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Abstract: Genetic algorithms (GA) are instances of random heuristic search (RHS) which mimic biological evo-
lution and molecular genetics in simplified form. These random heuristic search algorithms can be theoretically
described by an infinite population model with the help of a deterministic dynamical system model by which
the stochastic trajectory of a population can be characterized using a deterministic heuristic function and its fixed
points. For practical problem sizes the determination of the fixed points is unfeasible even for the simple genetic al-
gorithm (SGA) with fitness-proportional selection, crossover and bitwise mutation. The recently introduced simple
genetic algorithm witln-selection allows the analytical calculation of the unique fixed point of the corresponding
intrinsic system model. In this paper, an overview of the theoretical results for the simple genetic algorithm with
a-selection and its intrinsic system model is given. The unique fixed point of the intrinsic system model is derived
and its compatibility with the equivalence relation imposed by schemata is shown. In addition to the theoretical

analysis experimental results for the simple genetic algorithm w4sielection, uniform crossover and bitwise
mutation are presented showing a close agreement to the theoretical predictions.
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1

As specific instances of random heuristic search
(RHS), genetic algorithms mimic biological evolu-
tion and molecular genetics in simplified form [1, 9].
These evolutionary algorithms have been successfully
applied in a large variety of applications [2, 7, 8, 10].
Genetic algorithms (GA) process populations of indi-
viduals which evolve according to selection and ge-
netic operators like crossover and mutation. The al-
gorithm’s stochastic dynamics can be described with
the help of a dynamical system model introduced by
Voskeetal. [9, 12, 13]. According to this infinite pop-
ulation model the population trajectory is attracted by
the fixed points of an underlying deterministic heuris-
tic function which also yields the expected next pop-
ulation. However, even for moderate problem sizes
the calculation of the fixed points is difficult even for
the simple genetic algorithm with fithess-proportional
selection, crossover and bitwise mutation.

The simple genetic algorithm (SGA) with-
selection recently introduced in [3, 4, 5, 6] allows to
explicitly derive the fixed points of the heuristic func-
tion. In this selection scheme, the bestwindividual
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is mated with individuals randomly chosen from the
current population with uniform probability. For the
simple genetic algorithm with-selection it is further
possible to formulate an intrinsic system model which
is compatible with the equivalence relation imposed
by schemata. The intrinsic system model provides a
means to analyze the genetic algorithm’s exploitation
and exploration of the search space due to the mixing
operation caused by crossover and mutation irrespec-
tive of the fitness function.

This paper gives an overview of the theoretical re-
sults for the simple genetic algorithm withselection
and its intrinsic system model. In addition to the the-
oretical analysis experimental results are presented.
The paper is organized as follows. The simple ge-
netic algorithm witha-selection, uniform crossover
and bitwise mutation is described as a specific in-
stance of random heuristic search in Sect. 2 based on
the notion of the best individual randomly mating with
other individuals in the current population. In Sect. 3
the corresponding dynamical system model is derived
based on which the intrinsic system model of the sim-
ple genetic algorithm with-selection is formulated
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in Sect. 4. Its unique fixed point is derived analyti-
cdly and its compatibility to the equivalence relation
imposed by schemata is shown in Sect. 5. Simula-
tion results for the simple genetic algorithm with
selection, uniform crossover and bitwise mutation are

presented in Sect. 6 showing a close agreement be-

tween theory and experiment. A brief conclusion is
given in Sect. 7.

2 Simple Genetic Algorithm with a-
Selection

In this section the simple genetic algorithm with
selection, uniform crossover and bitwise mutation is
described following the notation and definition of the
simple genetic algorithm (SGA) in [12]. Itis assumed
that the genetic algorithm is used for the maximization
of a fitness functionf : © — IR which is defined
over the search spaée =15 = {0, 1}* consisting of
binary ¢-tuples(ag, a1, ..., ar_1).

