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Abstract:  -  The  paper  presents  a  fuzzy control  based  on  parallel  distributed  fuzzy controllers  for  a  heat 
exchanger. Each subcontroller is LQR designed and provides local optimal solutions. First, a Takagi-Sugeno 
fuzzy model is employed to represent a system. The stability of the system with the proposed fuzzy controllers 
is discussed. The simulation results are compared with classical PID control and illustrate the validity and 
applicability of the presented approach.
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1   Introduction
Fuzzy  controllers  have  found  popularity  in  many 
practical situations. Many complex plants have been 
controlled very well using fuzzy controllers without 
any  difficult  analysis  common  in  classical  control 
design. Fuzzy controllers are general nonlinear ones 
and their  benefits  are  well-known  [15].  In  spite  of 
these  advantageous  properties  of  fuzzy controllers, 
the main crisis of them was the absence of a formal 
method for proving the system's stability.  However, 
after introducing the fuzzy plant modelling in  [18], 
some  methods  for  stable  controller  design  have 
arisen. 

The  described  approach  is  based  on  fuzzy 
modelling of a nonlinear plant as a sum of nonlinear-
weighted  linear  subsystems  [28].  Following  this 
approach, one can design a linear controller for each 
subsystem  and  satisfying  some  constraints 
expressible  as  Linear  Matrix  Inequalities  (LMIs), 
stability of the whole system can be proved [11, 21, 
25]. This is what is called Takagi-Sugeno (TS) fuzzy 
controller.  The  idea  is  similar  to  traditional  gain 
scheduling method in which controlling gains change 
according  to  the  state  of  the  controlled  system  [1, 
14]. The ability of converting linguistic descriptions 
into automatic control  strategy makes it  a practical 
and  promising  alternative  to  the  classical  control 
scheme for achieving control of complex nonlinear 
systems. 

Many  real  systems  can  be  represented  by  TS 
fuzzy  models  [10,  18,  21]. A  TS  fuzzy  model 
approximates the system using simple models in each 

subspace obtained from the decomposition of the 
input  space.  The  dynamic  TS  models  are  easily 
obtained  by  linearization  of  the  nonlinear  plant 
around  different  operating  points.  After  the  TS 
fuzzy  models  obtaining,  linear  control 
methodology  can  be  used  to  design  local  state 
feedback  controllers  for  each  linear  model. 
Aggregation  of  the  fuzzy  rules  results  in 
a generally nonlinear model [26].

Stability and optimality are the most important 
requirements for any control system [11]. Most of 
the existed works are based on Takagi–Sugeno type 
fuzzy  model  combined  with  parallel  distribution 
compensation concept  [24]  and apply Lyapunov's 
method  to  do  stability  analysis.  Tanaka  and 
coworkers reduced the stability analysis  and con-
trol  design  problems  to  linear  matrix  inequality 
(LMI) problems [24, 26]. 

The state feedback gain design method is de-
veloped based on assigning a common positive def-
inite matrix  P, which was developed in [6, 21, 22, 
28] for the Lyapunov stability sense. It is important 
to find a suitable  P such that the stable feedback 
gains exist. Some theorems will be derived to solve 
the suitable P as well as the diagonal elements of P 
and can be assigned by the designers. After assign-
ing a suitable common positive definite matrix  P, 
one can obtain the feedback gains for each rule of 
the TS type fuzzy system.

A heat exchanger is a device in which energy is 
transferred from one fluid to another across a solid 
surface.  Exchanger  analysis  and  design  therefore 
involve both, convection and conduction. The heat 
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exchangers are widely used in many industrial power 
generation  units,  chemical,  petrochemical,  and 
petroleum industries. These types of heat exchangers 
are  robust  units  that  work  for  wide  ranges  of 
pressures, flows and temperatures [17]. 

2   Problem Formulation
Fuzzy modelling is a framework in which different 
modelling and identification methods are combined, 
providing a transparent interface with the designer or 
operator  and. It  is  a  flexible  tool  for  nonlinear 
system  modelling  and  control  too.  The  rule-based 
character  of  fuzzy  models  allows  for  a  model 
interpretation  in  a  way  that  is  similar  to  the  one 
humans use to describe reality [2].  

