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Abstract: Genetic algorithms (GA) are instances of random heuristic search (RHS) which mimic biological evo-
lution and molecular genetics in simplified form. These random heuristic search algorithms can be theoretically
described by an infinite population model with the help of a deterministic dynamical system model by which
the stochastic trajectory of a population can be characterized using a deterministic heuristic function and its fixed
points. For practical problem sizes the determination of the fixed points is unfeasible even for the simple genetic al-
gorithm (SGA) with fitness-proportional selection, crossover and bitwise mutation. The recently introduced simple
genetic algorithm withα-selection allows the analytical calculation of the unique fixed point of the corresponding
intrinsic system model. In this paper, an overview of the theoretical results for the simple genetic algorithm with
α-selection and its intrinsic system model is given. The unique fixed point of the intrinsic system model is derived
and its compatibility with the equivalence relation imposed by schemata is shown. In addition to the theoretical
analysis experimental results for the simple genetic algorithm withα-selection, uniform crossover and bitwise
mutation are presented showing a close agreement to the theoretical predictions.

Key–Words:Simple genetic algorithm,α-selection, random heuristic search, dynamical system model, infinite
population model, intrinsic system model, schemata

1 Introduction

As specific instances of random heuristic search
(RHS), genetic algorithms mimic biological evolu-
tion and molecular genetics in simplified form [1, 9].
These evolutionary algorithms have been successfully
applied in a large variety of applications [2, 7, 8, 10].
Genetic algorithms (GA) process populations of indi-
viduals which evolve according to selection and ge-
netic operators like crossover and mutation. The al-
gorithm’s stochastic dynamics can be described with
the help of a dynamical system model introduced by
VOSEet al. [9, 12, 13]. According to this infinite pop-
ulation model the population trajectory is attracted by
the fixed points of an underlying deterministic heuris-
tic function which also yields the expected next pop-
ulation. However, even for moderate problem sizes
the calculation of the fixed points is difficult even for
the simple genetic algorithm with fitness-proportional
selection, crossover and bitwise mutation.

The simple genetic algorithm (SGA) withα-
selection recently introduced in [3, 4, 5, 6] allows to
explicitly derive the fixed points of the heuristic func-
tion. In this selection scheme, the best orα-individual

is mated with individuals randomly chosen from the
current population with uniform probability. For the
simple genetic algorithm withα-selection it is further
possible to formulate an intrinsic system model which
is compatible with the equivalence relation imposed
by schemata. The intrinsic system model provides a
means to analyze the genetic algorithm’s exploitation
and exploration of the search space due to the mixing
operation caused by crossover and mutation irrespec-
tive of the fitness function.

This paper gives an overview of the theoretical re-
sults for the simple genetic algorithm withα-selection
and its intrinsic system model. In addition to the the-
oretical analysis experimental results are presented.
The paper is organized as follows. The simple ge-
netic algorithm withα-selection, uniform crossover
and bitwise mutation is described as a specific in-
stance of random heuristic search in Sect. 2 based on
the notion of the best individual randomly mating with
other individuals in the current population. In Sect. 3
the corresponding dynamical system model is derived
based on which the intrinsic system model of the sim-
ple genetic algorithm withα-selection is formulated
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in Sect. 4. Its unique fixed point is derived analyti-
cally and its compatibility to the equivalence relation
imposed by schemata is shown in Sect. 5. Simula-
tion results for the simple genetic algorithm withα-
selection, uniform crossover and bitwise mutation are
presented in Sect. 6 showing a close agreement be-
tween theory and experiment. A brief conclusion is
given in Sect. 7.

2 Simple Genetic Algorithm with α-
Selection

In this section the simple genetic algorithm withα-
selection, uniform crossover and bitwise mutation is
described following the notation and definition of the
simple genetic algorithm (SGA) in [12]. It is assumed
that the genetic algorithm is used for the maximization
of a fitness functionf : Ω → IR which is defined
over the search spaceΩ = IZ`

2 = {0, 1}` consisting of
binary`-tuples(a0, a1, . . . , a`−1).