Each binary ¢-tuple (ag,a1,...,a0-1)
apay -..ag—1 WIill be identified with the integer
a=uag-2""4+a - 272+ ... +ap_; - 20 leading
to the search spac = {0,1,...,n — 1} with
cardinality |2 = n = 2¢. The fitness values are
given by f(a) = f,. Based on the binary num-
ber representation the bitwise modulo-2 addition
a @ b, bitwise modulo-2 multiplications ® b and
bitwise binary complement are defined. Vice
versa, the integen € () is viewed as a column
vector (ag, a1, ...,a,_1)*. The all-one/-tuple 1
corresponds to the integer — 1 = 2 — 1. The
indicator function is defined by = j] = 1ifi = j
ando if 7 # j.

2.1 Algorithm

The simple genetic algorithm with-selectionworks
over populationsP(t) defined as multisets of indi-
vidual binary/-tuplesa(t) € Q. For the creation of
offspring individuals in each generatigrgenetic op-
erators like crossoveyg and mutation:q, are applied
to parental individuals (see Fig. 1).

2.2 «-Sdlection
For thea-selectionscheme let

b(t) = argmax {f; : i € P(t)} 1)

be the best individual on-individual in the current
populationP(t). In the simple genetic algorithm with
a-selection then-individual b(t) is mated with indi-
viduals randomly chosen from the current population
P(t) with uniform probabilityr 1.
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t:=0;
initialize populationP(0);
while end of adaptatiog# truedo
selecta-individual b(t) as first parent;
for the creation of offspringdo
select second parentt) randomly;
apply crossovey and mutationuq
a(t +1) := pa (xa (b(t), c(t)));
end
incrementt .=t + 1;
end

Figure 1: Simple genetic algorithm with-selection
[3,4,5,6].

2.3 Mixing

The crossoveroperatoryg : 2 x  — € randomly
generates an offspringgtuple a = (ag, a1,...,ap_1)
according to

2

with crossover probabilityy from two ¢-tuplesb =
(b(), bi,... ,bgfl) andc = (60,01, R ,Cg,l). With
the crossover mask € () the/-tuples

a = xal(b,c)

a=b@memec 3

a=bMdMKc 4

are generated one of which is chosen as offspting
with equal probability2~!. For uniform crossover
the crossover mask: is randomly chosen fron)
according to the probability distribution vectqr =

(X0s X1, - -+ » Xn—1) T With [12]

o]

The bitwise mutation operatorug : Q2 — £,
which randomly flips each bit of thé-tuple a
(ag,ai,...,ar—1) with mutation probabilityu, is de-
fined with the help of the mutation mask € (2 ac-
cording to

l—x+x-27¢, m=0
x-27¢ , m>0

()

(6)

The mutation maskn is randomly chosen fron2
according to the probability distribution vectpr =

(/-L()v M, .- mun—l)T with [12]

pole) =a®m .

T T
po =t (1= )t (7)

A typical value of the mutation probability jg ~ %
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3 Dynamical System Mode

In the dynamical system mod¢l2] the dynamics
of the simple genetic algorithm is compactly for-
mulated by defining the population vectgr
(po,p1,---,Pn1)". Each component

pi = %ZU il

jeP

(8)

gives the proportion of the element () in the cur-
rent populationP. The population vectagp is an ele-
ment of the simplex

} )

For a population of size the number of possible pop-
ulation vectors is given by"*"~!). In the limit of
infinite populations with- — oo the population vec-
tors are dense in the simpléx For simplicity we will
take the simplex\ as the defining region of the pop-
ulation vectorp which is strictly valid only for large
populations with- >> 1 in the sense of amfinite pop-
ulation model

A:{pER”:piEOAZpizl
i

3.1 Random Heuristic Search

The simple genetic algorithm is now described as an
instance of RHS : A — A according top(t + 1) =

7 (p(t)) with 7 depending on the random selection
and genetic operators. As outlined in [12]can be
equivalently represented by a suitable heuristic func-
tion G : A — A which for a given population vector
p yields the probability distributio (p). This prob-
ability distribution

G (p); = Pr{individual i is sampled fronf2} (10)

is used to generate the next population as illustrated in
Fig. 2. The transition probabilities of the RHSare
given by the formula [12]

rq;

g (P)z‘
(rq;)!

