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Abstract: -The influence of external and internal noises on the output signal of a fractional Langevin equation
with the friction kernel of a viscoelastic type is considered. The interaction with fluctuations of environmental
parameters is modeled by a multiplicative white noise and by an additive noise with a zero mean. In the case
of an external harmonic driving force it is shown that additive external and internal noises cause qualitatively
different behaviors of the autocorrelation function for the output signal. Particularly, in the case of external noise
it is established that at a sufficiently strong memory of the friction kernel the output signal corresponds to trapped
dynamics in an effective potential well even if the system is subdiffusive in the case of internal noise.
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1 Introduction

In complex systems conditions far from thermal equi-
librium and influence of environmental fluctuations
may give rise to unexpected transport phenomena,
which are ruled out by the second law of thermody-
namics under equilibrium conditions. Among them
we can mention the ratchet effect [1, 2], hypersensi-
tive response [3, 4], absolute negative mobility [5–7],
noise-enhanced stability [8, 9], noise-supported trav-
eling structures [10], and giant amplification of diffu-
sion [11], to name a few.

Diffusion is one of the fundamental mechanisms
for non-equilibrium transport phenomena in physical
systems. Normal diffusion is characterized by a mean-
square displacement that is asymptotically linear in
time and is well described in the theory of Brow-
nian motion as a Gaussian process that is local in
both space and time. However, the Brownian motion
theory cannot account for anomalous diffusion pro-
cesses, in which the mean-square displacement is not
proportional to time. Examples of such systems are
supercooled liquids, glasses, colloidal suspensions,
dense polymer solutions [12, 13], viscoelastic me-
dia [14, 15], and amorphous semiconductors [16, 17].
Even anomalous diffusive dynamics of atoms in bio-
logical macromolecules and intrinsic conformotional
dynamics of proteins can be subdiffusive [18–20].
There are several approaches to describe anomalous
diffusion processes, where the dynamical origin of the

phenomenon is considered as a nonlocality, either in
space or time [21]. One of the objects of special at-
tention in this context is the noise-driven fractional
oscillator. The dynamical equation for such an oscil-
lator is obtained by replacing the usual friction term
in the dynamical equation for a harmonic oscillator
by a generalized friction term with a power-law-type
memory [18,21–24].

Although the behavior of the fractional oscilla-
tor with an additive noise has been investigated in
some detail [22, 24], it seems that analysis of the po-
tential consequences of interplay between eigenfre-
quency fluctuations and memory effects is rather miss-
ing in literature. This is quite surprising in view of
the fact that the importance of multiplicative fluctu-
ations and viscoelasticity for biological systems, e.g.
living cells, has been well recognized [25, 26]. Thus
motivated, the authors of [23, 27] have recently con-
sidered a fractional oscillator with fluctuating eigen-
frequency subjected to an external periodic force and
an additive noise. These models demonstrate that an
interplay of noises and memory can generate a variety
of cooperative effects, such as memory-enhanced en-
ergetic stability [27, 28], stochastic resonance versus
noise parameters [23, 29], as well as friction-induced
resonance [23]. However, in these works the depen-
dence of the autocorrelation function of the oscilla-
tor displacement on the lag-time has not been investi-
gated.
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As from an experimental point of view, informa-
tion about the dynamics of the observed subdiffusive
system can be extracted from the normalized autocor-
relation function and from the mean-square displace-
ment [18, 20, 24], we investigate the behavior of the
autocorrelation function of the output signal of the
fractional oscillator with multiplicative white noise
subjected to an external periodic force and an additive
driving noise (i.e. a model similar to the one presented
in [27]). The main purpose of this paper is to demon-
strate, partially on the basis of the exact expressions
of output characteristics found in [27], that the de-
pendence of the normalized autocorrelation function
on the lag-time depends crucially on the physical na-
ture of the additive driving noise; i.e. the results are
qualitatively different for internal and external noises.
Moreover, we aim at providing a simple criterion that
permits to distinguish between these two types of out-
put processes and also to verify the physical nature of
the additive noise.