Each binary `-tuple (a0, a1, . . . , a`−1) =
a0a1 . . . a`−1 will be identified with the integer
a = a0 · 2`−1 + a1 · 2`−2 + . . . + a`−1 · 20 leading
to the search spaceΩ = {0, 1, . . . , n − 1} with
cardinality |Ω| = n = 2`. The fitness values are
given by f(a) = fa. Based on the binary num-
ber representation the bitwise modulo-2 addition
a ⊕ b, bitwise modulo-2 multiplicationa ⊗ b and
bitwise binary complementa are defined. Vice
versa, the integera ∈ Ω is viewed as a column
vector (a0, a1, . . . , a`−1)

T. The all-one`-tuple 1

corresponds to the integern − 1 = 2` − 1. The
indicator function is defined by[i = j] = 1 if i = j
and0 if i 6= j.

2.1 Algorithm
Thesimple genetic algorithm withα-selectionworks
over populationsP (t) defined as multisets ofr indi-
vidual binary`-tuplesa(t) ∈ Ω. For the creation of
offspring individuals in each generationt genetic op-
erators like crossoverχΩ and mutationµΩ are applied
to parental individuals (see Fig. 1).

2.2 α-Selection
For theα-selectionscheme let

b(t) = argmax {fi : i ∈ P (t)} (1)

be the best individual orα-individual in the current
populationP (t). In the simple genetic algorithm with
α-selection theα-individual b(t) is mated with indi-
viduals randomly chosen from the current population
P (t) with uniform probabilityr−1.

t := 0;
initialize populationP (0);
while end of adaptation6= truedo

selectα-individual b(t) as first parent;
for the creation ofr offspringdo

select second parentc(t) randomly;
apply crossoverχΩ and mutationµΩ

a(t+ 1) := µΩ (χΩ (b(t), c(t)));
end
incrementt := t+ 1;

end

Figure 1: Simple genetic algorithm withα-selection
[3, 4, 5, 6].

2.3 Mixing
The crossoveroperatorχΩ : Ω × Ω → Ω randomly
generates an offspring̀-tuplea = (a0, a1, . . . , a`−1)
according to

a = χΩ(b, c) (2)

with crossover probabilityχ from two `-tuplesb =
(b0, b1, . . . , b`−1) and c = (c0, c1, . . . , c`−1). With
the crossover maskm ∈ Ω the`-tuples

a = b⊗m⊕m⊗ c (3)

or
a = b⊗m⊕m⊗ c (4)

are generated one of which is chosen as offspringa
with equal probability2−1. For uniform crossover
the crossover maskm is randomly chosen fromΩ
according to the probability distribution vectorχ =
(χ0, χ1, . . . , χn−1)

T with [12]

χm =

{
1− χ+ χ · 2−` , m = 0

χ · 2−` , m > 0
. (5)

The bitwisemutation operatorµΩ : Ω → Ω,
which randomly flips each bit of thè-tuple a =
(a0, a1, . . . , a`−1) with mutation probabilityµ, is de-
fined with the help of the mutation maskm ∈ Ω ac-
cording to

µΩ(a) = a⊕m . (6)

The mutation maskm is randomly chosen fromΩ
according to the probability distribution vectorµ =
(µ0, µ1, . . . , µn−1)

T with [12]

µm = µ1
T
m · (1− µ)`−1

T
m . (7)

A typical value of the mutation probability isµ ∼ 1
` .
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3 Dynamical System Model
In the dynamical system model[12] the dynamics
of the simple genetic algorithm is compactly for-
mulated by defining the population vectorp =
(p0, p1, . . . , pn−1)

T. Each component

pi =
1

r

∑

j∈P

[j = i] (8)

gives the proportion of the elementi ∈ Ω in the cur-
rent populationP . The population vectorp is an ele-
ment of the simplex

Λ =

{
p ∈ R

n : pi ≥ 0 ∧
∑

i∈Ω

pi = 1

}
. (9)

For a population of sizer the number of possible pop-
ulation vectors is given by

(n+r−1
r

)
. In the limit of

infinite populations withr → ∞ the population vec-
tors are dense in the simplexΛ. For simplicity we will
take the simplexΛ as the defining region of the pop-
ulation vectorp which is strictly valid only for large
populations withr � 1 in the sense of aninfinite pop-
ulation model.