The trajectoryp, 7 (p), 72 (p), . . . approximately
follows the trajectoryp, G (p), G* (p), ... of the de-
terministic dynamical system defined by the heuristic
function G with

P{r(p) =q} =] (11)
i€Q

E{r(p)}=6(p) -

Because of the corresponding mean quadratic devia-
tion

E{ll7 (p) - G (p)I°} =

(12)

S|

(1-19@I*) @3
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p(0) r p(1) T p(2)

/f /f’
G g =" sample i)
G (p(0)) g (p(1))

Figure 2: Simple genetic algorithm as RHSwith
heuristic functiong [12].

the RHST behaves like the deterministic dynamical
system model in the limit of infinite populations with
r — oo. As illustrated by experimental evidence the
RHST showspunctuated equilibrigi.e. phases of rel-
ative stability nearby a fixed point
w=G(w) (14)
of the heuristic functiorg disrupted by sudden tran-
sitions to another dynamical equilibrium near another
fixed point. We call this théixed point hypothesisf
genetic algorithms.

3.2 Heuristic

In the simple genetic algorithm with-selection the
a-individual
b=argmax{f;:i € QAp; >0} (15)

is selected as the first parent for creation of a new off-
spring, whereas the second parent is chosen uniformly
at random from the current population according to
the probability distributiorp; over{) with j € 2. The
heuristic functiong (p) follows to

G(p); =Y _p;-P{ua (xa(b,§) =i} . (16)

JEQ

The probability distributions for crossovey, and
mutationug lead to

Pr{ua (xa(b, 7)) =i}
Z:Uv : Pr{XQ(b>j) =1® U}

vEQN

D i)

vES) u€es)

Xu + Xu
Z Ho - 2 )
u,vEN

Xu"‘XE'

5 bRueu®j=1d v

(@) @udu® (i®j)="1] .
17)
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By defining then x n mixing matrix[12]

M;; = Z M'M-[ié@u@m@j:v] (18)

2
u, Ve
this yields
Prua (xa(b,j)) =i} = Migpie;  (19)
and finally
G(p); =Y P Mighias; - (20)
JEQ
With the permutation matrix
()i ;=i ®j ="b] (21)
and thetwist
(M*); ; = Migj; (22)

of the symmetric mixing matrix/ = M7 the new
population vector is given by

l[a=G(p) =0y M" 0, p|. (23)

This dynamical system modslillustrated in Fig. 3.

P—» G — q=G(p)

M*

Y

P ——> Op

Y

Op — q

Figure 3: Dynamical system model of the simple ge-
netic algorithm withn-selection [4].

3.3 Mixing Matrix

The calculation of the mixing matrix/ can be carried
out efficiently with the help of the VLSH transform
[11]. For a matrixM the WALSH transform isM =
W - M - W with then x n WALSH matrix
Wij=n"12 (=1)"7 . (24)

The WALSH matrix W is symmetric and orthogonal,
ie. W=l = WT = W. The WALSH transform of
a vectorv yieldsv = W - v. In Fig. 4 the WALSH
matrix W is illustrated forn = 26 = 64.

For crossover and bitwise mutation theaVgH
transform of the mixing matrix/ is given by [12]

J\Z,j =li®j=0

no_
* Higy Z (Xkei + Xkaj)
ke

(25)

\)

TR
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:JI ?.
.t

Figure 4: lllustration of the WL sH matrix W forn =
26 = 64.

with _
Q={ieQ:ixk=0} . (26)
Due to the factofi @ j = 0] the componentd/; ; are
nonzero only ifi®j = 0 or j € Q, respectively. With
the WALSH transform of the mutation mask distribu-
tion for bitwise mutationuq
T.
i =nV2 (1 -2t (27)
the WALSH transformed mixing matrix is given by
[12]

M =li®j =0
(1 —2u)t (@)
T Z (Xk@i + Xkaj) -
K€y

(28)

The WALSH transform of the twist of the mixing ma-
trix can be calculated from

(M*/\)i,j = /\iEBj,j : (29)

4 Intrinsic System Model

The matrixo, M* o, of the dynamical system model
of the simple genetic algorithm with-selection in
Eqg. (23) depends on the mixing matd{ and thea-
individual b. Because ofr, ! = o, this yields the
equivalent formulation

lo,q=M"o,p] . (30)