The structure of the paper is as follows. In Sec-
tion 2 we introduce the fractional Langevin equation
(noisy fractional oscillator) as the basic model inves-
tigated. Exact formulas for the variance and for the
autocorrelation function of the output signal are de-
rived. In Section 3 we analyze the behavior of the
output characteristics (such as variance and autocor-
relation function), and present the main results of this
paper. A simple criterion to determine if the driving
noise is internal or external is established. Section 4
contains some brief concluding remarks.

2 Model

2.1 Fractional Langevin equation
As a model for an oscillatory system with memory,
strongly coupled with a noisy environment, we con-
sider an underdamped fractional Langevin equation
with a fluctuating harmonic potential (sometimes re-
ferred to as “noisy fractional oscillator” [27,28]:

(1)Ẍ +
γ

Γ(1− α)

t
∫

0

Ẋ(t′) dt′

(t − t′)α
+ [ω2

+ Z(t)]X

= ξ(t) + A0 sinΩt,

whereẊ ≡ dX/dt, X(t) is the oscillator displacement,
γ is a friction constant,Γ(y) is the Gamma function,A0
andΩ are the amplitude and the frequency of the har-
monic driving force, respectively, and the parameter
α, 0 < α < 1 denotes the memory exponent. Fluctua-
tions of the frequencyω of the binding harmonic field
are expressed as Gaussian white noiseZ(t) with a zero

mean and a delta-correlated correlation function:

〈Z(t)〉 = 0,
〈

Z(t)Z(t′)
〉

= 2Dδ(t − t′), (2)

whereD is the noise intensity. The zero-centered ran-
dom forceξ(t) with a stationary correlation function

〈

ξ(t)ξ(t′)
〉

=
kBTγ

Γ(1− α)|t − t′|α
+ 2D1δ(t − t′),

〈ξ(t)〉 = 0 (3)

is assumed as statistically independent from the noise
Z(t). If D1 = 0, the driving noiseξ(t) can be regarded
as an internal noise, in which case its stationary cor-
relation function satisfies Kubo’s second fluctuation-
dissipation theorem, whereT is the absolute temper-
ature of the heat bath, andkB is the Boltzmann con-
stant. In the case ofT = 0 the driving white noiseξ(t)
with an intensityD1 and the dissipation have different
origins andξ(t) will be referred to as “external noise”.

2.2 Spectral amplification
The second order differential Eq. (1) can be written as
two first-order differential equations:

Ẋ(t) = Y(t), (4)

(5)Ẏ(t) +
γ

Γ(1− α)

t
∫

0

Y(t′)
(t − t′)α

dt′ + [ω2
+ Z(t)]X(t)

= ξ(t) + A0 sin(Ωt),

which, after averaging over the ensemble of realiza-
tions of the random processesZ(t) andξ(t), take the
following form

〈X(t)〉˙= 〈Y(t)〉 ,

(6)〈Y(t)〉˙+ γ

Γ(1− α)

t
∫

0

Y(t′)
(t − t′)α

dt′ + ω2 〈X(t)〉

= A0 sin(Ωt).

Here we have used that, as it follows from Eq. (2), the
correlator

〈Z(t)X(t)〉 = 0. (7)

The solution of Eqs. (6) can be represented in the form

(8)

〈X(t)〉 = x0





















1− ω2

t
∫

0

H(τ)dτ





















+ ẋ0H(t)

+ A0

t
∫

0

H(t − τ) sin(Ωτ)dτ,
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〈Y(t)〉 = ẋ0Ḣ(t) − ω2x0H(t)

+

t
∫

0

Ḣ(t − τ) sin(Ωτ)dτ, (9)

where the constants of integrationx0 and ẋ0 are de-
termined by the initial conditions and the relaxation
function H(t), with H(0) = 0, is the inverse form of
the Laplace transform̂H(s) given by

Ĥ(s)=
1

s2 + γsα + ω2
, (10)

where

Ĥ(s) =

∞
∫

0

e−stH(t)dt.