3.1 Random Heuristic Search
The simple genetic algorithm is now described as an
instance of RHSτ : Λ → Λ according top(t + 1) =
τ (p(t)) with τ depending on the random selection
and genetic operators. As outlined in [12]τ can be
equivalently represented by a suitable heuristic func-
tion G : Λ → Λ which for a given population vector
p yields the probability distributionG (p). This prob-
ability distribution

G (p)i = Pr{individual i is sampled fromΩ} (10)

is used to generate the next population as illustrated in
Fig. 2. The transition probabilities of the RHSτ are
given by the formula [12]

Pr{τ (p) = q} = r!
∏

i∈Ω

G (p)rqii

(rqi)!
. (11)

The trajectoryp, τ (p), τ2 (p), . . . approximately
follows the trajectoryp, G (p), G2 (p), . . . of the de-
terministic dynamical system defined by the heuristic
functionG with

E{τ (p)} = G (p) . (12)

Because of the corresponding mean quadratic devia-
tion

E{‖τ (p)− G (p)‖2} =
1

r
·
(
1− ‖G (p)‖2

)
(13)

...

p(0) p(1) p(2)

G (p(0)) G (p(1))

GG

ττ

sample inΩ

Figure 2: Simple genetic algorithm as RHSτ with
heuristic functionG [12].

the RHSτ behaves like the deterministic dynamical
system model in the limit of infinite populations with
r → ∞. As illustrated by experimental evidence the
RHSτ showspunctuated equilibria, i.e. phases of rel-
ative stability nearby a fixed point

ω = G (ω) (14)

of the heuristic functionG disrupted by sudden tran-
sitions to another dynamical equilibrium near another
fixed point. We call this thefixed point hypothesisof
genetic algorithms.

3.2 Heuristic
In the simple genetic algorithm withα-selection the
α-individual

b = argmax {fi : i ∈ Ω ∧ pi > 0} (15)

is selected as the first parent for creation of a new off-
spring, whereas the second parent is chosen uniformly
at random from the current population according to
the probability distributionpj overΩ with j ∈ Ω. The
heuristic functionG (p) follows to

G (p)i =
∑

j∈Ω

pj · Pr{µΩ (χΩ(b, j)) = i} . (16)

The probability distributions for crossoverχΩ and
mutationµΩ lead to

Pr{µΩ (χΩ(b, j)) = i}
=

∑

v∈Ω

µv · Pr{χΩ(b, j) = i⊕ v}

=
∑

v∈Ω

µv

∑

u∈Ω

χu + χu

2
· [b⊗ u⊕ u⊗ j = i⊕ v]

=
∑

u,v∈Ω

µv ·
χu + χu

2
·

[(i⊕ b)⊗ u⊕ u⊗ (i⊕ j) = v] .

(17)
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By defining then× n mixing matrix[12]

Mi,j =
∑

u,v∈Ω

µv ·
χu + χu

2
· [i⊗u⊕u⊗ j = v] (18)

this yields

Pr{µΩ (χΩ(b, j)) = i} = Mi⊕b,i⊕j (19)

and finally

G (p)i =
∑

j∈Ω

pj ·Mi⊕b,i⊕j . (20)

With the permutation matrix

(σb)i,j = [i⊕ j = b] (21)

and thetwist
(M∗)i,j = Mi⊕j,i (22)

of the symmetric mixing matrixM = MT the new
population vector is given by

q = G (p) = σbM
∗ σb · p . (23)

Thisdynamical system modelis illustrated in Fig. 3.

p q = G (p)G

p qσb M∗ σb

Figure 3: Dynamical system model of the simple ge-
netic algorithm withα-selection [4].