The permuted population vecter, p develops ac-
cording to the matrix\/* which is independent of the
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a-individual b, i.e. the diagram in Fig. 5 commutes for
a givena-individual b [4]. The matrixM* defines the
intrinsic system modaedf the genetic algorithm with
«-selection as shown in Fig. 6 and Fig. 7 [4]. Because
of o9 = I with identity matrix/ the intrinsic system
modelg = M*-p of the simple genetic algorithm with
a-selection corresponds to the underlying dynamical
system modey = G (p) = o, M* oy, - p for the best

or a-individual b = 0.

p g > G(p)
Op Ob
ov P I » 0,G(p)

Figure 5: Commutativity diagram for the dynamical
system model of the simple genetic algorithm with
selection with heuristic functio@, twist of the mixing
matrix A * and permutatiom,.

intrinsic
system
model

Y

Op Ob
p q

Figure 6: Dynamical system model of the simple ge-
netic algorithm witha-selection and the intrinsic sys-
tem model.

The fixed points of the intrinsic system model are
obtained from the eigenvectors 8f* to eigenvalue

A=1,i.e.
: (31)

The fixed points of the heuristic functighof the dy-
namical system model follow from the permutation
opw for a givena-individual b. For the fixed point
analysis of the dynamical system model it therefore
suffices to analyze the intrinsic system model shown
in Fig. 7.

To this end the WLSH transform of both sides of
the equatiory = M™* - p is taken yielding

G=W-q=W-M*W-W-p=M"-p . (32)

For an eigenvectow with eigenvaluel it follows M * -
v = A\ -wv and equivalentlyM*" .5 = X - v, i.e.
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M* —» q

Figure 7: Intrinsic system model of the genetic algo-
rithm with a-selection [4].

the matrix M/* and its WALSH transformM*" have
the same eigenvalues with eigenvectors which are also
related by the WLsH transform.

For crossover and mutation theaWsH transform
of the mixing matrix fulfillsM; ; « [i ® j = 0], i.e.
M is separative. M*" = M”** is a lower triangu-
lar matrix the spectrum of which is given by the first
column of M [12]. Since the spectrum df/* and its
WALSH transformM*" are the same this yields the
eigenvalues

A= (M), . =My, . (33)

For crossover and bitwise mutation the eigenvalues
are given by

. 174
% : Z (Xk + Xkai)

]CEQ,L—-

Ai = (34)

Because of\g = land0 < \; < 3 —p < S forl <
1 < n — 1 there exists a single eigenvectomwhich is
a unique fixed point of the intrinsic system model. For
uniform crossover the eigenvalues are obtained from

. 1=
Ai=(1-— 2,,L)1TZ . (X L9~y —— X> (35)

for1 < i < n — 1. The fixed points of the heuris-
tic function G of the simple genetic algorithm with-
selection are obtained from the permutatignu for a
givena-individual b. According to thefixed point hy-
pothesisthe population will stay near this fixed point
opw and converge to a new fixed point if a better
individual b is found.

The unique fixed pointv of the intrinsic sys-
tem model can be determined explicitly with the help
of the WALSH transform. Due to the relatiow =
M*" - & and the lower triangular matrid/** the
WAaLSH transform of the fixed point can be recursively
calculated according to

_ 1 S
W, = ———— - Z Mi@j,j . OJj (36)
1— MOJ‘ =0
for 1 <i <n — 1 starting with
Gy =n"1/? (37)
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which ensures ., w; = 1. The unique fixed point
w is then obtained via the inverseANSH transform

w=W. .o . (38)
(1) )
G e
7 sample inf
G (p(t))

Figure 8: Simple genetic algorithm witl-selection
as RHSr with heuristic functiong.

p(t) . p(t+1)
®
g
Th(t) /
/
& /
/
/
/
/
/
/
s /
/ sample in)
/
Ob(t) ///
/
Y/
| 4

oty M* oy p(t)

Figure 9: Simple genetic algorithm witl-selection
as RHSr with intrinsic system moded/*.

The transition in one generatianfrom popula-
tion vectorp(t) to population vectop(t + 1) of the
random heuristic search in Fig. 8 can be detailed
for the simple genetic algorithm with-selection as
shown in Fig. 9. Under the assumption of tfreed
point hypothesidor the intrinsic system model the
permuted population vectar, p(t) will stay near
the unique fixed pointv. The population in gener-
ationt + 1 is therefore approximately sampled from
the search spacg according to the probability dis-
tribution oy,,yw with time-independent fixed poird
anda-individual b(t) as illustrated in Fig. 10.
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p(t) - p(t+1)
b(t) -
TbH)@ -7 sample in
Ob(t)
w

Figure 10: Simple genetic algorithm witirselection
as RHSr with unique fixed pointw.

