity Estimators and Model Fit Values for Motor Point Sensor. 

S. No. Model Nonlinearity Class Model Fit 
1. 1 Wavenet 24.78 % 
2. 2 Treepartiton 40.46 % 
3. 3 Sigmoidnet 48.75 % 
4. 2 Wavenet 32.38 % 
5. 3 Pwlinear 26.27 % 
6. 4 Saturation 55.16 % 
7. 5 Deadzone 42.45 % 

 

Table 2: Different Nonlinearity Estimators and Model Fit Values for Ring1 Sensor. 

S. No. Model Nonlinearity Class Model Fit 
1. 31 Wavenet -60.76 % 
2. 32 Treepartiton -52.64 % 
3. 33 Sigmoidnet -39.36 % 
4. 31 Pwlinear 31.06 % 
5. 32 Sigmoidnet 10.05 % 
6. 33 Saturation 31.57 % 
7. 35 Wavenet 32.36 % 

 

Table 3: Different Nonlinearity Estimators and Model Fit Values for Ring2 Sensor. 

S. No. Model Nonlinearity Class Model Fit 
1. 21 Wavenet -25.12 % 
2. 22 Treepartiton -22.31 % 
3. 23 Sigmoidnet -33.65 % 
4. 21 Pwlinear 34.69 % 
5. 22 Sigmoidnet 34.76 % 
6. 23 Saturation 33.3 % 
7. 24 Deadzone 34.94 % 
8. 25 Wavenet 34.89 % 

 

outputs of each sensor; this gives good force 
estimate. SI model fit value gives the probability for 

each model, which is  given by 1
| |

| |
∗ 100. 

The model selection criterion used in this paper is 
KIC. The sum of two directed divergences, which is 
the measure of the models dissimilarity, is known as 
Kullback’s symmetric or J-divergence [15], as given 
by Equation (8). 

2
log

1

2
 

                                       ,              (8) 

where ∗ log /2 . 

The following fusion algorithm as given by [14] is 
applied for data fusion of the outputs of different 
nonlinear ARX and Wiener-Hammerstein models: 
1) Identify models , , … ,  using sEMG 

data  as input and force data  as output, 
for  number of sensors collecting data 
simultaneously. 

2) Compute the residual square norm  

       Φ Θ , 
       where Θ Φ Φ Φ , and 

       Φ

…

…

⋮ ⋮ ⋮ ⋱
…

⋮
. 
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Fig. 7: Data Fusion and Adaptive KIC Probability. 

 

3) Calculate the model criteria coefficient using 
Equation (8). 

4) Compute the model probability |

∑
, where  is model selection criterion, 

i.e. . 
5) Compute the fused model output 

∑ | . 
6) Compute the overall model from  and force 

data. 
Here all the computation from step 2) to 6) is 
adaptive i.e. the residual square norm, , 
model probability | , and fused model output 

 are being updated with time or for each data 
point. Fig. 7 shows the flow chart for fusion of 
outputs and adaptive probability of KIC. 
 
 

5 Results, Discussion and Future 
Work 

This section deals with the results, discussion and 
future work. The following plots show the nonlinear 

(ARX and Wiener-Hammerstein) model and 
adaptive fusion algorithm based estimated force 
output for each sensor first and then finally 
combined adaptive fusion based output for all three 
sensors. Fig. 8 shows the overlapping plot of the 
original and adaptive fusion based force output for 
the motor point sensor. The output is the result of 
the adaptive fusion algorithm on three nonlinear 
ARX and four nonlinear Wiener-Hammerstein 
models for the motor point sensor signal. Fig. 9 
shows the overlapping plot of the original and 
adaptive fusion based force output for ring1 sensor. 
This output is the result of adaptive fusion algorithm 
of three nonlinear ARX and four nonlinear Wiener-
Hammerstein models for ring1 sensor signal. Fig. 10 
shows the overlapping plot of the original and 
adaptive fusion based force output for ring2 sensor. 
This output is the result of adaptive fusion algorithm 
on three nonlinear ARX and five nonlinear Wiener-
Hammerstein models for ring2 sensor signal. Fig. 11 
shows the overlapping plot of the original and final 
combined adaptive fusion based force output for 
motor point, ring1 and ring2 sensors. The output is 
the result of adaptive fusion algorithm on the final  
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Fig. 8: Original and Fusion Based Output for Motor Point Sensor. 

 

 

 

Fig. 9: Original and Fusion Based Output for Ring1 Sensor. 
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Fig. 10: Original and Fusion Based Output for Ring2 Sensor. 

 

 
Fig. 11: Final Plot - Original and Fusion Based Output for All Three Sensors. 
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Fig. 12: Error Plot – Original and Best-Estimated Model Output for Motor Point Sensor. 

 

 

Fig. 13: Final Error Plot – Original and Fusion Based Output for Motor Point, Ring1 and Ring2 Sensors. 
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outputs of three sensors i.e. motor point, ring1 and 
ring2 as shown in Fig. 8 to 10. Fig. 11 shows the 
best skeletal muscle force estimate, which is the 
result of the multi nonlinear ARX and Wiener-
Hammerstein models and an adaptive hybrid data 
fusion on these nonlinear models. Fig. 12 shows the 
error plot of the original and best-estimated model 
output for the motor point sensor. 

Fig. 13 shows the error plot of original and final 
multi nonlinear modeled and adaptive hybrid data 
fusion based force estimate (results from three 
sensors, nonlinear modeling and adaptive data 
fusion algorithm). If we compare Fig. 12 and 13, it 
is very clear and conspicuous that the error has 
decreased remarkably and is very close to zero. 

Future work will focus on the improvement of 
the data collection techniques and experimental set-
up. By using the combination of linear and 
nonlinear modeling, and adaptive hybrid data 
fusion, the skeletal muscle force estimate can be 
improved further. Furthermore, the authors believe 
that by using different model selection criteria such 
as Akaike Information Criterion (AIC), Kullback 
Information Criterion (KIC) and the Bayesian 
Information Criterion (BIC) together to obtain final 
skeletal muscle force estimate will give improved 
results. 
 
 

6 Conclusions 
sEMG and force data acquired using three EMG and 
one common FSR force sensor is modeled using 
nonlinear SI. Using different nonlinearity 
estimators/classes, multi nonlinear ARX and 
Wiener-Hammerstein models are obtained for each 
sensor. First, the outputs of different models for 
each sensor are fused with a data fusion algorithm 
and an adaptive KIC probability. Finally, the fused 
outputs from each sensor are again fused with same 
algorithm and adaptive KIC probability. The final 
estimated force using this technique gives the best 
estimate. The presented approach can be utilized for 
controlling prosthetic hands [16]. 
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