3.3 Mixing Matrix
The calculation of the mixing matrixM can be carried
out efficiently with the help of the WALSH transform
[11]. For a matrixM the WALSH transform isM̂ =
W ·M ·W with then× n WALSH matrix

Wi,j = n−1/2 · (−1)i
Tj . (24)

The WALSH matrixW is symmetric and orthogonal,
i.e. W−1 = WT = W . The WALSH transform of
a vectorv yields v̂ = W · v. In Fig. 4 the WALSH

matrixW is illustrated forn = 26 = 64.
For crossover and bitwise mutation the WALSH

transform of the mixing matrixM is given by [12]

M̂i,j = [i⊗ j = 0]·√
n

2
· µ̂i⊕j

∑

k∈Ωi⊗j

(χk⊕i + χk⊕j) (25)

Figure 4: Illustration of the WAL SH matrixW for n =
26 = 64.

with
Ωk = {i ∈ Ω : i⊗ k = 0} . (26)

Due to the factor[i⊗ j = 0] the componentŝMi,j are
nonzero only ifi⊗j = 0 or j ∈ Ωi, respectively. With
the WALSH transform of the mutation mask distribu-
tion for bitwise mutationµΩ

µ̂i = n−1/2 · (1− 2µ)1
T
i (27)

the WALSH transformed mixing matrix is given by
[12]

M̂i,j = [i⊗ j = 0]·
(1− 2µ)1T(i⊕j)

2

∑

k∈Ω
i⊗j

(χk⊕i + χk⊕j) .

(28)

The WALSH transform of the twist of the mixing ma-
trix can be calculated from

(
M∗∧

)
i,j

= M̂i⊕j,j . (29)

4 Intrinsic System Model
The matrixσbM∗ σb of the dynamical system model
of the simple genetic algorithm withα-selection in
Eq. (23) depends on the mixing matrixM and theα-
individual b. Because ofσ−1

b = σb this yields the
equivalent formulation

σb q = M∗ · σb p . (30)

The permuted population vectorσb p develops ac-
cording to the matrixM∗ which is independent of the
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α-individual b, i.e. the diagram in Fig. 5 commutes for
a givenα-individual b [4]. The matrixM∗ defines the
intrinsic system modelof the genetic algorithm with
α-selection as shown in Fig. 6 and Fig. 7 [4]. Because
of σ0 = I with identity matrixI the intrinsic system
modelq = M∗·p of the simple genetic algorithm with
α-selection corresponds to the underlying dynamical
system modelq = G (p) = σbM

∗ σb · p for the best
or α-individual b = 0.

p G (p)

σb p σb G (p)

σbσb

G

M∗

Figure 5: Commutativity diagram for the dynamical
system model of the simple genetic algorithm withα-
selection with heuristic functionG, twist of the mixing
matrixM∗ and permutationσb.

p q

σb σb

M∗

intrinsic
system
model

Figure 6: Dynamical system model of the simple ge-
netic algorithm withα-selection and the intrinsic sys-
tem model.

The fixed points of the intrinsic system model are
obtained from the eigenvectors ofM∗ to eigenvalue
λ = 1, i.e.

ω = M∗ · ω . (31)

The fixed points of the heuristic functionG of the dy-
namical system model follow from the permutation
σbω for a givenα-individual b. For the fixed point
analysis of the dynamical system model it therefore
suffices to analyze the intrinsic system model shown
in Fig. 7.

To this end the WALSH transform of both sides of
the equationq = M∗ · p is taken yielding

q̂ = W · q = W ·M∗ ·W ·W ·p = M∗∧ · p̂ . (32)

For an eigenvectorv with eigenvalueλ it follows M∗ ·
v = λ · v and equivalentlyM∗∧ · v̂ = λ · v̂, i.e.

p qM∗

Figure 7: Intrinsic system model of the genetic algo-
rithm with α-selection [4].

the matrixM∗ and its WALSH transformM∗∧ have
the same eigenvalues with eigenvectors which are also
related by the WALSH transform.