5 Schemata

In this section coarse-grained system models based
on schemata will be explored as equivalence rela-
tions [12]. Two equivalent individuals = j in the
search spac@ belong to the same equivalence class
[i] ={j € Q:j=1i} € Q/=. This can be expressed
with the help of thequotient map

=[i],4

=], (39)
i.e.i = jif 2 ; = 1. Two populations are equivalent
if the proportions of individuals in each of the equiv-
alence classeg] with i € € are the same in both
populations. By using the population vectgrandq

in the simplexA this corresponds to

P=q <

VieQ:) [i=j-pj=) [i

JEQ JEQ

Jla -
(40)

Taking into accounEy, ; = [i = j] leads to

p=q < E =q . (42)

According to [12]schematacan be considered as
specific equivalence relations. gchemata familys
defined with the help of thétuple ¢ € Q via

By =l ®&=1 (42)
leading to the2l ¢ x 2¢ matrix Z. Here,i € Q, =
{ieQ:i®f=0}and; € Q. Two individuals
j, k € Q are equivalent if they agree on the defining
positions accordingtg = k< j & =k ® & The
number of the defining positions is"¢ which yields

T
the cardinality|(¢| = 21 ¢. With i € O, aschemas
defined as the equivalence class

i =i®Q . (43)
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5.1 SchemaHeuristic

Based on the intrinsic system model of the genetic al-
gorithm with«-selection

q = ij - M; iq;
jEQ

(44)

a coarse-grained system model will now be derived.
The proportion of the expected next population rep-
resenting schemd] = i ® Qg with i € Q¢ can be
calculated according to

(ECI)M

dYliec=iq

JEN
Z Giwj

J€Qe

Z Zpk - Migjiojokr -

JEQg keQ

qp)

(45)

This yields

qp) = Z Pyl - (MS)[i},[i@j}

JEQe

(46)

ithp = = ipl'e « 91'¢
with p = Ep and the symmetrie+ ¢ x 2+ ¢ schema
mixing matrix[12]

(Me)yy 17

_ EX) + EXm
Z (:'u)[v}' []2 [u]

u,vEe

[(@ueT®j ="
X[ T X[
2

SN

>

u,vEe

li®uerej =1
(47)

with x = Zx andp = Zu. The coarse-grained sys-
tem model based on schemata for the intrinsic system
model of a genetic algorithm with-selection is there-
fore given by

(48)

'é:Mg-ﬁ

The intrinsic system model is compatible with the
equivalence relation defined by the schemata fatily
because the diagram in Fig. 11 commutes. This con-
forms to the observation that the mixing operation of
the simple genetic algorithm with crossover and mu-
tation is compatible with this equivalence relation — a
property which has been argued as the reasomfor
plicit parallelism of genetic algorithms [12, 14].
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*

b M > 4

D : > q
M

Figure 11: Commutativity diagram for intrinsic sys-
tem modelM™* with quotient mafE.

5.2 SchemaMixing Matrix

The twist of the schema mixing matrix/; can be ex-
pressed with the help of the twist of the mixing matrix
M and the quotient mapg according to

1T
:2—§-E-M*-ET
n

M; (49)

T T
With the21 ¢ x 21" ¢ WaLsH matrix W, over(); and
i,j € Q¢ the WALSH transformM" = W - M7 - W
follows to

(MEM) i = (Me) w1 - (50)

M} is obtained fromM*" by choosing rows and
co?umns with indices i), i.e.