Using fuzzy systems it is possible to define very 
general nonlinearities.  In order to be able to derive 
any  analytical  useful  results  it  is  necessary  to 
constrain  the  classes  of  nonlinearities  that  one 
consider.  The  class  of  systems  that  has  achieved 
most  attention  is  linear  and  affine  Takagi-Sugeno 
systems on state-space form. For these systems both 
stability and synthesis results are available based on 
Lyapunov theory.

Quadratic Lyapunov functions are wery powerful 
if they can be found. In many cases it is very difficult 
to  find  a  common  global  Lyapunov  function.  The 
feasible  solution  is  to  use  a  piecewise  quadratic 
Lyapunov  function  that  is  tailored  to  fit  the  cell 
partition of the system [8]. The search for piecewise 
quadratic Lyapunov function can also be formulated 
as an LMI-problem.

2.1 Fuzzy Modelling
Processes  are  in  general  complex,  nonlinear,  with 
time delays. Conventional system modelling methods 
are not easy to use for nonlinear processes because it 
is  difficult  to  describe  properly  all  their 
nonlinearities.

Fuzzy modelling methods are attractive, because 
they can be developed from real process data with or 
without  expert  knowledge.  The nonlinearity can be 
handled efficiently, and the results presented as fuzzy 
rules are informative. Many different approaches to 
fuzzy identification have been proposed [2]. 

Fuzzy  models  can  be  considered  as  logical 
models,  which  use  If-Then  rules  to  establish 
qualitative  relationships  among  variables  in  the 
model.  In general case fuzzy model has these main 
components:  fuzzification  of  inputs,  inference 
mechanism  with  rule  base  that  relates  inputs  to 
outputs and defuzzification of the output fuzzy set for 
crisp output calculation [20],  see Figure 1. 

Fig. 1: Fuzzy system

• Fuzzification  maps  the  crisp  values  of  the 
preprocessed inputs of the model into fuzzy sets, 
represented  by  membership  functions.  The 
degree  of membership of a single crisp variable 
to  a  single  fuzzy  set  is  evaluated  using 
membership  function  and  can  get  the  values 
from an interval [0, 1].  Each input variable in 
most  cases  is  described  by  more  than  three 
fuzzy  sets.  Because  of  simple  calculations, 
triangular  membership  functions  are  usually 
used  in  fuzzy  systems.  Other  types  like 
Gaussian,  trapezoidal,  S-type  membership 
functions  sometimes have the advantages over 
triangular  but  the  choice  depends  on  the 
application.

• The  relationship  between  input  and  output 
variables are described in a rule base, composed 
of If - Then form rules. Usually fuzzy systems 
are  synthesized  using  two  types  of  rules  that 
differ in the consequent (Then part) proposition 
form: Mamdani, or standard and Takagi-Sugeno, 
or functional.

• Inference  mechanism calculates  the  degree  to 
which each rule for a given fuzzified input by 
considering  the  rules.  A  rule  fires  when  the 
degree of membership of  the If  part  is  higher 
than 0.

• A defuzzifier compiles the information provided 
by each of the rules and makes a decision from 
this basis.  There are different  methods for  the 
calculation of crisp output of fuzzy system like 
Centroid average CA, Center  of  gravity COG, 
Maximum  center  average  MCA,  Mean  of 
maximum MM, Smallest of maximum SM, etc.

2.2 Neuro-fuzzy Systems
Neuro-fuzzy  systems  can  be  viewed  upon  as 
a combination of fuzzy systems and artificial neural 
networks. The fuzzy inference system is implemen-
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ted in the framework of these adaptive networks. This 
provides the possibility to use backpropagation learn-
ing rules, commonly used to train these nets. Several 
approaches  have  been  developed.  The  Anfis  ap-
proach defines a Takagi-Sugeno fuzzy inference sys-
tem through a neural network approach by defining 5 
layers [7]. Anfis is shown schematically in Figure 2 
for a system with two input, two rules and one out-
put.