For crossover and mutation the WALSH transform
of the mixing matrix fulfillsM̂i,j ∝ [i ⊗ j = 0], i.e.
M̂ is separative.M∗∧ = M∧∗∗ is a lower triangu-
lar matrix the spectrum of which is given by the first
column ofM̂ [12]. Since the spectrum ofM∗ and its
WALSH transformM∗∧ are the same this yields the
eigenvalues

λi =
(
M∗∧

)
i,i

= M̂0,i . (33)

For crossover and bitwise mutation the eigenvalues
are given by

λi =
(1− 2µ)1Ti

2
·
∑

k∈Ωi

(χk + χk⊕i) . (34)

Because ofλ0 = 1 and0 ≤ λi ≤ 1
2 − µ < 1

2 for 1 ≤
i ≤ n− 1 there exists a single eigenvectorω which is
a unique fixed point of the intrinsic system model. For
uniform crossover the eigenvalues are obtained from

λi = (1− 2µ)1Ti ·
(
χ · 2−1Ti +

1− χ

2

)
(35)

for 1 ≤ i ≤ n − 1. The fixed points of the heuris-
tic functionG of the simple genetic algorithm withα-
selection are obtained from the permutationσbω for a
givenα-individual b. According to thefixed point hy-
pothesisthe population will stay near this fixed point
σbω and converge to a new fixed point if a betterα-
individual b is found.

The unique fixed pointω of the intrinsic sys-
tem model can be determined explicitly with the help
of the WALSH transform. Due to the relation̂ω =
M∗∧ · ω̂ and the lower triangular matrixM∗∧ the
WALSH transform of the fixed point can be recursively
calculated according to

ω̂i =
1

1− M̂0,i

·
i−1∑

j=0

M̂i⊕j,j · ω̂j (36)

for 1 ≤ i ≤ n− 1 starting with

ω̂0 = n−1/2 (37)
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which ensures
∑

i∈Ω ωi = 1. The unique fixed point
ω is then obtained via the inverse WALSH transform

ω = W · ω̂ . (38)

p(t) p(t+ 1)

G (p(t))

G

τ

sample inΩ

Figure 8: Simple genetic algorithm withα-selection
as RHSτ with heuristic functionG.

p(t) p(t+ 1)

σb(t)M
∗σb(t)p(t)

σb(t)

σb(t)

σb(t)

M∗

τ

sample inΩ

Figure 9: Simple genetic algorithm withα-selection
as RHSτ with intrinsic system modelM∗.

The transition in one generationt from popula-
tion vectorp(t) to population vectorp(t + 1) of the
random heuristic searchτ in Fig. 8 can be detailed
for the simple genetic algorithm withα-selection as
shown in Fig. 9. Under the assumption of thefixed
point hypothesisfor the intrinsic system model the
permuted population vectorσb(t)p(t) will stay near
the unique fixed pointω. The population in gener-
ation t + 1 is therefore approximately sampled from
the search spaceΩ according to the probability dis-
tribution σb(t)ω with time-independent fixed pointω
andα-individual b(t) as illustrated in Fig. 10.

p(t) p(t+ 1)

σb(t)ω

ω

σb(t)

b(t)

τ

sample inΩ

Figure 10: Simple genetic algorithm withα-selection
as RHSτ with unique fixed pointω.

5 Schemata
In this section coarse-grained system models based
on schemata will be explored as equivalence rela-
tions [12]. Two equivalent individualsi ≡ j in the
search spaceΩ belong to the same equivalence class
[i] = {j ∈ Ω : j ≡ i} ∈ Ω/≡. This can be expressed
with the help of thequotient map

Ξ[i],j = [i ≡ j] , (39)

i.e. i ≡ j if Ξ[i],j = 1. Two populations are equivalent
if the proportions of individuals in each of the equiv-
alence classes[i] with i ∈ Ω are the same in both
populations. By using the population vectorsp andq
in the simplexΛ this corresponds to

p ≡ q ⇔
∀i ∈ Ω :

∑

j∈Ω

[i ≡ j] · pj =
∑

j∈Ω

[i ≡ j] · qj .