(MM = (M) (51)

5.3 Schema Fixed Point

The matrix M} and its WALSH transformM/;" have

the same eigenvalues. Because of (51) for a lower tri-
angular matrix)/*" the matrix ;" is also lower tri-
angular. The corresponding eigenvalues are obtained
from

A = (MM = (M™)ii =X (52)
with i € Q, i.e. the eigenvalues; correspond to

the eigenvalues,;. There exists a single eigenvalue
Ajo] = 1 which leads to the uniquechema fixed point

(53)

&=M -

The unique schema fixed poiat can be determined
explicitly with the help of the WLSH transform by
taking into account thaMgA is a lower triangular ma-

trix. By making use of the relatio@ = M - @ the
WAaLSH transform of the schema fixed point can be
recursively calculated according to

D

j€Qen{0,1,...,i—1}

= 1
1— Mo,

— ~

Migj,j - wpy)

“hi) =

(54)
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with i € Q¢ starting with

— oL (55)

& [0]

which ensureszieﬂg wy = 1. The schema fixed

point is then obtained via the inverseAWsH trans-
form

~

(.T):W§~w. (56)

6 Experimental Results

In this section the ONEMAX problem with fitness
function
fi=1"% (57)

is considered, i.ef; denotes the number of 1's in the
binary representation aéfe 2. A simple genetic algo-
rithm with a-selection using uniform crossover, bit-
wise mutation and random initial population is used
with the strategy parameters listed in Tab. 1.

Table 1. Strategy parameters for the simple genetic
algorithm witha-selection.

¢ n=2°
10 1024

X poor
1.0 ¢! 100

6.1 Intrinsic System Model

The intrinsic system model of the simple genetic al-
gorithm with a-selection is defined by the twist of the
mixing matrix M* which leads to the unique fixed
point w shown in Fig. 12. The largest fraction of
the population according to the largest componegnt
of the fixed pointw occurs at the individual = 0.
This is in line with the observation that the intrinsic
system model of the simple genetic algorithm with
a-selection corresponds to the underlying dynamical
system model for the best arindividual b = 0.

According to thefixed point hypothesithe per-
muted population vector, ) p(t) will stay near this
fixed pointw. The corresponding distance between
the permuted population vectet,;) p(t) in genera-
tion ¢ to the fixed pointw can be measured by the
EucLibean distance which is defined by

lov p(t) — wl| = Z((Ub(t)p(t))i_wi)2 .

i€Q
(58)

In Fig. 13 the EB)CLIDean distanc@oy ) p(t) —wl|| is

shown for one simulation run of the simple genetic al-

gorithm witha-selection and strategy parameters as in

Tab. 1 for100 generations. The permuted population
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0.25

021

0.15f

Wi

0.1

0.05F

0

0 100 200 300 400 500

1

600 700 800 900 1000

Figure 12: Fixed poink of the intrinsic system model
of the simple genetic algorithm with-selection.

vectoroy, p(t) stays close to the unique fixed point
w of the intrinsic system model of the simple genetic
algorithm witha-selection. There is a close match be-
tween the theoretical prediction and the experimental
result, thereby confirming thiexed point hypothesis

1

091

0.81

0.71

0.6

0.5F

04r

0.3F

lope P(t) — |

0.2

O.IWNWNWWM

0

I I I I I I I I I
0 10 20 30 40 50 60 70 80 920 100

Figure 13: BJcLIDean distancéioy ) p(t) — w|| over

generationt for the simple genetic algorithm with-
selection.

6.2 Schemata

For numerical calculations the equivalence class or
schemdi| € Q/= is identified withi € Q¢. The ele-
ments of() are numbered in ordinary binary fashion,
e.g. for¢ = 5 and¢ = 13 we identify {00000, 00001,
00100, 00101, 01000, 01001, 01100, 01101} with
the set{000, 001,010,011, 100, 101,110, 111} of bi-
nary 3-tuples or index number§0, 1,2,3,4,5,6, 7},
respectively.

The schemata family fof = 10 assumed in the
following experiment is defined by the binafstuple
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& = 0000000111 or & = 7, respectively. The corre-

sponding2?® x 23 schema system matrix/; is given

by

M =
0.729
0.405
0.405
0.225
0.405
0.225
0.225
0.125

0.405
0.081
0.225
0.045
0.225
0.045
0.125
0.025

0.405
0.225
0.081
0.045
0.225
0.125
0.045
0.025

0.225
0.045
0.045
0.009
0.125
0.025
0.025
0.005

0.405
0.225
0.225
0.125
0.081
0.045
0.045
0.025

0.225
0.045
0.125
0.025
0.045
0.009
0.025
0.005

0.225 0.
0.125 0.0
0.045 0.0
0.025 0.0
0.045 0.0
0.025 0.0
0.009 0.0
0.005 O.