Fig. 2: Structure of ANFIS

• layer  1:  fuzzification of  the input  values  due to 
membership degrees

• layer 2: aggregation of membership degrees due 
to  an appropriate  t-norm applied in  the  premise 
parts

• layer  3:  evaluation  of  the  basis  functions  by 
normalization of aggregated membership degrees 

• layer 4: weighting of basis functions with linear 
(Takagi-Sugeno  system)  or  constant  (Sugeno 
system) consequent functions 

• layer 5: evaluation of output values by summing 
the incoming signals.

2.3 Fuzzy Plant Model
The continuous fuzzy dynamic model,  proposed by 
[18] is described by fuzzy if-then rules. It can be seen 
as  a  combination  of  linguistic  modelling  and 
mathematical  regression,  in  the  sense  that  the 
antecedents describe fuzzy regions in the input space 
in which consequent functions are valid. The ith rule 
is of the following form [19]. 
Plant Rule i:

if z1(t) is iM1 and ... and zs(t) is isM then

( ) ( ) ( )
( ) ( )txC=ty

tuB+txA=tx

i

ii
 i=1,.., N (1)

where  x(t)=[x1(t),  x2(t),  ...,  xn(t)]T∈ Rn is  the  state 
vector, u(t)=[u1(t), u2(t), ..., um(t)]T∈ Rm is the control 
input,  y(t)=[y1(t),  y2(t),  ...,  yp(t)]T∈ Rp is  the 
controlled  output,  i

jM are  fuzzy  sets,  z(t)=[z1(t),  
z2(t), ..., zs(t)] are the premise parameters, Ai ∈ Rnxn is 
the state transition matrix,  Bi  ∈ Rnxm is input matrix, 
Ci ∈ Rpxn is  output  matrix.  Let  us  use  product  as 

t- norm operator of the antecedent part of rules and 
the center of mass method for defuzzification. The 
final  output  of  the  fuzzy  system  is  inferred  as 
follows [16, 19]:

( )
( )( ) ( ) ( )( )

( )( )

( )( ) ( ) ( )( )tuiB+txiAtz
N

=i ih=

=
tz

N

=i iμ

tuiB+txiAtz
N

=i iμ
=tx

∑

∑

∑

1

1

1

(2)

( )
( )( ) ( )( )

( )( )

( )( ) ( )( )txiCtz
N

=i ih=

=
tz

N

=i iμ

txiCtz
N

=i iμ
=ty

∑

∑

∑

1

1

1

(3)

where 

( )( ) ( )
( )tzμ

tzμ
=tzh N

=i
i

i
i

∑
1

 (4)

( )( ) ( )tzM=tzμ j

s

j=

j
ii ∏

1
 (5)

( )( ) 1
1

=tz
N

=i ih∑  (6)

2.4 Parallel  Distributed  Compensation 
(PDC)

The main idea of the PDC controller design is to 
derive  each  control  rule  from  the  corresponding 
rule of the TS fuzzy model so as to compensate for 
it. The resulting overall fuzzy controller, which is 
non-linear  in  general,  is  a  fuzzy  mixture  of 
individual  linear  controllers,  knowing  that  the 
fuzzy controller shares the same fuzzy sets with the 
fuzzy system [26]. 

The  design  concept  of  PDC  is  simple  and 
natural. Other nonlinear control techniques require 
special and rather involved knowledge. This is an 
advantage of the PDC.

Having TS plant model, it can be used parallel 
distributed  compensation  control  defined  as 
follows:

Control  Rule j:
if z1(t) is iM 1 and ... and zs(t) is i

sM then 
( ) ( )txK=tu j−  j=1 ,.., N (7)
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Hence, the fuzzy controller is given

( ) ( )( ) ( )txjKtz
N

=j jh=tu ∑−
1

(8)

in which Kj are state feedback gains. We can see it as 
local gains of gain scheduling design which overall 
control  signal  is  made  from combining  each  local 
control signal with different weights according to the 
closeness to the each rule's region.    