(40)

Taking into accountΞ[i],j = [i ≡ j] leads to

p ≡ q ⇔ Ξp = Ξq . (41)

According to [12]schematacan be considered as
specific equivalence relations. Aschemata familyis
defined with the help of thè-tupleξ ∈ Ω via

Ξ[i],j = [j ⊗ ξ = i] (42)

leading to the21
T
ξ × 2` matrix Ξ. Here,i ∈ Ωξ =

{i ∈ Ω : i ⊗ ξ = 0} and j ∈ Ω. Two individuals
j, k ∈ Ω are equivalent if they agree on the defining
positions according toj ≡ k ⇔ j ⊗ ξ = k ⊗ ξ. The
number of the defining positions is1Tξ which yields

the cardinality|Ωξ| = 21
T
ξ. With i ∈ Ωξ a schemais

defined as the equivalence class

[i] = i⊕ Ωξ . (43)
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5.1 Schema Heuristic
Based on the intrinsic system model of the genetic al-
gorithm withα-selection

qi =
∑

j∈Ω

pj ·Mi,i⊕j (44)

a coarse-grained system model will now be derived.
The proportion of the expected next population rep-
resenting schema[i] = i ⊕ Ωξ with i ∈ Ωξ can be
calculated according to

q̃[i] = (Ξq)[i]

=
∑

j∈Ω

[j ⊗ ξ = i] · qj

=
∑

j∈Ω
ξ

qi⊕j

=
∑

j∈Ω
ξ

∑

k∈Ω

pk ·Mi⊕j,i⊕j⊕k . (45)

This yields

q̃[i] =
∑

j∈Ωξ

p̃[j] · (Mξ)[i],[i⊕j] (46)

with p̃ = Ξp and the symmetric21
T
ξ × 21

T
ξ schema

mixing matrix[12]

(Mξ)[i],[j]

=
∑

u,v∈Ωξ

(Ξµ)[v] ·
(Ξχ)[u] + (Ξχ)[u]

2
·

[i⊗ u⊕ u⊗ j = v]

=
∑

u,v∈Ωξ

µ̃[v] ·
χ̃[u] + χ̃[u]

2
· [i⊗ u⊕ u⊗ j = v]

(47)

with χ̃ = Ξχ andµ̃ = Ξµ. The coarse-grained sys-
tem model based on schemata for the intrinsic system
model of a genetic algorithm withα-selection is there-
fore given by

q̃ = M∗
ξ · p̃ . (48)

The intrinsic system model is compatible with the
equivalence relation defined by the schemata familyξ
because the diagram in Fig. 11 commutes. This con-
forms to the observation that the mixing operation of
the simple genetic algorithm with crossover and mu-
tation is compatible with this equivalence relation – a
property which has been argued as the reason forim-
plicit parallelismof genetic algorithms [12, 14].

p q

p̃ q̃

ΞΞ

M∗

M∗
ξ

Figure 11: Commutativity diagram for intrinsic sys-
tem modelM∗ with quotient mapΞ.

5.2 Schema Mixing Matrix
The twist of the schema mixing matrixMξ can be ex-
pressed with the help of the twist of the mixing matrix
M and the quotient mapΞ according to

M∗
ξ =

21
T
ξ

n
· Ξ ·M∗ · ΞT . (49)

With the21
T
ξ×21

T
ξ WALSH matrixWξ overΩξ and

i, j ∈ Ωξ the WALSH transformM∗∧
ξ = Wξ ·M∗

ξ ·Wξ

follows to

(M∗∧
ξ )[i],[j] = (M̂ξ)[i⊕j],[j] . (50)

M∗∧
ξ is obtained fromM∗∧ by choosing rows and

columns with indices inΩξ, i.e.

(M∗∧
ξ )[i],[j] = (M∗∧)i,j . (51)

5.3 Schema Fixed Point
The matrixM∗

ξ and its WALSH transformM∗∧
ξ have

the same eigenvalues. Because of (51) for a lower tri-
angular matrixM∗∧ the matrixM∗∧

ξ is also lower tri-
angular. The corresponding eigenvalues are obtained
from

λ[i] = (M∗∧
ξ )[i],[i] = (M∗∧)i,i = λi (52)

with i ∈ Ωξ, i.e. the eigenvaluesλ[i] correspond to
the eigenvaluesλi. There exists a single eigenvalue
λ[0] = 1 which leads to the uniqueschema fixed point

ω̃ = M∗
ξ · ω̃ . (53)

The unique schema fixed point̃ω can be determined
explicitly with the help of the WALSH transform by
taking into account thatM∗∧

ξ is a lower triangular ma-

trix. By making use of the relation̂̃ω = M∗∧
ξ · ̂̃ω the

WALSH transform of the schema fixed point can be
recursively calculated according to