To evaluate the inverse Laplace transform of Eq. (10)
we use the residue theorem method described in [30].
Thus we obtain

(11)

H(t) =
2

√
u2 + v2

e−βt sin(ω∗t + θ)

+
γ sin(απ)
π

∞
∫

0

rαe−rtdr
B(r)

,

wheres1,2 = −β ± iω∗, (β > 0, ω∗ > 0), are the pair of
conjugate complex zeros of the equation

G(s)≡ s2
+ γsα + ω2

= 0; (12)

here,G(s) is defined by the principal branch ofsα.
The quantitiesu, v, θ, andB(r) are determined by

u = −2β+
αγ cos{(1− α)[arctan(−ω∗/β) + π]}

(

β2 + ω∗2
)(1−α)/2 ,

v = 2ω∗ − αγ sin{(1− α)[arctan(−ω∗/β) + π]}
(

β2 + ω∗2
)(1−α)/2 ,

θ = arctan
(u
v

)

,

B(r) =
[

r2
+ γrα cos(πα) + ω2

]2
+ γ2r2α sin2(πα).

(13)

It should be emphasized that the relaxation function
H(t) can be represented via Mittag-Leffler-type spe-
cial functions [31]. But as the numerical calculations
are very complicated we suggest, apart from possible
representations via Mittag-Leffler functions, a numer-
ical treatment of Eq. (11).

From Eqs. (8) and (11) it follows that in the long
time limit, t → ∞, the memory about the initial con-
ditions will vanish as

x0





















1− ω2

t
∫

0

H(τ) dτ





















≈ γx0

ω2Γ(1− α)tα
(14)

and the average oscillator displacement,〈X(t)〉as :=
〈X(t)〉|t→∞ is given by

〈X(t)〉as = A0

t
∫

0

H(t − τ) sin(Ωτ)dτ. (15)

Equation (15) can be written by means of the complex
susceptibilityχ(Ω) as [32]

〈X(t)〉as = Asin(Ωt+ ϕ), (16)

with the output amplitude

A = A0|χ(Ω)|, (17)

where the complex susceptibilityχ(Ω) is defined by

χ(Ω) = Ĥ(−iΩ). (18)

For the spectral amplification (SPA) we have

(19)

SPA=
A2

A2
0

=

{

[

ω2 −Ω2
+ γΩα cos

(

απ

2

)]2

+ γ2
Ω

2α sin2
(

απ

2

)

}

−1

andthe phase shiftϕ can be represented as

ϕ = arctan

















−Ωαγ sin
(

απ
2

)

ω2 −Ω2 + γΩα cos
(

απ
2

)

















. (20)

Herewe emphasize that for a deterministic fractional
oscillator the formulas (16), (19), and (20) have been
previously represented in [22]. To avoid misunder-
standings, let us mention that in contrast to the model
considered in [23], where the dependence of the SPA
on the noise parameters was significant, in the present
model the SPA is independent of the noise parameters
and remains equal to the noise-free solution. It is im-
portant that for anyα < αc ≈ 0.441 and for any values
of other system parameters the dependence ofA(Ω)
onΩ is always nonmonotonic with a local minimum
and with a resonance peak (see [22,23]).
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2.3 Normalized correlation function
From an experimental point of view the time-
homogeneous part of the variance of the oscillator
displacementX is an important output characteristic.
Alternative information about the experimentally ob-
served stochastic behavior of the output signal can be
extracted from the one-time normalized autocorrela-
tion function [20, 24]. To find the above mentioned
quantities, we will first consider the long-time behav-
ior of the varianceσ2(t) and the autocorrelation func-
tion K(τ, t) of the oscillator displacement:

σ2(t) ≡
〈

[X(t) − 〈X(t)〉]2
〉

, (21)

(22)K(τ, t) ≡ 〈[X(t+τ)−〈X(t+τ)〉] [X(t)−〈X(t)〉]〉 .