The  closed  loop  system  can  be  expressed  by 
combining (2) and (7) as following system

( ) ( )( ) ( )( )[ ] ( )

( )( ) ( )

( )( ) ( )( ) ( )∑ ∑

∑

∑ ∑










−

N

=i

N

j=

jiij
ji

ij

N

j=
i

N

=i
jijj

N

j=
i

tx
G+G

tzhtzh+

+txGtzh=

=txKBAtzhtzh=tx

1 1

1

2

1 1

2



(9)

where jiiij KBA=G − .

2. 5 Stability  Analysis  Using  Lyapunov 
Method

After  defining the  model,  the  conditions  are  found 
under which the system is stable. 
Theorem 1[18]. The continuous uncontrolled (u=0) 
fuzzy system of  (1)  -  (3)  is  globally  quadratically 
stable  if  there  exists  a  common  positive  definite 
matrix P=PT such that 

NiPAPA i
T
i ....,,1,0 =<+ (10)

This is equivalent to saying that one must find 
a single  function  ( ) Pxx=xV T §as  a  candidate  for 
Lyapunov function.  Such a  Lyapunov function  is 
also called energy function. If the derivative of the 
Lyapunov  function  is  always  negative,  then  the 
system must be asymptotically stable. 

In this sense it is easy to obtain the following 
result using  Theorem 1: The fuzzy system (2), (3) 
with fuzzy control of (9) is globally stable if there 
exists  P=PT such that 

N ,1,=j
N ,1,=i

<
G+G

P+P
G+G jiij

T

jiij

...
...

0,
22 











(11)

Finding a common P can be considered as linear 
matrix  inequality  (LMI)  problem.  Matlab  LMI 
toolbox  presents  simple  appliance  for  solving  this 
problem [9].     

2.6 Locally Optimal Control Design
Since the local fuzzy system (i.e., fuzzy subsystem) 
is linear, its quadratic optimization problem is the 
same as the general linear quadratic (LQ) issue [1, 
5,  9,  15].  Therefore,  solving  the  optimal  control 
problem for fuzzy subsystem can be achieved by 
simply generalizing the classical theorem from the 
deterministic case to fuzzy case.

 ( ) dt(t)Ru(t)u+(t)Qx(t)xJ TT∫
∞

=
0

   (12)

where  Q is a real symmetric positive semidefinite 
weighting matrix and R is a real symmetric positive 
definite  weighting  matrix.  Solution  of  the 
optimization problem,  i.  e.  minimization of  J for 
any x0 satisfies the feedback control law  

Kx(t)=u(t) − (13)

where PBR=K T1− .

The  optimal  gain  is  K in  which  P is  a 
symmetric  positive  semidefinite  solution  of  the 
matrix Ricatti equation [3, 12]

01 =−++ − PBPBRQPAPA TT (14)

If  the  matrix  (A  -  BR-1BT P) is  stable,  i.e. 
(A - BK) is stable, the closed-loop system is stable.

3   Simulations and Results

3.1 Shell Heat Exchangers
Consider two heat exchangers shown in Fig. 3. 

The  measured  and  controlled  output  is 
temperature  from second  exchanger.  The  control 
objective is to keep the temperature of the output 
stream close to a desired value 353 K. The control 
signal is input volumetric flow rate of the heated 
liquid.  Assume ideal  liquid mixing and zero heat 
losses.  We  neglect  accumulation  ability  of 
exchangers walls. Hold-ups of exchanger as well as 
flow  rates  and  liquid  specific  heat  capacity  are 
constant. 

Fig. 3: Two shell heat exchangers in series
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Under these assumptions the mathematical model 
of the exchangers is given as

( ) ( ) )0(, 11
1

1
10

1
TTT

ρCV
kA

+TT
V
q=

dt
dT

p
p

1 −−  (15)

( ) ( ) )0(, 22
2

2
21

2
TTT

ρCV
kA

+TT
V
q=

dt
dT

p
p

2 −−  (16)

where  T1 is temperature in the first exchanger,  T2 is 
temperature  in  the  second  exchanger,  T0 is  liquid 
temperature in the inlet stream of the first tank,  q is 
volumetric flow rate of liquid, ρ is liquid density,  V1, 
V2 are liquid volumes, A1, A2 are heat transfer areas, k 
is  heat  transfer  coefficient,  Cp is  specific  heat 
capacity.  The superscript  s denotes the steady-state 
values in the main operating point.