̂̃ω[i] =
1

1− M̂0,i

·
∑

j∈Ωξ∩{0,1,...,i−1}

M̂i⊕j,j · ̂̃ω[j]

(54)
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with i ∈ Ωξ starting with

̂̃ω[0] = 2−1
T
ξ/2 (55)

which ensures
∑

i∈Ωξ
ω̃[i] = 1. The schema fixed

point is then obtained via the inverse WALSH trans-
form

ω̃ = Wξ · ̂̃ω . (56)

6 Experimental Results
In this section the ONEMAX problem with fitness
function

fi = 1
Ti (57)

is considered, i.e.fi denotes the number of 1’s in the
binary representation ofi ∈ Ω. A simple genetic algo-
rithm with α-selection using uniform crossover, bit-
wise mutation and random initial population is used
with the strategy parameters listed in Tab. 1.

Table 1: Strategy parameters for the simple genetic
algorithm withα-selection.

` n = 2` χ µ r

10 1024 1.0 `−1 100

6.1 Intrinsic System Model
The intrinsic system model of the simple genetic al-
gorithm withα-selection is defined by the twist of the
mixing matrix M∗ which leads to the unique fixed
point ω shown in Fig. 12. The largest fraction of
the population according to the largest componentωi

of the fixed pointω occurs at the individuali = 0.
This is in line with the observation that the intrinsic
system model of the simple genetic algorithm with
α-selection corresponds to the underlying dynamical
system model for the best orα-individual b = 0.

According to thefixed point hypothesisthe per-
muted population vectorσb(t) p(t) will stay near this
fixed pointω. The corresponding distance between
the permuted population vectorσb(t) p(t) in genera-
tion t to the fixed pointω can be measured by the
EUCLIDean distance which is defined by

∥∥σb(t) p(t)− ω

∥∥ =

√∑

i∈Ω

((
σb(t) p(t)

)
i
− ωi

)2
.

(58)
In Fig. 13 the EUCLIDean distance‖σb(t) p(t)−ω‖ is
shown for one simulation run of the simple genetic al-
gorithm withα-selection and strategy parameters as in
Tab. 1 for100 generations. The permuted population
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Figure 12: Fixed pointω of the intrinsic system model
of the simple genetic algorithm withα-selection.

vectorσb(t) p(t) stays close to the unique fixed point
ω of the intrinsic system model of the simple genetic
algorithm withα-selection. There is a close match be-
tween the theoretical prediction and the experimental
result, thereby confirming thefixed point hypothesis.
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Figure 13: EUCLIDean distance‖σb(t) p(t)−ω‖ over
generationt for the simple genetic algorithm withα-
selection.

6.2 Schemata
For numerical calculations the equivalence class or
schema[i] ∈ Ω/≡ is identified withi ∈ Ωξ. The ele-
ments ofΩξ are numbered in ordinary binary fashion,
e.g. for` = 5 andξ = 13 we identify{00000, 00001,
00100, 00101, 01000, 01001, 01100, 01101} with
the set{000, 001, 010, 011, 100, 101, 110, 111} of bi-
nary 3-tuples or index numbers{0, 1, 2, 3, 4, 5, 6, 7},
respectively.

The schemata family for̀ = 10 assumed in the
following experiment is defined by the binary`-tuple
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ξ = 0000000111 or ξ = 7, respectively. The corre-
sponding23 × 23 schema system matrixMξ is given
by

Mξ =




0.729 0.405 0.405 0.225 0.405 0.225 0.225 0.125
0.405 0.081 0.225 0.045 0.225 0.045 0.125 0.025
0.405 0.225 0.081 0.045 0.225 0.125 0.045 0.025
0.225 0.045 0.045 0.009 0.125 0.025 0.025 0.005
0.405 0.225 0.225 0.125 0.081 0.045 0.045 0.025
0.225 0.045 0.125 0.025 0.045 0.009 0.025 0.005
0.225 0.125 0.045 0.025 0.045 0.025 0.009 0.005
0.125 0.025 0.025 0.005 0.025 0.005 0.005 0.001