Starting from Eqs. (4) and (5) one can easily obtain a
formal expression for the oscillator displacementX(t)
in the following form

(23)X(t) = 〈X(t)〉 +
t

∫

0

H(t − τ)[ξ(τ) − X(τ)Z(τ)]dτ.

From Eqs. (22) and (23) for the correlation function
we have

K(τ, t) =

t+τ
∫

0

t
∫

0

H(t + τ − t1)H(t − t2)

×
[

〈X(t1)X(t2)Z(t1)Z(t2)〉 + 〈ξ(t1)X(t2)Z(t2)〉
+ 〈ξ(t2)X(t1)Z(t1)〉 + 〈ξ(t1)ξ(t2)〉

]

dt1dt2
(24)

From Eq. (7) and statistical independence of the pro-
cessesξ(t) andZ(t) it follows that

〈ξ(t1)X(t2)Z(t2)〉 = 〈ξ(t2)X(t1)Z(t1)〉 = 0. (25)

Using the well-known Furutzu-Novikov procedure
[33], the correlator〈X(t1)X(t2)Z(t1)Z(t2)〉 can be given
by [28]

(26)〈X(t1)X(t2)Z(t1)Z(t2)〉= 2D
〈

X2(t2)
〉

δ (|t2−t1|) .

In the long-time limit,t → ∞, Eqs. (24) – (26), (21)
and (16) yield the following asymptotic formula for
the correlation functionK(τ, t):

Kas(τ, t) =

∞
∫

0

∞
∫

0

H(t1)H(t2) 〈ξ(τ + t2)ξ(t1)〉dt1dt2

+ 2D

∞
∫

0

H(τ + t1)H(t1)
{

σ2(t − t1)

+ A2 sin2 [

Ω(t − t1) + ϕ
]

}

dt1, t → ∞.
(27)

The two-time asymptotic correlation functionKas(τ, t)
depends on both timest andτ and becomes a periodic
function of t with the period of the external driving,
T = 2π/Ω. Thus as in [34, 35], we define the one-
time correlation functionK1(τ) as the average of the
two-time correlation function over a period of external
driving, i.e.,

K1(τ) =
1
T

T
∫

0

Kas(τ, t)dt. (28)

Using Eqs. (3), (27), and (28) we obtain

(29)K1(τ) =
[

D
(

2σ2
h+A2

)

+ 2D1

]

Ψ(τ)+
kBT

ω2
F(τ),

whereσ2
h is the time-homogeneous part of the vari-

ance of the oscillator displacementX in the asymp-
totic regime,t → ∞, i.e.,

σ2
h =

1
T

T
∫

0

σ2
as(t)dt. (30)

It should be emphasized that the functionsΨ(τ)
andF(τ), defined as

Ψ(τ) :=

∞
∫

0

H(t + τ)H(t)dt, (31)

and

F(τ) B
γω2

Γ(1− α)

∞
∫

0

∞
∫

0

H(t1)H(t2)
dt1dt2

|τ + t2 − t1|α
,

(32)

respectively, are independent of the driving force pa-
rametersA0 andΩ as well as of the noise intensities
D, D1, andT. Using the formula (11) and the results
of [27], one gets

Ψ(τ) =
e−βτ

u2 + v2

{

1
β

cos(ω∗τ)

− 1

β2 + ω∗2
[

β cos(ω∗τ + 2θ) − ω∗ sin(ω∗τ + 2θ)
]

}

+
γ sin(απ)
π

∞
∫

0

rαdr
B(r)



















e−rτ

r2 + γrα + ω2

+
2e−βτ

[

ω∗ cos(ω∗τ + θ) + (r + β) sin(ω∗τ + θ)
]

√
u2 + v2

[

(r + β)2 + ω∗2
]



















,

(33)

WSEAS TRANSACTIONS on SYSTEMS Ako Sauga, Romi Mankin, Ain Ainsaar

ISSN: 1109-2777 1022 Issue 10, Volume 9, October 2010



F(τ) =
2ω2e−βτ

√
u2 + v2

(

β2 + ω∗2
)