Parameters  and  inputs  of  the  exchangers  are 
enumerated in Table 1. 

Table 1: Parameters and inputs of heat exchangers

q = 1 m3min-1

V1 = 5 m3

V2 = 5 m3

Cp = 3.84 kJ kg-1K-1

A1=16 m2

A2= 16 m2

k = 72 kJ m-2min-1K-1 

ρ  = 900 kg m-3

T0
s
 = 293 K

Tp
s 

 = 373 K  
T1

s
  = 313 K

T2
s 

 = 328 K

3.2 Takagi-Sugeno Fuzzy Model 
and LQR Control

The  controlled  system  was  approximated  by nine 
fuzzy models [2, 9]

if x is iM1 and u is iM 2 then 
( ) ( ) ( )tuB+txA=tx ii  i=1,..., 9      (17) 

The  bell  curve  membership  functions  for  the 
premise variables x and u in each rule are adopted: 

[ ]( ) ( )
12b

1

−


















 




 −

a
cx+=cb,a,x;f  (18)

The  antecedent  parameters  a,  b and  c for  bell 
shaped membership functions are listed in the Table 
2 and membership functions are shown in Figures 4, 
5.  The consequent parameters are given in Table 3 
and  the  resulting  plot  of  the  output  surface  of  a 
described  fuzzy  inference  system  is  presented  in 
Figure 6. 

Table  2:  Bell  curve  membership  functions 
parameters

x u
ai bi ci ai bi ci

6 2 55 0.13 2 0.34
6 2 67 0.14 2 0.62
6 2 79 0.14 2 0.91

Table 3:   Consequent parameters

Ai Bi

0.73 -13.41
0.27 -4.94
-0.33 9.44
0.01 0.22
0.13 -3.04
-0.37 11.11
-0.25 0.72
2.33 -74.17
2.05 -59.04

Fig. 4: Bell curve membership functions for input x

Fig. 5: Bell curve membership functions for input u
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Fig. 6: Output surface of a fuzzy inference system
( )ux,f=x '

Rule  viewer  that  simulates  the  entire  fuzzy 
inference  process  is  shown in  Figure  7.   Figure  8 
shows the structure of Anfis.

Fig. 7: Fuzzy inference system

Fig. 8: Structure of Anfis 

After obtaining Ai, Bi, gains Kj were calculated of 
each subsystem using LQR design and then tested for 
stability using the closed-loop eigenvalues  e=eig(A-
BK). The eigenvalues of matrix (A-BK) are called the 

regulator poles. If  matrix K is chosen properly, the 
matrix  (A-BK)  can  be  made  an  asymptotically 
stable  matrix,  and for  all  x(0)≠0 it  is  possible  to 
make  x(t) approach  0 as  t approaches  infinity. 
Figure  9  illustrates  the  fuzzy model-based  fuzzy 
control design methodology [24].

The optimal gain  K of each fuzzy subsystem if 
measured and controlled output is only temperature 
from  second  exchanger,  the  Riccati  equation 
solution  P and  the  closed-loop eigenvalues  e are 
listed in Table 4 for example Q=100,  R=0.1 . 

Fig. 9: Fuzzy model-based fuzzy control design

Figure  10  shows optimal  trajectory  T2 of  the 
heat exchangers.

Fig. 10: LQ optimal trajectory T2

The  problem  was  solved  using  LMI 
optimization toolbox in  Matlab  software  package 
[5]. 

Table 4:   Gains K, Riccati equation solution P, 
eigenvalues e

Q=100,  R=0.1
K P E

-31.6577
-31.6773
-31.6775
31.5878

0.2362
0.6412
0.3346
14.3533

-424.0621
-156.2167
-298.5192
-6.9570
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31.5774
-31.6656
31.5904
31.2775
-31.6542

1.0416
0.2843
4.3441
0.0427
0.0536

-96.1333
-351.3292
-22.7698

-2345
-1867

The  results  for  different  performance  measures 
are compared in Table 5.