= 01 o1 ool or oo

the WALSH transform]@ of which follows to

M, =
1.000
0.400
0.400
0.160
0.400
0.160

0.160
0.064

0.400
0.000
0.160
0.000
0.160
0.000
0.064
0.000

0.400
0.160
0.000
0.000 0.000
0.160 0.064
0.064 0.000
0.000 0.000
0.000 0.000

0.160
0.000
0.000

0.400
0.160
0.160
0.064
0.000
0.000
0.000
0.000

0.160
0.000
0.064
0.000
0.000
0.000
0.000
0.000

0.160 O.
0.064 0.0
0.000 0.0
0.000 0.0
0.000 0.0
0.000 0.0
0.000 0.0
0.000 O.

OO OO O0OOO M

The WALsH transform of the twist of the schema mix-
ing matring‘A is a lower triangular matrix

M =
1.000
0.400
0.400
0.160
0.400
0.160
0.160
0.064

0.000
0.400
0.000
0.160
0.000
0.160
0.000
0.064

0.000
0.000
0.400
0.160
0.000
0.000
0.160
0.064

0.000
0.000
0.000
0.160
0.000
0.000
0.000
0.064

0.000
0.000
0.000
0.000
0.400
0.160
0.160
0.064

0.000
0.000
0.000
0.000
0.000
0.160
0.000
0.064

0.000 O.
0.000 0.0
0.000 0.0
0.000 0.0
0.000 0.0
0.000 0.0
0.160 0.0
0.064 0.

A OOOOCOOO

in line with the theoretical predictions.

The unique schema fixed poiat of the coarse-
grained system model of the simple genetic algorithm
with a-selection defined by thétuple £ is shown in
Fig. 14. The largest fraction of the population rep-
resenting schemg] within the schemata family ac-
cording to the largest componedt; of the schema
fixed pointw occurs at the schem@ = [0]. This
again is in line with the observation that the intrin-
sic system model of the simple genetic algorithm with
«-selection corresponds to the underlying dynamical
system model for the best arindividual b = 0.

The BEucLiDean distance of the simulated and
permuted schema population vect&itoy ;) p(t) in
generation to the schema fixed poi is

[Eop p(t) — @ =
_ _ 2
> ((: o) P(t)) i W[z’]) (59)
iEQ{
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Figure 14: Schema fixed poiat of the intrinsic sys-
tem model of the simple genetic algorithm withk
selection for schemata famity= 7.

o0
o

This EucLIiDean distancé= oy, p(t) — || is shown

in Fig. 15 for one simulation run. The permuted
schema population vect® oy, p(t) stays close to
the unique schema fixed poiatof the coarse-grained
system model of the simple genetic algorithm with
«a-selection according to théxed point hypothesis
There is again a close match between the theoretical
prediction and the experimental result.
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Figure 15: EJcLIDean distance|= o) p(t) — ||
over generationt for the simple genetic algorithm
with a-selection and schemata famfy= 7.

7 Conclusion

The intrinsic system model for the simple genetic al-
gorithm with a-selection simplifies the analysis of the
dynamical system model of genetic algorithms. It is
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defined by the mixing matrix/ and enables the ex-
plicit derivation of the unique fixed poins. The sim-

plifications are gained because the fitness function is

hidden from the mathematical formulation by mak-

ing

use of thex-individual b. Sinceb enters the dy-

namical system model via a permutatiop accord-
ing to the system matrix, M* o, the intrinsic system
model can be formulated with the help of the twist of
the mixing matrixA ™. It has to be observed, however,
that the permutation; depends on the-individual b
and therefore on the population vecjor

The intrinsic system model provides a means to

analyze the genetic algorithm’s exploitation and ex-
ploration of the search spa€kirrespective of the fit-
ness functionf. This model is compatible with the

equivalence relation imposed by schemata which was

shown by explicitly deriving the coarse-grained sys-
tem model for a given schemata famiy Experi-

mental results for the simple genetic algorithm with
a-selection, uniform crossover and bitwise mutation

presented in this paper show close agreement to the

theoretical predictions obtained from the intrinsic sys-
tem model.
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