×
[

ω∗ cos(ω∗τ + θ) + β sin(ω∗τ + θ)
]

+
ω2γ

π
sin(απ)

∞
∫

0

e−rτdr

r1−αB(r)
. (34)

Turning now to Eq. (29) we consider the time-
homogeneous part of the varianceσ2

h. As K1(0) = σ2
h

andF(0) = 1 we find from Eq. (29) that

σ2
h =

1
Dcr − D

(

A2

2
D + D1 +

kBT Dcr

ω2

)

, (35)

wherethe critical noise intensityDcr reads:

Dcr =
1

2Ψ(0)
. (36)

FromEq. (35) we can see that the stationary regime is
possible only ifD < Dcr. As the intensity of the mul-
tiplicative noiseD tends to the critical valueDcr the
varianceσ2

h increases to infinity. This is an indication
that for D > Dcr energetic instability appears, which
manifests itself in an unlimited increase of second-
order moments of the output of the oscillator with
time, while the mean value of the oscillator displace-
ment remains finite [35, 36]. Thus, in the stationary
case the normalized one-time correlation function

Kn(τ) =
K1(τ)

σ2
h

(37)

is given by

Kn(τ) = 2DcrΨ(τ)















1− kBT

ω2σ2
h















+
kBT

ω2σ2
h

F(τ). (38)

Theanalytical expressions (33) – (35) and (38) belong
to the main results of this work.

3 Results

3.1 Variance of the output signal
In Figs. 1 and 2 we depict the behavior of the criti-
cal noise intensityDcr and the varianceσ2

h by vari-
ations of the memory exponentα. Fig. 1 shows a
typical resonance-like behavior ofDcr(α). As a rule,
the maximal value ofDcr/γ increases as the value
of the friction coefficientγ increases, while the po-
sitions of the maxima are monotonically shifted to a
lower α as γ rises. In the case considered in Fig.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

Α

D
cr
�Γ

Fig. 1. Critical noise intensityDcr asfunction of the
memory exponentα, obtained from Eqs. (19), (33),
and (36) forA0 = ω = 1. Solid line,γ = 4; dashed
line γ = 1.62.

the intensity of the multiplicative noise is in the in-
terval ω2γ < D < Dcr max, where Dcr max is the
maximal value ofDcr(α) by variations ofα. In this
case the varianceσ2

h decreases rapidly from infinity at
α1, Dcr(α1) = D, to a minimum and next increases
to infinity at α2, Dcr(α2) = D. Thus the fractional
oscillator is energetically stable only in the interval
α1 < α < α2.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

ÈlnH1-ΑLÈ

Σ
h

2

Fig. 2. Dependence of the varianceσ2
h onthe memory

exponentα, computed from Eqs. (19), (33), (35), and
(36). The parameter values:A0 = ω = 1, γ = 4,
D = 4.8, D1 = 0, andkBT/ω2

= 0.1. Solid line,
Ω = 10; dotted line,Ω = 1. The dashed lines depict
the positions of the critical memory exponentsα1 ≈
0.325 andα2 ≈ 0.872 between which the oscillator is
energetically stable.

From Fig. 2 one can see that the values of the vari-
anceσ2

h depend on the frequencyΩ of the harmonic
driving force. As in the case without multiplicative
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0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

Τ

K
n

HaL

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

Τ

K
n

HbL

Fig. 3. Normalized autocorrelation functionKn(τ) vs.
thetime lagτ computed from Eq. (38) forω = 1, γ =
4, andα = 0.45. Panel (a): external noise (i.e.,T =
0). Panel (b): internal noise (i.e.,D1 = 0). System
parameter values:A0 = 1, D = 4.8, andkBT/ω2

=

0.01. Solid line,Ω = 1; dotted line,Ω = 10.

noise such a dependence is absent (cf. also Eq. (35)),
this phenomenon offers a simple experimental possi-
bility to verify the existence of a multiplicative noise
in oscillatory systems described by model (1).