the WALSH transformM̂ξ of which follows to

M̂ξ =




1.000 0.400 0.400 0.160 0.400 0.160 0.160 0.064
0.400 0.000 0.160 0.000 0.160 0.000 0.064 0.000
0.400 0.160 0.000 0.000 0.160 0.064 0.000 0.000
0.160 0.000 0.000 0.000 0.064 0.000 0.000 0.000
0.400 0.160 0.160 0.064 0.000 0.000 0.000 0.000
0.160 0.000 0.064 0.000 0.000 0.000 0.000 0.000
0.160 0.064 0.000 0.000 0.000 0.000 0.000 0.000
0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000




.

The WALSH transform of the twist of the schema mix-
ing matrixM∗∧

ξ is a lower triangular matrix

M
∗∧

ξ =




1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.400 0.400 0.000 0.000 0.000 0.000 0.000 0.000
0.400 0.000 0.400 0.000 0.000 0.000 0.000 0.000
0.160 0.160 0.160 0.160 0.000 0.000 0.000 0.000
0.400 0.000 0.000 0.000 0.400 0.000 0.000 0.000
0.160 0.160 0.000 0.000 0.160 0.160 0.000 0.000
0.160 0.000 0.160 0.000 0.160 0.000 0.160 0.000
0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064




in line with the theoretical predictions.
The unique schema fixed point̃ω of the coarse-

grained system model of the simple genetic algorithm
with α-selection defined by thè-tuple ξ is shown in
Fig. 14. The largest fraction of the population rep-
resenting schema[i] within the schemata family ac-
cording to the largest componentω̃[i] of the schema
fixed point ω̃ occurs at the schema[i] = [0]. This
again is in line with the observation that the intrin-
sic system model of the simple genetic algorithm with
α-selection corresponds to the underlying dynamical
system model for the best orα-individual b = 0.

The EUCLIDean distance of the simulated and
permuted schema population vectorΞσb(t) p(t) in
generationt to the schema fixed point̃ω is

∥∥Ξσb(t) p(t)− ω̃

∥∥ =
√√√√

∑

i∈Ωξ

((
Ξσb(t) p(t)

)
[i]
− ω̃[i]

)2
. (59)
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Figure 14: Schema fixed point̃ω of the intrinsic sys-
tem model of the simple genetic algorithm withα-
selection for schemata familyξ = 7.

This EUCLIDean distance‖Ξσb(t) p(t)−ω̃‖ is shown
in Fig. 15 for one simulation run. The permuted
schema population vectorΞσb(t) p(t) stays close to
the unique schema fixed pointω̃ of the coarse-grained
system model of the simple genetic algorithm with
α-selection according to thefixed point hypothesis.
There is again a close match between the theoretical
prediction and the experimental result.
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Figure 15: EUCLIDean distance‖Ξσb(t) p(t) − ω̃‖
over generationt for the simple genetic algorithm
with α-selection and schemata familyξ = 7.

7 Conclusion

The intrinsic system model for the simple genetic al-
gorithm withα-selection simplifies the analysis of the
dynamical system model of genetic algorithms. It is
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defined by the mixing matrixM and enables the ex-
plicit derivation of the unique fixed pointω. The sim-
plifications are gained because the fitness function is
hidden from the mathematical formulation by mak-
ing use of theα-individual b. Sinceb enters the dy-
namical system model via a permutationσb accord-
ing to the system matrixσbM∗ σb the intrinsic system
model can be formulated with the help of the twist of
the mixing matrixM∗. It has to be observed, however,
that the permutationσb depends on theα-individual b
and therefore on the population vectorp.

The intrinsic system model provides a means to
analyze the genetic algorithm’s exploitation and ex-
ploration of the search spaceΩ irrespective of the fit-
ness functionf . This model is compatible with the
equivalence relation imposed by schemata which was
shown by explicitly deriving the coarse-grained sys-
tem model for a given schemata familyξ. Experi-
mental results for the simple genetic algorithm with
α-selection, uniform crossover and bitwise mutation
presented in this paper show close agreement to the
theoretical predictions obtained from the intrinsic sys-
tem model.
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