The  comparison  of  LQR controllers  was  made 
using iae and ise criteria described as follows:

∫=
T

dteiae
0

(19)

∫=
T

dteise
0

2 (20)

The simulation results were compared in the case 
without  disturbances  and  when  disturbances  affect 
the  controlled  process.  Disturbances  were 
represented by temperature changes from 373 K to 
353 K at t=25 min, from 353 K to 383 K at t=75 min 
and from 383 K to 368 K at t=125 min. 

Table  5:  Performance  comparison  between  fuzzy 
LQR controllers

performance 
measure

set-point 
tracking

disturbance 
rejection

Q=1*I(2,2)
R=1

K=-0.1803
iae = 0.41 e3
ise = 2.67 e3

K=-0.1803
iae = 0.46 e3
ise = 2.54 e3

Q=100*I(2,2)
R=1

K=-1.1858
iae = 0.19e3
ise = 1.91e3

K=-1.1858
iae = 0.18e3
ise = 1.56e3

Q=40*I(2,2)
R=40

K=-0.1803
iae =1.41e3
ise = 2.67 e3

K=-0.1803
iae = 0.46e3
ise = 2.54 e3

Q=100*I(2,2)
R=0.1

K=-3.5888
iae = 0.16 e3
ise = 1.88 e3

K=-3.5888
iae = 0.14 e3
ise = 1.54 e3

Q=1000*I(2,2)
R=1

K=-3.5888
iae = 0.16 e3
ise = 1.88 e3

K==-3.5888
iae = 0.14 e3
ise = 1.54 e3

The  closed-loop  system  consisting  of  the 
controlled  heat  exchangers  and  controller 
calculated  from  (8)  cannot  guarantee  the  zero 
steady-state control error. To solve this issue, pure 
integrator  is  needed in  the  controller.  The results 
for different performance measures in this case are 
compared in Table 6.

Table  6:  Performance  comparison  between  fuzzy 
LQR controllers with a pure integrator

performance 
measure

set-point 
tracking

disturbance 
rejection

Q=1*I(2,2)
R=1

K=-0.1803
iae = 0.34 e3
ise = 3.28 e3

K=-0.1803
iae = 0.30 e3
ise = 2.83 e3

Q=100*I(2,2)
R=1

K=-1.1858
iae = 0.34 e3
ise = 3.28 e3

K=-1.1858
iae = 0.27 e3
ise = 2.73 e3

Q=40*I(2,2)
R=40

K=-0.1803
iae = 1.41 e3
ise = 2.67 e3

K=-0.1803
iae = 1.46e3
ise = 2.54 e3

Q=100*I(2,2)
R=0.1

K=-3.5888
iae = 0.31 e3
ise = 3.17 e3

K=-3.5888
iae = 0.27 e3
ise = 2.73 e3

Q=1000*I(2,2)
R=1

K=-3.5888
iae = 0.31 e3
ise = 3.17 e3

K= =-3.5888
iae = 0.27 e3
ise = 2.73 e3

3.3 PID Control
The PID control algorithm is used for the control of 
almost  all  loops in  the  process  industries,  and  is 
also  the  basis  for  many  advanced  control  al-
gorithms and strategies. In order to use a controller, 
it  must  first  be  tuned to  the  system.  This  tuning 
synchronizes  the  controller  with  the  controlled 
variable, thus allowing the process to be
kept  at  its  desired  operating  condition.  Standard 
methods  for  tuning  controllers  and  criteria  for 
judging the loop tuning have been used for many 
years. 

For  feedback  controller  tuning,  the 
approximate  model  of  a  system  with  complex 
dynamics can have the form of a first-order-plus-
time-delay  transfer  function  (21). The  process  is 
characterised by a steady-state gain K, an effective 
time constant T and an effective time delay D. 
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The  transfer  function  describing  the  controlled 
heat  exchangers  was  identified  from step  response 
data in the form (21) with parameters:  K  = -38.57, 
T = 11.3 min, D = 2 min. These parameters were used 
for  feedback  controller  tuning.  The  feedback  PID 
controllers were tuned by various methods [13]. Two 
controllers were used for comparison: PID controller 
(22)  tuned  using  Rivera-Morari  method  with 
parameters  KC = -0.1063,  TI = 12.3,  TD = 0.91  and 
PID controller  tuned using  Ziegler-Nichols  method 
with  parameters  KC =  -0.17,  TI =  4,  TD  = 1. The 
transfer  function  of  the  used  PID  controller  is 
following