3.2 Temporal behavior of the autocorrela-
tion function

Now we will consider the behavior of the normalized
autocorrelation functionKn(τ) (see Eqs. (33), (34) and
(38)). In contrast to the results for varianceσ2

h, here
the role of the additive driving noiseξ(t) is crucial. If
the driving noise is external (i.e.T = 0), the typ-
ical form of the graphKn(τ) is represented in Fig.
3(a). Note that the exact solution exhibits exponen-
tially damped oscillations around a curve which for
largeτ decays totally monotonically like a power-law.
Consequently, the normalized autocorrelation func-
tion has only a finite number of zeros and decays, in
the end, asτ−(1+α) tends to theτ-axis. Note that in this
case the functionKn(τ) is independent of the driving
force parametersA0 andΩ.

In the case of an internal noiseξ(t) (i.e., D1 = 0)

the picture of the dependence ofKn(τ) on τ is dif-
ferent (see Fig. 3(b)). First, the autocorrelation func-
tion Kn(τ) relaxes asymptotically likeτ−α. This is in
sharp contrast with the result for the external noise
that exhibits a much faster decay. Second, the most
important difference is the dependence ofKn(τ) on
the amplitudeA of the output signal (cf. Eqs. (19),
(35), and (38)). Thus, in the case of internal noise the
exact form ofKn(τ) is sensitive to the values of the
frequencyΩ of the external harmonic driving force.

3.3 Memory-induced trapping
Next we consider the behavior of output characteris-
tics (Kn andσ2

h) without the harmonic field, i.e., that
of Eq. (1) with a zero eigenfrequency,ω = 0. It is
seen from Eq. (35) that the time-homogeneous part of
the variance ofX(t) depends on the quantity

σ2
0 =

kBT

ω2
+

D1

Dcr
, (39)

which is determined as the stationary asymptotic
value, t → ∞, of the variance ofX(t) in the case
where the multiplicative fluctuations and the exter-
nal sinusoidal force are both absent. The last men-
tioned particular case without the harmonic field (i.e.,
ω = A0 = D = 0 in Eq. (1)) will be referred to in this
section as the basic system. It is well known that in the
case of internal noise the output process of the basic
system is always subdiffusive, i.e.,σ2

0 ∼ tα, and a sta-
tionary regime is impossible [37]. Thus, as the driving
noise includes an internal component, (T, 0), the be-
havior of the model (1) withω = 0 is subdiffusive and
that renders formulas (35) and (38) physically mean-
ingless.

If the driving noiseξ(t) is external, (T = 0,
D1 , 0), two different behaviors of the basic system
arise depending on the values of the memory expo-
nentα. Namely, in this case the varianceσ2

0 is a finite
constant att → ∞, if α < 1/2, and diverges with time
asσ2

0 ∼ t2α−1 if α > 1/2. Thus, in the case of an
external additive noiseξ(t) with α < 1/2 the formu-
las (35) and (38) for the output characteristics (Kn and
σ2

h) of Eq. (1) without a harmonic trap (ω= 0) are
applicable. It is remarkable that in this case the corre-
sponding quantitiesu, v, β, θ, andω∗ in Eqs. (33) and
(34) can be reduced to the following more convenient
form:

β = −γ1/(2−α) cos
(

π

2− α

)

,

ω∗ = γ1/(2−α) sin
(

π

2− α

)

,

θ =
απ

2(α− 2)
,

u = (α − 2)β, v = (2− α)ω∗. (40)
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Fig. 4. The critical noise intensityDcr andthe vari-
anceσ2

h as functions of the memory exponentα by
absence of the harmonic potential,ω = 0, (Eqs. (33),
(35), and (36)). The parameter values:A0 = Ω = 1,
T = 0, D1 = 0.05, andD = 0.5. Dashed line,γ = 3.5;
solid line,γ = 2.5. Note that the critical memory ex-
ponentαcr = 1/2, at which the critical noise intensity
Dcr tends to zero.