 ( ) 





sT+

sT
+K=sG D

I
CC

11 (22)

The  step  changes  of  the  reference  yr were 
generated  and  the  fuzzy LQR and  PID controllers 
were compared. Figure 11 presents the comparison of 
the simulation results obtained by LQR TS controller, 
and PID controllers tuned using Rivera-Morari  and 
Ziegler-Nichols  methods.  Figure  12  presents  the 
comparison  control  inputs  generated  by  above 
mentioned controllers. 

Figure 13 presents the simulation results of the 
fuzzy LQR and PID control of the heat exchanger in 
the  case  when  disturbances  affect  the  controlled 
process. The comparison of the controllers output is 
shown in Figure 14.  

Fig. 11. Comparison of the temperature of the output 
stream  from  second  heat  exchanger:  reference 
trajectory ( __  ), fuzzy LQR ( __ ), fuzzy LQR with 
integrator ( _ . ), PID controllers: Rivera-Morari (....), 
Ziegler-Nichols (- -)

Fig. 12. Comparison of the control inputs

Fig.  13.  Control  responses  in  the  presence  of 
disturbances: PID controllers: reference trajectory ( 
__ ), fuzzy LQR ( __ ), fuzzy LQR with integrator 
( _ . ), PID controllers: Rivera-Morari (....), Ziegler-
Nichols (- - )

Fig. 14: Comparison of control inputs in the 
presence of disturbances
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The described controllers were compared using 
iae and ise criteria. The iae and ise values are given 
in Table 7.

Used  fuzzy  LQR  controller  is  simple,  and  it 
offers  the  smallest  values  iae  and ise  or  equal  to 
linear LQR. The disadvantage of the LQR controllers 
is,  that  using these  controllers  can lead to  nonzero 
steady-state  errors,  but  without  overshoots and 
undershoots practically. In the case of the fuzzy LQR 
controller  with integrator  using  steady-state  control 
error  is  equal  zero but  the  control  responses  show 
any overshoots and undershoots. 

Table  7:  Comparison  of  the  simulation  results  by 
integrated  absolute  error  iae and  integrated  square 
error ise

set-point tracking

control method iae ise
fuzzy LQR: K =-3.5888 0.16e3 1.88e3
fuzzy LQR with integrator: 
K =-3.5888

0.31e3 3.17e3

PID (Rivera-Morari) 0.36e3 4.09e3
PID (Ziegler-Nichols) 0.52e3 5.79e3

set-point tracking

control method iae ise

fuzzy LQR: K =-3.5888  0.14e3 1.54e3

fuzzy LQR with integrator: 
K =-3.5888 0.27e3 2.73e3

PID (Rivera-Morari) 0.40e3 3.64e3

PID (Ziegler-Nichols) 0.50e3 5.48e4

4   Conclusion
In  this  paper,  a  stable  nonlinear  fuzzy  controller 
based  on  parallel  distributed  fuzzy  controllers  is 
proposed.  Each subcontroller is LQR designed and 
provides local optimal solution. The Takagi-Sugeno 
fuzzy  model  is  employed  to  approximate  the 
nonlinear model of the controlled plant. Based on the 
fuzzy  model,  a  fuzzy  controller  is  developed  to 
guarantee not only the stability of fuzzy model and 
fuzzy control system for the heat exchanger but also 
control the transient behaviour of the system.

 The design procedure is  conceptually simple 
and  natural.  Moreover,  the  stability  analysis  and 
control  design  problems  are  reduced  to  LMI 
problems.  Therefore,  they  can  be  solved  very 
efficiently  in  practice  by  convex  programming 
techniques for LMIs. Simulation results shows that 
the  proposed  control  approach  is  robust  and 
exhibits  a  superior  performance  to  that  of 
established traditional control methods.

Comparison of the LQR simulation results with 
classical  PID  control  demonstrates  the 
effectiveness  and  superiority  of  the  proposed 
approach.
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