It is interesting that although the critical intensity
of the multiplicative noiseDcr (see Eqs. (33) and (36))
is independent of the driving noiseξ(t), the neces-
sary and sufficient condition for the existence of en-
ergetic stability (i.e.,Dcr , 0) is exactly the same as
the condition for the existence of a stationary variance
σ2

0 in the case of external noise, i.e., 0< α < 1/2.
The above described behavior of an unbounded sys-
tem (Eq. (1)) in the case of a delta-correlated exter-
nal driving noise with the intensityD1 is illustrated in
Figs. 4 and 5.

Furthermore, due to the cage effect the depen-
dence of SPA on the frequencyΩ exposes a bona fide
resonance for anyγ andα < αc ≈ 0.441 (see Fig. 6),
even when the binding harmonic filed is absent (i.e.
ω = 0).

In the case ofω = 0 the positions of extremaΩ±

0 2 4 6 8 10
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0.3

0.4

Τ

K
n

Fig. 5. Normalized one-time correlation function
Kn(τ) versus the time lagτ computed from Eqs. (33),
(36), (38), and (40) forT = ω = 0, α = 0.3, and
γ = 3.5.
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Fig. 6. The SPA versus the driving frequencyΩ com-
putedfrom Eq. (19) forT = ω = 0 andγ = 4. Solid
line,α = 0.15; dashed line,α = 0.3.

are determined by

(41)
Ω± =















γ

4













(α + 2)cos
(

απ

2

)

±
√

(α + 2)2 cos2
(

απ

2

)

− 8α



























1
2−α .

As memory exponentα decreases, the positions of the
minimum and of the maximum tends to values 0 and√
γ, respectively (see Fig. 7). This demonstrates the

binding role of the fractional derivative in Eq. (1) at
strong memory.
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Fig. 7. Positions of the SPA maximum (Ω+, solid
line) and minimum (Ω−, dotted line) as functions of
the memory exponentα, computed from Eq. (41) for
γ = 4. The dashed line depicts the position of the
critical memory exponentαcr ≈ 0.441.

4 Conclusions

We have studied, in the long-time regime, the variance
and the autocorrelation function of particle displace-
ment for a harmonically trapped Brownian particle in
a viscoelastic media. Starting from a suitable general-
ized Langevin equation with memory, i.e., a fractional
oscillator with a fluctuating eigenfrequency driven by
external sinusoidal forcing and by an additive noise,
we have been able to derive an exact analytic expres-
sion for the one-time autocorrelation function in the
case of a power-law-type friction kernel.

As one of our main results we have established
that in the presence of a multiplicative noise the out-
put variance depends on the parameters of external si-
nusoidal forcing. Since without a multiplicative noise
such a dependence is absent, this effect gives a sim-
ple criterion to determine if a multiplicative noise is
present in the dynamics of the system. Moreover, it
is remarkable that in the case of an additive external
noise and a sufficiently strong memory, a related phe-
nomenon involving memory-induced trapping occurs
for an unbound system (i.e., in Eq. (1), the harmonic
binding potential is absent). Note that for internal
noise the behavior of such a system is always subd-
iffusive [37].

As another main result we have shown that in the
case of an additive external noise the dependence of
the normalized autocorrelation functionKn(τ) on the
time lag τ is independent of external periodic forc-
ing. This contrasts the behavior for the case of inter-
nal noise, where the dependence ofKn(τ) on periodic
forcing is significant.

Thus we have found convenient criteria that en-

able us to distinguish the presence of a multiplica-
tive and an internal noise in systems described by Eq.
(1). The advantage of these criteria is that the con-
trol parameter is the frequency (or the amplitude) of
the external periodic force, which can be easily varied
in possible experiments as well as potential techno-
logical applications, e.g., in electric oscillator devices
with circuit elements of a fractional type (i.e., tree or
chain fractances) [31].
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